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Abstract

Quantile regression constitutes a natural and flexible framework for
the analysis of duration data in general and unemployment duration in
particular. Comparison of the quantile regressions for lower and upper
tails of the duration distribution affords important insights into the dif-
ferent determinants of short or long-term unemployment. Using quan-
tile regression techniques, we estimate conditional quantile functions of
U.S. unemployment duration; then, resampling the estimated conditional
quantile process, we are able to infer the implied hazard functions. The
proposed methodology proves to be resilient to several misspecifications
that typically afflict proportional hazard models, such as neglected het-
erogeneity and baseline misspecification. Overall, the results provide clear
indications of the interest of quantile regression to the analysis of duration
data.

KEYwORDS: Quantile Regression, Duration Analysis, Unemployment Dura-
tion
JEL cobgs: Cl14, C21, C41, J64

*We would like to thank seminar participants at the Universidade Catodlica Portuguesa,
Universidade do Porto, Instituto Superior de Economia e Gestdo and NOVA, and participants
at the ASSET Meeting (Lisbon, 2000), European Meeting of Statisticians (Madeira, 2001)
and the European Meeting of the Econometric Society (Lausanne, 2001). Comments by
Joshua Angrist, Victor Chernozhukov, Marcelo Fernandes, Miguel Gouveia, Roger Koenker,
José Mata, and Joao Santos Silva were greatly appreciated. Machado is consultant for the
Research Department of the Bank of Portugal. The authors also gratefully acknowledge
the partial financial support from the Fundacao para a Ciéncia e a Tecnologia. The usual
disclaimer applies.

fCorresponding author: José A.F. Machado, Faculdade de Economia, Universidade NOVA
de Lisboa, Campus de Campolide, 1099-032 Lisboa, Portugal. E-mail: jafm@fe.unl.pt




1 Introduction

The number of applications of quantile regression techniques has greatly in-
creased in recent years (for an overview of the range of those applications see,
for instance Fitzenberger et al. (2001)). Labor economics has been one of the
most popular fields for applications, but attention has been almost exclusively
devoted to the study of wage equations (see, for example and with no claim to
being exhaustive, Buchinsky (1994) and (2001), Chamberlain (1994), Fitzen-
berger and Kurz (1997) and Machado and Mata (2001)).

The chief aim of this paper is to explore the potential of models for condi-
tional quantile functions, or quantile regression models, as a tool for analyzing
duration data. Quantiles seem quite appropriate to this analysis for two ma-
jor reasons. First, as the seminal work of Powell (1984, 1986) reveals, quantile
regression is particularly well equipped to perform consistent inferences with
censored data, a typical situation in duration studies. Second, the methodology
estimates the whole quantile process of duration time conditional on the at-
tributes of interest. Quantile functions constitute, as does the more traditional
hazard function, a complete characterization of the (conditional) distribution of
duration time or, if one wishes, of the survivor function.

Estimation of models for conditional quantiles provides, therefore, a char-
acterization of the entire conditional distribution of duration time. This char-
acterization is robust, for it does not rest on strong distributional assumptions
and, yet, parsimonious, for it is semiparametric in nature. More importantly,
it is quite flexible, as it allows the effects of the covariates to differ at different
points of the distribution and, thus, it may capture “transient effects” that is,
instances where a covariate exert a significant influence on one tail of the distri-
bution but not on the other. This feature makes conditional quantiles a natural
statistical framework for analyzing how short-term unemployment—that is, du-
ration in the left tail of the distribution of unemployment times—differs from
long-term unemployment—that is, the right tail of the distribution.

In addition to these potential informational gains, quantile regression meth-
ods offer three features of great interest for duration analysis. First, it is possible
to cast the results from quantile regressions in the typical frames of other mod-
eling approaches; in particular, it is possible to estimate the survivor function,
residual duration and the hazard function implied by a given model for condi-
tional quantiles. Second, the estimators of the covariates’ effects on duration
are robust to neglected heterogeneity uncorrelated with the covariates. Finally,
when applied to Proportional hazard models, the quantile regression estimators
are resilient to misspecification of the baseline hazard.

The works by Horowitz and Neumann (1987, 1989) constitute early attempts
at using quantile estimates for employment duration. However, somehow, they
do not appear to have made their way into the mainstream econometric analysis
of duration. Be that as it may, the emphasis there was the consistent estimation
of a parameter vector in the presence of censoring, rather than the exploitation
of the full potential of quantile regression as a tool for the statistical analysis of
conditional distributions. Two recent papers by Koenker and Geling (2001) and



by Koenker and Billias (2001), more in the vein of the present one, bear witness
to the renewed interest in the topic. Apart from the issues of functional form
misspecification and unobserved individual heterogeneity that we address in this
study, the main differences between this paper and the studies by Koenker and
Geling (2001) and by Koenker and Billias (2001) are three-fold: first, we tackle
the problem of censored duration (incomplete durations are at the center stage
of survival analysis); second, we offer an alternative method for estimating the
hazard and survival functions; and third, we present the quantile regression
estimates in a framework that makes it comparable to the proportional hazard
model.

