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Abstract

In recent years, one has witnessed a widespread attention on the way monetary policy
is conducted and in particular on the role of the so-called monetary policy rules. The con-
ventional approach in the literature consists in estimating reaction functions for a monetary
authority (the Federal Reserve, in most cases) in which a nominal interest rate, directly or
indirectly controlled by that monetary authority, is adjusted in response to deviations of
inßation (current or expected) from target and of output from potential. These reaction
functions, usually called Taylor rules, following John Taylor�s seminal paper published in
1993, match a number of normative principles set forth in the literature for optimal mone-
tary policy. This provides a good reason for the growing prominence of indications given by
Taylor rule estimations in debates about current and prospective monetary policy stance.
However, they are usually presented as point estimates for the interest rate, giving a sense
of accuracy that can be misleading. Typically, no emphasis is placed on the risks of those
estimates and, at least to a certain extent, the reader is encouraged to concentrate on an ap-
parently precise central projection, ignoring the wide degree of uncertainty and operational
difficulties surrounding the estimates. As in any forecasting exercise, there is uncertainty
regarding both the estimated parameters and the way the explanatory variables evolve dur-
ing the forecasting horizon. Our work presents a methodology to estimate a probability
density function for the interest rate resulting from the application of a Taylor rule (the
Taylor interest rate) which acknowledges that not only the explanatory variables but also
the parameters of the rule are random variables.
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1 Introduction

In recent years, one has witnessed a widespread attention on the way monetary policy is con-
ducted and in particular on the role of the so-called monetary policy rules. Several reasons seem
to underlie this renewed interest. Perhaps the most important is that since the second half of
the 1980s, a number of studies have concluded that monetary policy signiÞcantly inßuences the
short-term performance of the real economy. Part of this strand of literature tries to identify
simple monetary policy rules that could reduce the likelihood of inßationary shocks similar to
those of the 1970s.

The conventional approach in the literature consists in estimating reaction functions for
a monetary authority (the Federal Reserve, in most cases) in which a nominal interest rate,
directly or indirectly controlled by that monetary authority, is adjusted in response to deviations
of inßation (current or expected) from target and of output from potential. These reaction
functions, usually called Taylor rules, following John Taylor�s seminal paper published in 1993,
match a number of normative principles set forth in the literature for optimal monetary policy1.

This provided a good reason for the growing prominence of indications given by Taylor rule
estimations in debates about current and prospective monetary policy stance. However, these
indications should be interpreted with prudence. Indeed, they are usually presented as point
estimates for the interest rate, giving a sense of accuracy that can be misleading. Typically,
no emphasis is placed on the risks of those estimates and, at least to a certain extent, the
reader is encouraged to concentrate on an apparently precise central projection, ignoring the
wide degree of uncertainty and operational difficulties surrounding the estimates. As in any
forecasting exercise, there is uncertainty regarding both the estimated parameters and the way
the explanatory variables evolve during the forecasting horizon [see Martins (2000)].

Our work presents a methodology to estimate a probability density function for the interest
rate resulting from the application of a Taylor rule (the Taylor interest rate) which acknowledges
that not only the explanatory variables but also the parameters of the rule are random variables.
The approach builds on work by the Bank of England [see Whitley (1999) and Britton et al
(1998)] and the Sveriges Riksbank [see Blix and Sellin (1998)] produced in the context of their
inßation forecasting exercises. The method has a Bayesian ßavour in that involves a subjective
component, through a permanent assessment of the state of the economy, based on a central
projection and the risks surrounding it. This assessment gives rise to the adoption of asymmetric
distributions both for the explanatory variables and the parameters of the Taylor rule. However,
unlike the approach followed by the aforementioned central banks, the resulting distribution for
the Taylor interest rate is obtained by numerical simulation.