The paper is organized as follows. The next section provides the main ideas
of quantile regression and discusses the estimation of the hazard function implied
by a regression quantile model. There, we also address the issue of the impact
of neglected heterogeneity on the quantile regression estimators and present
a small simulation study of the resiliency of quantile regression estimators of
Proportional Hazard models to the baseline misspecification. In Section 3 we
illustrate the approach with a well known and important data set—the U.S.
“Displaced Workers Survey”—in order to highlight the potential information
gains from using quantile regression in duration analysis. Special attention is
devoted to expressing the output of quantile regressions in terms of survivor
and hazard functions. Section 4 concludes.

2 Quantile Regression Models in Duration Data
Analysis

2.1 Regressions

Models specified in terms of hazard functions undoubtedly dominate the analysis
of duration data. Yet, in some instances, regression-type models may prove
natural and useful. Regression models for the duration time are typically framed
in a strict parametric setting. Let T be the duration of stay in a given state, and
x; (x1; = 1) be the vector of covariates for the ith observation. A parametric
regression model assumes that

2(T;) = 2,8 + o¢; (1)

where, § and ¢ are unknown parameters, z(-) is a transformation function and e
is a zero mean and unit variance random variable with density f, not depending
on z, (e.g., Gaussian, lognormal, smallest extreme value, Weibull or exponen-
tial). A leading example of this class is the Accelerated Failure-Time (AFT)
model where

logT; = 23+ o¢; (2)

and f is left unspecified. The Proportional hazard (PH) model with Weibull
baseline also fits in the class, as it is equivalent to the Accelerated Life model
with € being the log of a unit Exponential variate.



The set-up above is restrictive in two main ways. First, it assumes a known
duration distribution f so that the model may be estimated by maximum like-
lihood. As is well known, the resulting estimators are “optimal” if the model is
correctly specified but lack robustness to departures from the assumed distri-
bution.

Second, and perhaps even more importantly, (1) assumes that only the con-
ditional mean of z(T') depends on the covariates. In technical terms, the dis-
tribution of the duration time conditional on the covariates is restricted to the
translation family that is, all the heterogeneity in the distribution of duration
time for different levels of the covariates is assumed to be captured by mere loca-
tion shifts (Manski, 1988). To put it plainly, the distributions corresponding to
different individuals differ only on location; other distributional attributes such
as scale, skewness or tail behavior are deemed independent of the conditioning
variables.

Quantile regression (QR) directly addresses these two limitations of a strict
parametric approach. For p € (0, 1), let

Qr(plr) = inf{t|Fr x (t|X = x) > p}

denote the pth quantile of the conditional distribution of T given X = =z
(Frix(t|X = x)). We consider statistical models specifying

Qr(plz) = g(2'B(p)) (3)

where ¢(-) is a monotone link function, known possibly up to a finite number
of parameters A(p), and G(p) is a vector of QR parameters, varying from quan-
tile to quantile. Owing to the equivariance property of quantiles to monotone
transformations, if we denote y(-) = g~ 1(-), (3) may be written as

Qy(r)(plz) = 2'B(p) (4)
or, in a regression-type format,
y(T) = 2'B(p) + u(p) (®)

where u(p) is an error term with Q) (p|z) = 0.
As an illustration, it is clear that the AFT model (2) implies that

QuogT(pl2) = 2'B + 0Qc(p),

thus revealing that all the conditional quantiles of log T" are parallel, in that the
difference between any two does not depend on x.

By contrast, the QR model (3), allows for the covariates to have different
effects on different points of the distribution. To illustrate this general point,
consider a simple treatment effects problem,

QiogT(pld) = a(p) + 6(p)d

with d = 1 for treatment and d = 0 for the control group. The QR framework
is flexible enough to allow for, say, 6(0.25) > 0 but §(0.9) = 0—the treatment



being effective on left tail but not on the right tail of the duration distribution.
It is interesting to note that this example describes a kind of situation that may
be modeled by a hazard model with “transient effects” (see e.g., Cox and Oakes,
(1984)).

However, the QR model ought not to be taken as a mere heteroscedastic
extension of the AFT model. It is true that (3) allows for the scale of the
conditional duration distribution to change with x; but it also allows for the
skewness, tail behavior and, in general, the whole distribution to depend on the
covariates.

In addition to these potential informational gains, quantile regression meth-
ods offer three features of great interest for duration analysis:

e They provide ways of estimating typical outputs from other modeling
approaches, namely the hazard function.

e The estimators of the covariates’ effects on duration are robust to neglected
heterogeneity uncorrelated with the covariates.

e In the context of a PH model, the estimators are resilent to misspecifica-
tion of the baseline hazard.

The next sections explore in detail each of these points.

2.2 Estimation of the Hazard Function

Model (3) provides a complete characterization of the (conditional) distribution
of duration time T or, if one wishes, of the survivor function, (obviously, Qr(p|x)
is the (1 — p)th quantile of the conditional survivor function). The hazard
function,

h(t]z) = frix (tz)

provides still another characterization of the same probability distribution. Since
it constitutes the most popular frame for duration analysis, it is important to
relate it to models for the conditional quantile function (CQF).

Making ¢ = Qr(p|z), one has,

hlple) = h(Qr (ple)ir) = LN, 0

Total differentiation of the identity Frp x (Qr(p|z)|X = x) = p and substitution
in (6) yields,
1

1—-p)o op’ M)
(1= p)oQr(plx)/0p

Equation (7) provides the basic relationship between conditional quantile
functions and hazard functions, and suggests a way of estimating the hazard
function implied by a given QR model.

h(plx) =



The simplest approach is based on a proposal by Siddiqui (1960) to estimate
the sparsity function (the inverse of the density function). Using Siddiqui’s esti-
mator of the sparsity function —the inverse of the density function—(Siddiqui,
1960)we have,

2Up,
(1=p)Qr(p+ val2) — Qr(p — vn|2)]

where v, is a bandwidth depending on the sample size n (which tends to 0
as n — oo) and QT(|x) denotes the estimated QR, (see, also Hendricks and
Koenker, 1992 and Koenker and Geling, 2001).

Alternatively, one may resort, as we do in this paper, to the resampling
procedures proposed in Machado and Mata (2000). The proposed estimator is
based on a simulated random sample, {T7,7 = 1,...,m}, from a conditional
distribution of duration time that is consistent with the restrictions imposed on
the conditional quantiles by the QR model. To this sample the usual methods
of density estimation and hazard function estimation may be applied (see, e.g,
Silverman 1986). In detail, the procedure is as follows:

hiplz) = (8)

1. Generate m random draws from a Uniform distribution on (0, 1), m;, i =
1,...,m;

2. For each m; estimate the QR model (4), thereby obtaining m vectors ; (m1);

3. For a given value of the covariates, xg, the desired sample is,
T} = Qr(milzo) = g(aB(m))
fori=1,...,m.

The theoretical underpinnings of this procedure are quite simple. On the one
hand, the probability integral transformation theorem from elementary statis-
tics implies that one is simulating a sample from the (estimated) conditional
distribution of T" given X = zy. On the other hand, the results in Bassett and
Koenker (1986) establish that under regularity conditions the estimated con-
ditional quantile function is a strongly consistent estimator of the population
quantile function, uniformly in p on a compact interval in (0, 1).

Once the sample {T7,i = 1,...,m} was generated, the hazard function may
be estimated as (Silverman, 1986, p.148),
2 [ (@)
ht|x) = ———
W) =T %

where f*(t) is the usual kernel density smoother of T,

T t—Tr

0= =3 k(=L



and the distribution function estimator is,

with u
/C(u):/o K(v)dv.

In situations where, due to censoring, the top or bottom quantiles cannot be
consistently estimated, the 7; in step 1 must only be generated in the relevant
range and the estimated function must be adequately rescaled.

Besides hazard functions, other standard outputs of duration analysis such
as survivor function, residual duration and mean duration are also quite easily
estimated from a quantile model such as (4). For instance, given an estimate of
the quantile function of T, QT(p|x), the quantile process of the survivor time
conditional on x can be estimated by QT( 1—p|z) which, upon “inversion”, yields
an estimate of the the survivor function (see, Bassett and Koenker, 1986). The
mean duration conditional on x can be estimated as fol Qr(p|z)dp which can be
easily computed by Monte-Carlo methods; by the same token, taking the simple
treatment effects model presented above as an example, fol 6(p)dp represents the
effect of the treatment on the mean log-duration. Likewise, the distribution of
the residual duration—i.e., the duration of all those that have survived longer
than Qr(p*|z), for a given p*—may be summarized by fpl* Qr(p|z)dp.

2.3 Neglected heterogeneity
The PH model with unobserved heterogeneity may be written as,
h(t|z) = ho(t) exp(—(a + 2’ + u))

where ho(t) is the baseline hazard function and w« is an unobserved random
variable independent of the covariates ().
This model is equivalent to

log Hy(t) =a+2'B+u+e

where € is a Type-I extreme value variate, and

Ho(t) = /0 t ho(s)ds

which equals ¢ when the baseline is Weibull, (see, e.g. Lancaster(1990)).
Clearly,

Qiogro(t)(Pl7) = (a + Qu(p) + Qc(p)) + 2’0 9)

and thus only the intercept is affected by the presence of unobserved heterogene-
ity. This result is obviously not specific to QR estimators. Indeed, as long as the



baseline hazard is correctly specified, it holds for any estimator that does not
rely on specific distributional assumptions about the error terms. For instance,
as long as there is no censoring, it also holds for the least squares estimator.