This article is structured as follows. Section 2 presents a brief outline of the Taylor rule and
describes the procedure used to compute a probability density function for the Taylor interest
rate. In section 3, we present a simple statistical model for the dependence between the inßation

1The usefulness of Taylor rules as instruments for monetary policy analysis can be sustained not only on
normative grounds, with many studies concluding that simple monetary rules have stabilising properties which
are close to those of optimal policy rules, but also on positive grounds, since rules with this kind of formulation
seem to depict fairly well the way major monetary authorities have conducted monetary policy. Martins (2000)
provides a summary of the empirical literature on Taylor rules as well as a discussion on the operational difficulties
and limitations associated with this kind of instrument.
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forecast and the output gap.This procedure is then applied to the euro area in section 4. Finally,
section 5 presents some concluding remarks.

2 Taylor rule: a distribution for the explanatory variables

The original formulation of the Taylor rule is the following:

iTt = r
∗ + π∗ + β(πt − π∗) + θXt, (1a)

where iT is the interest rate recommended using a Taylor rule (the Taylor interest rate), πt
the average inßation rate over the previous four quarters (measured by the GDP deßator), π*
the inßation rate target, Xt the output gap and r∗ the equilibrium (or neutral) real interest
rate2.

Formulation (1a) by taking into account only the contemporaneous inßation rate and output
gap overlooks the forward-looking nature of monetary policy. To overcome this problem, a
forward-looking version of the Taylor rule is used in line with Clarida, Gali and Gertler (1997):

iTt = r
∗ + π∗ + β(πet+2 − π∗) + θXe

t+1. (1b)

The different time horizons considered for the output gap and the inßation forecast (one
and two years, respectively) has implicit the stylised fact that, at least in large and relatively
closed economies, monetary policy affects economic activity faster than it affects inßation [see
Ball (1997)].

The estimation of Taylor rules involves uncertainty regarding not only the estimated para-
meters (β and θ) but also the way in which the explanatory variables evolve over the forecasting
horizon. As a result, in this article all the arguments of the Taylor rule, excluding the inßation
target, are assumed to be random variables. It is also considered that the probabilistic behav-
iour for each of these variables is characterised by a two-piece normal distribution (TPN)3. This
distribution, which is also used by the Bank of England and the Sveriges Riksbank in their
inßation forecasting exercises, is a simple way to introduce asymmetry considerations in the
analysis.

A random variable W has a TPN distribution if its probability density function is given by:

f(W ;µw;σw,1) = C exp

"
− 1

2σ2w,1
(W − µw)2

#
,W ≤ µw, (2a)

f(W ;µw;σw,2) = C exp

"
− 1

2σ2w,2
(W − µw)2

#
,W ≥ µw, (2b)

2Note that if β > 1 and θ > 0, the real interest rate adjusts in a way that stabilises both inßation and output;
if β < 1, some inßation is accomodated. In this case, the nominal interest rate change is not sufficient to cause
the real interest rate to move in the same direction. This also applies to θ, which has to be non-negative for the
rule to be stabilising. In Taylor�s seminal paper (1993) the rule arguments were set at β = 1.5, θ = 0.5, π∗ = 2.0
and r∗ = 2.0.

3See Johnson, Kotz and Balakrishnan (1994) for a brief description of this distribution.
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with C =
q

2
π (σw,1 + σw,2)

−1.
This distribution can be understood as a merging of the left and right halves of two stan-

dard normal distributions with the same mode (µw)but with different standard deviations
(σw,1;σw,2)

4. Figure 1 provides an illustration with σw,1 < σw,2. In this example, the probabil-
ity mass to the left of the mode is smaller than the probability mass to its right, so that both
the mean and the median exceed the mode (positive asymmetry).