The crucial qualifier is the correct specification of ho(t). Ridder (1987), an-
alyzes this interplay between unobserved heterogeneity and specification error.
Next, by means of a small simulation study, we evaluate the resiliency of QR
estimators to mispecification of the baseline function.

2.4 Baseline misspecification

In this section we analyze the consequences of misspecifications of transforma-
tions of the dependent variable in models such as (9). Specifically, we consider
the following experiment. The data was generated by

BY; ) =a+br+e (10)

with z and € standard normal variates. B(Y;\) is the Box-Cox transformation
of Y. Using the equivariance property of quantiles, the implied population
quantile function of Y is

Qv (plz) = B~ (a+ bz + Qc(p); A) (11)

with B=1(2; \) denoting the inverse Box-Cox transformation

oy @A) N £
B™N(z) = { exp(2) A=0

The coefficients of the pth quantile regression of Y on x provide estimates of
the slope of the pth population quantile of Y given x = Z, the sample average of
the covariates. Table 1 shows these slopes for different values of transformation
parameter, (A =2, 1/2, 0, 1 and -1), that is

[14+ Mo+ Qup)] V=1 A £0
exp(Qe(p)) )

The parameters were set to a = 10 and b = 1, except that for A = 0 where
a = 0. Of course for A = 1 the slope is also 1 at every quantile.

The experiment purports to compare the QR estimators of that slope with
the maximum likelihood estimators (ML). The QR estimators were obtained
regressing Y on an intercept and x for different values of p € (0,1) and for the
different data sets. The ML estimators of the slopes were obtained by plugging-
into (11) the MLE of A, @ and b in (10) and then taking derivatives as in (12).

The comparison was based on the median estimates and on its inter-quartile
range in 1000 replications. Table 2 shows the results. Both methods perform
well for all the data generating process, with the exception of that corresponding
to A = —1. The interesting feature, however, is that even though it requires
much less prior knowledge, the QR estimator clearly outperforms the ML. The
only instance when the ML estimates appear to be closer to the population

9y (pl) /0w = { (12)



Quantiles
A 10 | 30 | 50 | 70 | 90
2 0.233 | 0.224 | 0.218 | 0.213 | 0.206
1/2 || 5.359 | 5.738 | 6.000 | 6.262 | 6.641
0 0.278 | 0.592 | 1.000 | 1.689 | 3.602
-1 || -1.679 | -1.392 | -1.235 | -1.102 | -0.946

Table 1: SLOPES OF THE POPULATION QUANTILE FUNCTIONS FOR THE BoOx-
COX REGRESSION MODEL. The values for A = —1 are multiplied by 100.

values is when A = 0. For A = 2,1/2, 1, the QR median estimate is always closer
to the mark, and the inter-quartile interval always contains the population slope.

This experiment is, admittedly, limited in scope. Nevertheless, it conveys a
clear image of the flexibility of the linear QR estimator in adapting to a number
of departures from non-linearity.

3 U.S. unemployment duration

3.1 Data

The unemployment duration data used in this exercise is the 1988 Displaced
Worker Survey (DWS). The five-year, retrospective DWS has been conducted
biannually since 1984 as a supplement to the Current Population Survey (CPS).
Given its national representativeness and richness of information, the DWS sup-
plements have been a major source of data for a burgeoning literature exploring
the effects of displacement (e.g., Addison and Portugal, 1989; Farber, 1994,
McCall, 1995).

The survey asks individuals from the regular CPS if, in any of the five years
preceding the survey date, they had lost a job due to plant closing, an employer
going out of business, a layoff from which the individual was not recalled, or
other similar reasons. If the respondent has been displaced, he or she is asked
a series of questions concerning the nature of the lost job and subsequent labor
market experience, in particular, the time it took to get another job.

The DWS survey, unlike alternative administrative sources (e.g., Unemploy-
ment Insurance Registry), provides information on complete spells of jobless-
ness. There are, nevertheless, incomplete spells (right-censoring) in this sample.
On one hand, in a small number of cases, some individuals never found work
following their dispacement. If they are engaged in search activity at the time of
the survey, their spells of unemployment are obtained from the parent CPS. On
the other hand, jobless spells are top-coded at 99 weeks. Overall, the proportion
of censored observations is, in our sample, around 13 percent.