The mean and the variance for a random variable with this distribution are given by:

E (W ) = µw +

r
2

π
(σw,2 − σw,1) (3)

V ar(W ) = (1− 2

π
)(σw,2 − σw,1)2 + σw,2σw,1 (4)

Figure 1 - Probability density function of a two-piece normal distribution
σw,1 < σw,2

      N (µ ω ; σω ,1)  

      N ( µ ω ; σω ,2)  

      T P N ( µ ω ; σω ,1;  σω ,2)

In our analysis, W denotes each of the arguments of the Taylor rule (inßation forecast,
output gap. . . ). In order to obtain the three parameters of the distribution (µw, σw,1;σw,2), it
is necessary to assign values to:

(i) µw, which represents the central projection (i.e. the single most likely outcome);
4The factors of adjustment applied to the normal distribution are 2σw,1/ (σw,1 + σw,2) to the left of the mode

and 2σw,2/ (σw,1 + σw,2) to its right. This ensures that the probability density function is continuous and the
integral adds to 1.
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(ii) ωw = hwσw, which represents the standard deviation calculated using historical data
(σw) and adjusted by a factor of additional uncertainty (hw);

(iii) Pw, represents the subjective probability of W being below the central projection
� the downside risk5. This parameter plays a key role in the analysis, since the distribution
asymmetry builds on the particular value of Pw. If Pw = 0.5, the distribution collapses to the
standard normal distribution.

Given the distribution for the arguments of the Taylor rule, the question that arises is how
to determine the distribution of the Taylor interest rate itself6. The main difficulty is that the
aggregation of random variables with a TPN distribution does not result in a new variable with
a TPN or any other known distribution. In our work the Taylor interest rate distribution is
obtained by numerical simulation.

One of the problems to be solved before numerical simulation is made is the likely statis-
tical dependence among the Taylor rule arguments. Whereas regarding most of them it seems
reasonable to assume independence, that would be little realistic vis-à-vis the inßation forecast
and the output gap. In the next sextion, we present a simple model for the dependence between
these two variables.

3 A simple statistical model of dependence between output gap
and inßation forecasts

Let the random variable Xe denote the output gap forecast and assume that Xe follows a TPN
distribution,

X ∼ TPN(µXe ;σXe,1;σXe,2).

Let πi, for i = 1, 2 be two TPN random variables, independent of Xe, with the following
speciÞcation

πei ∼ TPN(µπe;σπe,1;σπe,2)
and

Pπe1 < Pπe2.

The latter is equivalent to imposing that

σπe1,1

σπe1,1 + σπe1,2
<

σπe2,1

σπe2,1 + σπe2,2

5Bearing in mind that Pw =
µR

−∞
f(x)dx = σ1

σ1+σ2
, it is possible to show that the standard deviations of the

TPN distribution are given by: σ2w,1(σw, Pw) = h2wσ
2
w

·
(1− 2

π
)
³
1−2Pw
Pw

´2
+
³
1−Pw
Pw

´¸−1
and σ2w,2(σw, Pw) =

h2wσ
2
w

·
(1− 2

π
)
³
1−2Pw
1−Pw

´2
+
³

Pw
1−Pw

´¸−1
.

6The Bank of England and the Sveriges Riksbank solve this problem by assuming that the resulting distribution
is also a TPN.
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or σπe1,2

σπe1,1
>
σπe2,2

σπe2,1
.

This means that the distribution of πe1 is relatively more skewed to the right than that of π
e
2.

The inßation forecast (πe) will be modelled as a mixture of πe1 and π
e
2, where the mixing

coefficients depend on the output gap. The idea is the following: if the output gap outcome
exceeds (falls behind) its central projection, a higher (lower) proportion of agents will be pes-
simistic (optimistic) about the inßation prospects, that is the mass of probability to the right
(left) of the modal inßation forecast will be greater. In other words, �good news� in terms of
output/unemployment will lead to a less favourable outlook for inßation. Formally,

πe = πe1I(X > µXe) + πe2I(X < µXe) (5)

where I(A) is the indicator of event A.
A few (obvious) remarks about the distribution of πe are in order,

1. The marginal probability density function (pdf) of πe is

fπe(y) = (1− PXe)fπe1(y) + PXefπe2(y)

where fπi(y) is the pdf of a variable with a TPN distribution.

2. The mode of fπe is µπe .

3. The downside risk is given by

Pπe =

Z µπe

−∞
fπe(y)dy = PXePπe2 + (1− PXe)Pπe1 , (6)

and thus, πe has a downside risk that is between those of πe1 and π
e
2.