In this inquiry, because the nature of displacement is not well defined for
certain individuals and sectors, those employed part-time and in agriculture
at the time of displacement were excluded, as were those aged less than 20



Quantiles

X 10 30 50 70 90
, 0.239 0.229 0.223 0213 0211
ML 1 0933:0.245 | 0.224;0.235 | 0.218:0.228 | 0.214;0.223 | 0.207;0.215
2 0.233 0.224 0.219 0.213 0.206
QR || 0295:0.241 | 0.218;0.231 | 0.213;0.224 | 0.208;0.219 | 0.199;0.213
, 1.207 1,635 1.047 5.220 5.505
MLl 3 500:4.862 | 3.994:5.149 | 4.352:5.340 | 4.709:5.541 | 5.220:5.828
1/2 5301 5.706 5071 6.220 6.614
QR | 5119:5.532 | 5.540,5.877 | 5.821:6.118 | 6.074;6.400 | 6.388;6.845
, 0.278 0.592 1.000 1.689 3.602
ML 1 0.968:0.286 | 0.572;0.610 | 0.967;1.031 | 1.634;1.742 | 3.483:3.714
0 0.268 0.553 0.904 1.476 2.032
QR || 0247:0.288 | 0.523:0.582 | 0.858:0.953 | 1.399:1.558 | 2.763:3.124
, 20.791 20.900 20.994 1.103 1.298
ML I 0.814;-0.771 | -0.956:-0.866 | -1.085:-0.934 | -1.237;-1.018 | -1.522:-1.155
-1 20.662 20.748 20.820 20.903 1.045
QR || _0.689:-0.634 | -0.772:-0.727 | -0.845:-0.797 | -0.928:-0.878 | -1.080:-1.009
, 0.993 0.993 0.993 0.994 0.998
MLl 0.954:1.024 | 0.960;1.020 | 0-965;1.018 | 0.969;1.018 | 0.974;1.020
1 1.003 0.998 0.998 0.098 0.999
QR | 0.0641.040 | 0.973:1.025 | 0.974;1.027 | 0.970;1.020 | 0.962;1.035

Table 2: ESTIMATED SLOPES OF THE QUANTILE FUNCTIONS FOR THE Box-Cox
REGRESSION MODEL. The first entry reports the median value in 1000 replications
for OQy (p|z)/Ox for the indicated Box-Cox transformation parameter (A) and p with

the parameters estimated by maximum likelihood (ML) and by quantile regression

(QR) of Y on X. The second entry is the inter-quartile range of these slope estimates.
The values for A = —1 are multiplied by 100.




and above 64 years of age of the end of the survey date. Similar reasoning
explains the exclusion of the self-employed, together with those displaced for
seasonal and “other reasons”. Altogether, the restrictions imposed yielded an
unweighted sample of 4076 individuals.

3.2 Estimation Procedures

Let Q,(y | ) for p € (0, 1) denote the pth quantile of the distribution of the (log)
unemployment duration, (y), given the vector, z, of covariates discussed above.
The conditional quantile process — i.e., Qp(y | x) as a function of p € (0,1)
— provides a full characterization of the conditional unemployment duration
in much the same way as ordinary sample quantiles characterize a marginal
distribution. We model these conditional quantiles as in (3) with link function
9(-) = exp(").

When there is no censoring, the quantile regression coefficients, G(p), can
be estimated for given p € (0,1) by the methods introduced by Koenker and
Bassett (1978). Powell (1984, 1986) developed estimators of the QR coefficients
for the case of censored data with known, but possibly varying, censoring points,
(for a recent discussion of censored quantile regression see Fitzenberger, 1997).
Consider a sample (y;, ¢;,;), ¢ = 1,...,n where ¢; denotes the upper threshold
for y; ie., yi < ¢ (¢; = oo when observation ¢ is not censored). The QR
estimator introduced by Powell minimizes the sample objective function

Z pp(y; — min[c;, ;b))
i=1

with,

pU for u >0
pp(u) = { (p—1Du foru<O.
Estimation was performed iteratively using the LAD procedure in TSP. The
iterative procedure is quite well known: at each iteration the observations with
negative estimated residuals (i.e., those for which x;B(p) > ¢;) are discarded;
then, the coefficients are re-estimated with the remaining observations until
convergence is reached.

For the estimation of standard errors for the individual coefficients we re-
sort to the bootstrap. This procedure was proposed by Bushinsky (1994) and
named “ILPA”. Since the “errors” from the QR equation are not necessarily ho-
mogeneously distributed, to achieve robustness we resample “triplets” (y, ¢, x)
rather than the residuals from a particular QR fit. Notice also that, because of
censoring, the threshold ¢ must also be resampled.

3.3 Results
3.3.1 Quantile Regressions

Empirical results for selected quantiles from fitting the QR model are given in
Table 1. For comparison purposes, we also provide the estimates obtained from
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a Cox proportional hazard model and from an accelerated failure time (AFT)
model that employs an extended generalized gamma distribution.