3.1 Moments

For calibration purposes it is useful to comptute the Þrst moments of the distribution of πe as
well as the cross-moments of Xe and πe.

3.1.1 Mean

Using the independence of Xe and πei and the expression for the mean of a TPN distribution,
it is easy to see that

E(πe) = PXeE(πe2) + (1− PXe)E(πe1)

= µπe +
p
2/π[PXe(σπe2,2 − σπe2,1) + (1− PXe)(σπe1,2 − σπe1,1)].
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3.1.2 Variance

Recall that if a variable W follows a TPN distribution, then

E(W 2) = (σW,2 − σW,1)2 + σW,1σW,2 + 2
p
2/πµW (σW,2 − σW,1) + µ2W .

Bearing in mind that
E(πe2) = PXeEπe22 + (1− PXe)Eπe21

the second moment of πe can be computed by an easy (albeit cumbersome) substitution.
An interesting special case is when one assumes that

σπe1,1 = σπe2,1 ≡ υ.
Then, writing

κi ≡
1− Pπei
Pπei

, i = 1, 2

and noticing that
σπei ,2 = κiσπei ,1 = κiυ (7)

one has

E(πe2) = µ2πe+[PXe(κ22−κ2+1)+(1−PXe)(κ21−κ1+1)]υ2+2
p
2/π[PXeκ2+(1−PXe)κ1−1]µπeυ

and

V (πe) = υ2{[PXe(κ22−κ2+1)+(1−PXe)(κ21−κ1+1)]−(2/π)[PXeκ2+(1−PXe)κ1−1]2}. (8)

3.1.3 Cross-moments

E(Xeπe) = E(πe1)E[X
eI(Xe > µXe)] +E(πe2)E[X

eI(Xe < µXe)].

Using the well known results on the moments of truncated normal distributions [see, for
instance, Green (1993), page 683]

E[Xe|Xe > µXe ] = µXe +
p
2/πσXe,2

and
E[Xe|Xe < µXe] = µXe −

p
2/πσXe,1.

Consequently,
E[XeI(Xe > µXe)] = (1− PXe)(µXe +

p
2/πσXe,2)

and
E[XeI(Xe < µXe)] = PXe(µXe −

p
2/πσXe,1).

Therefore,

E(Xeπe) = (1− PXe)(µXe +
p
2/πσXe,2)[µπe +

p
2/π(σπe1,2 − σπe1,1)] (9)

+PXe(µXe −
p
2/πσXe,1)[µπe +

p
2/π(σπe2,2 − σπe2,1)].
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3.2 A calibration strategy

The distribution for the inßation forecast can be computed by numerical simulation on the basis
of equation (5). To do that, we may use point mass priors for the distribution parameters. For
the distribution of Xe , we have to assign values for the central projection (µXe); the historical
standard deviation (σXe) and the factor of additional uncertainty (hXe); and the downside risk
(PXe). Concerning the inßation forecast, we have to specify values for the central projection
(µπe); the historical standard deviation (σπe) and the factor of additional uncertainty (hπe);
and the downside risks Pπe1 and Pπe2

7.The simplest approach is to make

σπe1,1 = σπe2,1 ≡ υ,

a constant to be determined by the aforementioned assumptions for the parameters. As,

σπ22 = κ2υ and σπ12 = κ1υ,

this amounts to Þxing σπe2,2 and σπe1,2 up to a constant. Without the aforementioned simplifying
assumption, the determination of the standard deviations would involve the cross moments
restrictions (9).

Once the distribution of the inßation forecast is deÞned, on the basis of equation (1b), it
becomes possible to obtain by numerical simulation a probability density function for the Taylor
interest rate that takes into account the statistical dependence between the inßation forecast
and the output gap.

4 An application to the euro area

Taking into account the above procedure, this section provides an assessment of the euro area
monetary policy stance on basis of data available in December 2000. Table 1 presents the
central projections for each of the relevant variables of the Taylor rule, as well as the degree
of uncertainty and the balance of risks. The underlying assumptions as well as the remaining
calculations needed to compute the Taylor interest distribution are listed below.