In general, the regression coefficient estimates are fairly conventional. Age
reduces escape rates, as does tenure in the previous job. Schooling enhances
the chances of getting a job, whereas being unskilled decreases it. Higher state
unemployment rates are associated with longer spells of joblessness. The famil-
iar (opposing) effects of marital status on reemployment probabilities - positive
for males and negative for females - are also obtained. It is also unsurprising
that being non-white increases unemployment duration and being displaced by
reason of the shutdown of the plant decreases duration. All these coefficients
are statistically significant at conventional levels. Altogether less transparent
are the effects of prenotification (both informal and written) and of previous
wage rate on joblessness duration (but see below).

Comparison across different model specifications - Quantile Regression, Cox
Proportional hazard, and Accelerated Failure Time - also reveals broad agree-
ment, at least in terms of sign and statistical significance of the regression
coefficients, in particular if we take the highest quantiles as comparators. The
coefficient estimates for lower quantiles (for example, the 20th quantile in Table
1), however, disclose some interesting features. First, advance notice (both in-
formal and written) of displacement exerts a significant influence on joblessness
duration at low quantiles in contrast with the small and statistically insignifi-
cant effects at higher quantiles. Second, the impact of both the schooling and
plant closing variables is much stronger at low quantiles. And third, the level of
wages at the predisplacement job affects short spells of unemployment durations
but not long ones. Clearly, these effects would not be detected by conventional
parametric and semi-parametric approaches. Indeed, the results from the es-
timation of the AFT and Cox models appear to average out the time-varying
regression effects.

Detailed quantile regression estimates are depicted in Figure 1. Coefficient
estimates for p € (0.15,0.85) are represented in conjunction with their corre-
sponding confidence interval (The range of the confidence interval is plus or mi-
nus two bootstrap standard errors). To facilitate visual inspection, the median
regression estimates are also represented by a horizontal line. The covariates
seem to exert an influence that in most cases does not diverge from a constant
effect over the entire conditional distribution. This agrees with a roughly con-
stant goodness of fit indicator R!(see Koenker and Machado, 1999). However,
as hinted above, there are a number of exceptions, most notably, on the left
tail—short-term unemployment — of the unemployment duration distribution.

The quantile equality tests provided in Table 2 give a more rigorous as-
sessment of the constancy of regression coefficients for selected p (in this case,
0.2, 0.5, and 0.8). The indications provided by the tests are in line with the
evolution of the regression coefficients exhibited in Figure 1. The tests suggest
that the impact of some variables is short-term in nature: written and informal
notice, education, and previous wage are in this category. Symmetrically, the
impact of tenure in the previous job emerges late in spell of unemployment.
The plant closing variable exhibits an effect that starts very strong in the early

11



Quantile Regression
20th | 50th | 80th Cox | AFT

Age || 0.015 0.020 0.016 -0.013 0.021

(in years) || (0.006) | (0.004) | (0.003) || (0.002) | (0.003)

Gender || -0.004 0.111 0.082 -0.082 0.116

(male=1) || (0.165) | (0.116) | (0.085) || (0.057) | (0.087)

Race -.290 -.345 -0.370 0.322 -0.481

White=1 || (0.158) | (0.099) | (0.083) || (0.054) | (0.082)

Marital status || -0.323 -.214 -0.097 0.108 -0.189
(married=1) || (0.136) | (0.094) | (0.072) || (0.046) | (0.071)
Marital*Gender 0.495 0.625 0.451 -0.343 0.541
(married female=1) || (0.263) | (0.150) | (0.120) || (0.074) | (.112)
Schooling || -0.080 | -0.016 | -0.019 0.018 -0.031

(in years) || (0.024) | (0.016) | (0.013) || (0.008) | (0.012)

Tenure || -0.001 0.022 0.020 -0.009 0.014

(in years) || (0.013) | (0.008) | (0.005) || (0.003) | (0.005)

Unskilled 0.312 0.387 0.254 -0.200 0.330
(Unskilled=1) || (0.122) | (0.086) | (0.065) || (0.040) | (0.061)
Plant Closing || -0.668 | -0.357 | -0.164 0.179 -0.321
(Shutdown=1) || (0.123) | (0.072) | (0.057) || (0.034) | (0.053)
Informal Notice || -0.292 | -0.081 | -0.051 0.043 -0.082
(Notice=1) || (0.123) | (0.080) | (0.057) || (0.035) | (0.054)
Written Notice || -0.757 0.097 0.031 -0.014 | -0.038
(Notice=1) || (0.394) | (0.196) | (0.111) || (0.078) | (.120)

Unemp. Rate || 0.0931 0.122 0.123 -0.076 0.116
(0.026) | (0.018) | (0.014) || (0.008) | (0.012)
Previous Wage || -0.261 0.032 0.009 0.014 -0.038
(in logs) || (0.119) | (0.077) | (0.069) || (0.037) | (0.057)

Constant 1.167 2.432 3.598 2.890.

(0.160) | (0.122) | (0.098) (0.106)

Scale Parameter 1.565
Shape Parameter 0.613

Table 3: UNEMPLOYMENT DURATION REGRESSION RESULTS (N=4076). The
first entry in each cell is the regression coefficient point estimate; the second entry
is estimated standard error; bootstrap standard errors from 1000 replications were
obtained for the QR model; the parameterization of the extended generalized gamma
distribution in the AFT model follows Addison and Portugal (1987); unemployment
duration is in natural logs.
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Figure 1: QUANTILE REGRESSION COEFFICIENTS.The points
fidence intervals for p = 0.15,0.20,...,0.8; the solid horizontal line represents the
conditional median estimate. The intercept is plotted in natural units. The last panel
plots the goodness of fit measure, (R"), of Koenker and Machado (1999).
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phase of the spell of unemployment and then fades away throughout. Some
variables lose strength only in the late unemployment phase. This is the case of
the Age and Unskilled covariates. In this model, solely three covariates appear
to comply with the conventional homocedastic assumption: Race, Gender, and
unemployment rate.

Equality of Quantile Regression between:

20-50th Quant. | 50-80th Quant. | 20-80th Quant.
Age -1.224 2.907 0.016
Gender -0.712 -0.313 -0.673
Race 0.211 0.090 0.179
Marital status -0.448 -2.818 -1.432
Marital*Gender -.998 2.103 -0.243
Schooling -2.903 0.554 -2.337
Tenure -1.773 0.742 -1.409
Unskilled 0.726 3.869 0.534
Plant Closing -2.065 -6.043 -3.569
Informal Notice -2.026 -0.691 -2.044
Written Notice -2.408 -0.339 -2.402
Unemp. Rate -1.074 -0.424 -1.077
Previous Wage -2.990 0.834 -2.285

Table 4: TESTS FOR THE STABILITY OF THE REGRESSION COEFFICIENTS AT
SELECTED QUANTILES. Boostrap t-tests were obtained from 1000 draws for each
quantile.

The tests provided in Table 2 are only suggestive, as they rely on specific
choices for p. A preferable general approach is provided by the Wald test pro-
cess suggested by Koenker and Machado (1999) which is graphically displayed
in Figure 2. The information incorporated in the tests presented in Figure 2
enables a complete (and, thus, non-subjective) characterization of the effects
of the covariates. Using the Wald process (and adequate critical values) it is
possible to evaluate the significance of a given covariate on specific regions of
the duration distribution. There are variables such as the unemployment rate,
age and plant closing indicator, that exert a statistically significant influence
throughout the entire distribution. On the other hand, gender and previous
wage are not significant at any point. More interestingly, covariates such as
education and pre-notification are only relevant on the left tail of the duration
distribution, that is, for short-term unemployment.

It is worth noting that the variables that have significantly higher effects
during the early phase of the unemployment spell very likely reflect the influ-
ence of on-the-job search (advance notice of displacement and dislocation by
plant closing) or human capital (as captured by schooling and pre-displacement
wage). In the latter case it can be argued that larger human capital endowments
are associated with greater job opportunities and higher opportunity costs of
unemployment that necessarily erode with the progression of the unemployment
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spell. A number of explanations can be suggested here. Human capital depre-
ciation, unobserved individual heterogeneity correlated with the measures of
human capital, or stigmatization would lead to a fading human capital effect on
the transition rate out of unemployment.

It has been argued that the beneficial effects of prenotification accrue via
the increase in on-the-job search intensity (Addison and Portugal, 1992). Faced
with the prospect of an imminent discharge, the worker will engage in on-the-job
search. If successful, he or she will experience a short spell of unemployment.
Identically, workers displaced by reason of plant closing — in comparison with
workers dismissed due to slack work or position shifted or abolished — benefit
from an essentially short-term advantage conveyed by job search assistance and
early (and unmistakable) warning of displacement.

In essence, both on-the-job search and human capital depreciation point to
time varying effects of the covariates and, thus, to non-proportional hazard.
These types of effects may be labeled “transient effects” after Cox and Oakes
(1984).

3.3.2 Survival and Hazard Analysis

We have argued that the QR approach was flexible enough to enable the casting
of its results in frames typical of alternative methodologies. Figure 3 presents
estimates of the hazard and survivor functions for a reference “individual”.
Specifically, in the resampling procedure of Machado and Mata (2000) described
in Section 2.2, the simulated sample was based on quantiles evaluated taking
the sample means of the continuous covariates, and the reference category for
the dummy explanatory variables.