7Assuming values for Pπe1 and Pπe2 is, of course, equivalent to assume a value for Pπe and another for Pπe1 or
Pπe2 .

8



Table 1 � The euro area Taylor interest rate: central projections and balance of risks
(as of December 2000)

r∗ π∗ πe Xe β θ
Main assumptions
Central projections (µw) 3.00 1.50 1.90 0.30 1.31 0.25
Adjusted standard deviation (ωw) 0.21 - 0.75 1.21 0.09 0.04
Historical standard deviation (σw) 0.19 - 0.75 1.10 0.09 0.04
Additional uncertainty factor (hw) 1.10 - 1.00 1.10 1.00 1.00
Balance of risks πe1 πe2
Upside 0.60 - 0.60 0.40 0.45 0.60 0.70
Downside 0.40 - 0.40 0.60 0.55 0.40 0.30
Memorandum item
Mean 3.07 1.50 1.88 0.11 1.34 0.27

4.1 Coefficients

Table 2 presents different estimated values for coefficients β and θ. Even though the results
are not qualitatively very distinct, the conclusions drawn in each model could be quantitatively
different. To deÞne the baseline scenario and the standard deviations, we took the values
estimated for Germany in Clarida, Galí and Gertler (1997), which are similar to those estimated
in Peersman and Smets (1998). We did not consider any additional uncertainty. Against the
backdrop that most estimates for the United States point to higher coefficients than those of
Germany, we considered upside risks greater than 50 percent (60 and 70 percent, respectively
for β and θ).

Table 2 � Estimated coefficients β and θ

β θ
Taylor (1993) USA 1.50 0.50
Taylor (1999) USA 1.50 1.00
Ball (1997) USA 1.50 1.00
Christiano (1999) USA 3.00 0.50
Clarida, Galí and Gertler (1998) USA 1.80 0.12
Clarida, Galí and Gertler (1997) Germany 1.31 0.25
Peersman and Smets (1998) Germany 1.30 0.28

4.2 Equilibrium real interest rate

We assume a value of 3.0 percent for the euro area equilibrium real interest rate. This Þgure is
consistent with estimates derived from a reaction function for the Bundesbank over the last two
decades and with the average real interest rates in G7 during the 1990s8. Moreover, according

8The calculation of the equilibrium real interest rate for the euro area on the basis of the average real interest
rate prevailing, for example, over the last decade is likely to show an upward bias. Indeed, over this period, the
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to the well-known golden rule of capital accumulation, the marginal product of capital, which
in equilibrium equals the real interest rate should not be less than the growth rate of output
(otherwise, the economy would be dynamically inefficient). Current estimates for the euro area
potential growth rate suggest a lower bound for the real interest rate of around 2.0 to 2.5
percent. For the historical standard deviation, we take the value derived by Smets (1999) from
a forward-looking reaction function for the Bundesbank over the period 1979-1997. In this work,
the implicit equilibrium real interest rate for an inßation target of 1.5 percent was 3.0 percent
as well. As regards the balance of risks, different estimates put forward by the literature for the
equilibrium real interest rate for Germany fall overwhelmingly in the range of 2.5 to 3.5 percent,
with a slight bias on the upper half. This last evidence seems to indicate that the balance of
risks is on the upside, thus justifying the attribution of a 60 percent probability to upside risks.
Finally, the possible effects of the so-called �New Economy� induce some uncertainty over the
current potential output estimates and consequently over the equilibrium real interest rate. As
a result, we decided to include a factor of additional uncertainty of 10 percent.

4.3 Inßation target

We assumed an inßation target of 1.5 percent. Recall that within the ECB monetary policy
strategy, adopted in October 1998, price stability was deÞned as an annual increase in the
Harmonised Index of Consumer Prices (HICP) of below 2 percent. In addition, the derivation
of the reference value for the growth rate of the M3 monetary aggregate had implicit an inßation
rate of 1.5 percent. We did not consider any uncertainty regarding this target.