The hazard function exhibits peaks at durations 4, 26, 39 and 52 weeks, due
to the usual bunching of the answers as a result of the rounding of the measure of
the jobless spells, mirroring beautifully the empirical hazard function. However,
one should avoid being sidetracked by this heaping phenomenon in terms of the
overall shape of the hazard function. A smoother graphic exhibition of the
hazard function would show an inversed-U shaped function.

The variety of the time-varying effects on the covariates is depicted in Figure
4 with reference to the baseline hazard function. Figure 4 represents the effect
of “unit” changes in the covariates on the log hazard function; for instance, the
log hazard ratio for the (continuous) covariate j is

log h(t|lzo + o5e;) — log h(t|zo)

where xg represents the reference vector of covariates described above, o; the
sample standard deviation of covariate j and e; is the jth unit vector. For the
binary covariates the comparison is made between the two sub-populations. The
results are directly comparable to those from the estimation of a Proportional
hazard Model that are represented by the horizontal lines in Figure 4, (c.f.,
Table 3).

One conclusion is immediately apparent. Although the estimates from the
PH model could be argued to be on average accurate, in most cases they pro-
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Figure 3: BASELINE HAZARD AND SURVIVOR FUNCTIONS. Hazard and Sur-
vivor functions implied by the QR evaluated at the sample means of the continuous
covariates and at the reference sub-population for the discrete regressors.

vide only an oversimplified vision of the impact of the covariates on the exit
rate from unemployment. For regressors such as “Advance notice”, “ Previ-
ous wage” or, even, “Education” and “Age”, the PH estimates seem to provide
a good approximation as the impact of those covaviates is roughly duration
independent.

Some covariates, however, have impacts that are far from proportional. The
impact of “Written Advance Notice” and “Plant Closing” are clearly decreasing
with unemployment duration: the longer an individual stays unemployed, the
smaller impact of these factors on the escape rate from unemployment. The
detrimental impact of being male also increases with duration. On the other
hand, unskilled workers’ chances of leaving unemployment become less grim for
those with longer spells.
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From a methodological vantage point, these results reveal that the hazard ra-
tios estimated from models for conditional quantiles encompass the proportional
hazard models as they allow sufficient flexibility for some regressors to have a
proportional impact, while others depict effects that are duration dependent.

4 Conclusions

In this paper it is argued that quantile regression analysis offers a fruitful semi-
parametric alternative for studying transition data. On one hand, the censored
quantile regression estimator enables the accommodation of incomplete dura-
tion data. On the other hand, quantile regression naturally lends itself to the
estimation of Accelerated Failure Time models, without imposing any distribu-
tional assumptions. Given the decreasing costs of computer-intensive statistical
methods such as these, it is somewhat of a puzzle to realize that so few empirical
studies have applied quantile regression models to duration data.

Apart from being a distribution-free model, there are other advantages ac-
cruing from the use of quantile regression models. First, it is a flexible ap-
proach in the sense that it allows the covariates to have different impacts at
different points of the distribution. Second, the estimators of the regression
coefficients are robust to the presence of (covariate uncorrelated) unobserved
individual heterogeneity. Third, the estimators are resilient to misspecification
of the functional form. And fourth, in comparison with conventional models, the
quantile regression approach provides a much more complete characterization
of the duration distribution.

It may be argued that a reason why researchers shy away from using the
quantile regression estimator is its difficulty in dealing with standard survival
analysis concepts. In this exercise it was shown, however, that it is straight-
forward to obtain typical survival outputs from quantile regression estimates
(e.g., hazard and survival functions, mean residual life, conditional mean dura-
tions, etc.). Despite its robustness and flexibility, the use of quantile regression
methods is not without some drawbacks. In particular, this approach is not
well-suited to tackle sampling plans other than flow sampling, as in the case of
the illustration presented here. In cases of stock sampling or sampling over a
fixed time interval (see Lancaster, 1990) length-bias sampling issues are raised
that can not be overcome straightforwardly within the framework of quantile
regression methods. In these cases, maximum likelihood approaches may be
prefered (Portugal and Addison, 2002).

Finally, in many instances, the quantile regression approach offers a natural
and intuitive way to deal with some economic concepts. This is clearly the case
of earnings inequality. It is, in our view, also the case of unemployment dura-
tion. In particular, the notions of short and long-term unemployment can be
given an unambiguous empirical content. In the empirical illustration with U.S.
unemployment duration, it was shown that some covariates impact differently
at distinct regions of the unemployment duration distribution. The usefulness
of the quantile regression approach is suggested by the conclusion that some
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variables impact solely at short durations (e.g., advance notice, schooling, and
previous wage), impacts from other variables fade significantly over the course
of the spell of unemployment (plant closing), while the effect of other variables
remains constant across the board (gender and race). Those varying effects
would remain undisclosed if conventional duration models were employed.
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