4.4 Inßation forecast

The central projection for the inßation forecast corresponds to the mid-point of the Eurosystem�s
forecasting interval for the HICP growth in 2002 published in December 2000 � i.e. 1.9 percent.
The historical standard deviation was computed taking into account that the Eurosystem�s
forecasting interval (1.3, 2.5) is equal to twice the absolute mean error of the forecasting exercises
undertaken over the last years [ECB (2000)]. Considering a normal distribution, this leads to a
standard deviation of 0.75. We did not assume any additional uncertainty vis-à-vis the historical
standard deviation. Regarding the balance of risks, we took downside risks of 60 percent, if
the output gap realisation falls behind the modal forecast, and of 40 percent, if the output gap
realisation exceeds the modal forecast.

4.5 Output gap

The central projection for the output gap in 2001 (0.3 percent) was obtained with the Hodrick-
Prescott Þlter, using quarterly data since 1977. This estimate is in line with the European
Commission and the OECD projections for 2001, published in October and November 2000,
respectively. The historical standard deviation was computed bearing in mind that the Eu-
rosystem�s forecasting interval (2.6;3.6) for the GDP growth rate is equal to twice the absolute

disinßation process in the current euro area countries may have caused real interest rates to stand above their
equilibrium level. Against this background, it seems more appropriate to take past German interest rates as a
benchmark for comparison with today�s euro area.

10



mean error of the forecasting exercises undertaken over several years. Taking into account the
effects of the so-called �New Economy�9, we decided to include a factor of additional uncer-
tainty of 1.1. As to the balance of risks, we admitted a downside risk of 55 percent, given the
prospect that the economic slowdown in the United States could be more pronounced than the
available projections.

4.6 Results

With the aforementioned assumptions, all the central statistical measures for the Taylor interest
rate would be above the ECB reference interest rate in December 2000 (see Figure 2). Nev-
ertheless, given the signiÞcant variance implied by the Taylor interest rate distribution, these
indications are surrounded by considerable uncertainty, which are conÞrmed by the width of
the conÞdence interval. Indeed, the 50-percent conÞdence interval for the Taylor interest rate
is (4.46;5.80). The ECB interest rate in December 2000 lied inside this interval.

Figure 2 - Probability density function of the Taylor interest rate

ECB reference interest rate  
(December 2000)

Mode 5.09
Median 5.12
Inter-quartile range 1.34
Skewness 0.02

4.46
5.80

65%

50-percent confidence interval

4.75

Probability of an interest rate 
increase

1.50 2.00 2.75 3.25 3.75 4.25 5.00 5.50 6.00 6.50 7.25 7.75 8.25

Interest rate in December 2000

5 Concluding remarks

Empirical evidence suggests that Taylor rules depict fairly well the way major monetary author-
ities (in particular, the Federal Reserve and the Bundesbank) have conducted monetary policy

9Estimates for the current output gap are particularly uncertain both because recent output Þgures are in
most cases preliminar or because many estimation techniques, in particular univariate methods such as the HP
Þlter, pose some end-of-sample problems.
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over the last two decades � a period during which monetary policy is generally considered to
have been rather successful in reducing inßation. In this context, it seems reasonable to sustain
that indications given by Taylor rule estimations could be a useful reference when assessing
monetary policy stance.

However, the conventional approach, which consists in presenting these indications as point
estimates for the interest rate, seems to be little prudent, given the high degree of uncertainty
and operational difficulties surrounding the derivation of a Taylor interest rate. In particular,
the use of Taylor rules in a forward-looking perspective requires the inclusion of macroeconomic
forecasts over the period relevant for the monetary policy transmission mechanism. Given the
forecasting errors of the past, that requirement provides an important source of uncertainty.

In our work, the informative content of the Taylor rule was presented as a probability density
function for the interest rate. This approach makes clear that monetary policy decisions are
taken in an uncertain environment, which has to be taken into account explicitly in the context
of monetary policy assessment.
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