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Abstract:

Futures prices can be seen as a sum of the expected value of the underlying

asset price with a risk premium. In order to disentangle those two

components of the futures prices, one can try to model the relationship

between spot and futures prices, in order to obtain a closed expression for

the risk premium, or to use information from spot and option prices to

estimate risk aversion functions. Given the high volatility of the ratios

between futures and spot prices, we opted for the latter, estimating risk-

neutral and subjective probability density functions, respectively from

option and spot prices observed. Looking at the prices of Brent and West

Texas Intermediate Light/Sweet Crude Oil options, evidence obtained

suggests that the risk premium is typically very low for levels near the

futures prices.
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1. Introduction

Oil prices are important determinants of inflation. Thus, the assessment of

expectations on future values of oil prices is a relevant issue for macroeconomic

modelling.

Typically, some scenarios about oil prices are considered within this framework,

or oil futures prices are used as the best guess of future price values. However, it

is known that futures prices, regardless the underlying asset, may also

incorporate a risk premium component.

In this paper, we propose to estimate risk-aversion functions for Brent and West

Texas Intermediate oil using option and spot prices. As it is well established (see,

e.g. Sö derlind and Svensson (1997) or Bahra (1996)), option prices are related to

the risk-neutral probability density function (RND) of the underlying asset price

in a future moment corresponding to the settlement date.

Another important theoretical result concerns the relationship between the

subjective or “true” probability density function (SD) and the RND,

corresponding the former to the product of the latter by the risk-aversion

function. Therefore, if we are able to estimate SD, we get an estimate for the risk-

aversion function.

Naturally, the proxy for the SD gives directly an estimate for the expected value.

However, it doesn’t provide any information on the investors’ behaviour

regarding risk-aversion. Thus, the estimation of risk-aversion functions is a

relevant issue, in addition to the computation of the expected value under the SD

measure.
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Generally, a proxy for SD is used, based on the observed prices, though the

estimation techniques may differ. For instance, in Ait-Sahalia and Lo (2000) and

Jackwerth (1997) a kernel estimator of the past returns is used, while Coutant

(1999) uses Hermite polynomials’ expansions and Rosenberg and Engle (1997)

use a GARCH model. The methods for the estimation of the RND functions are

also numerous, but generally are based on the relationship between RND

functions and the option prices, while the SD estimator has not that theoretical

background.

In this paper, a mixture of two log-normal densities is used to estimate the RND,

while a kernel estimator is the tool adopted for extracting the SD from observed

prices. The paper is organised as following: in the next section, the concept of

risk aversion is approached; the third section is devoted to the relationship

between risk-aversion and density functions; the representative agent’s

preferences are analysed in the fourth section; in the fifth section the estimation

methodology is detailed; data and results are presented in the sixth section and

the main conclusions are stated at the end.

2. The concept of risk-aversion

The aversion to risk is one of the most important concepts in financial economics.

As stated in Ingersoll (1987), it is generally said that a decision maker with a von

Neumann-Morgenstern utility function1 is risk averse at a given wealth level “if

he is unwilling to accept every actuarially fair and immediately resolved gamble

                                                          
1 A von Neumann-Morgenstern utility function (u(z)) is a function on sure things: u(z) = H(Pz),
∀z∈Z, being z a consumption plan defined on a collection of consumption plans X, PZ the sure
consumption plan and H an utility function (for more details see, e.g., Huang and Litzenberger
(1988), chapter 1).
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with only wealth consequences, that is, those that leave consumption good prices

unchanged”.2

It can be shown that a necessary and sufficient condition for a decision maker

being strictly risk averse corresponds to his utility function being strictly concave

at all relevant wealth levels:3

(1) E U W U E W U W+ < + =ε ε1 6 2 7 1 6

being W the wealth level, ε the outcome of a lottery and U a utility function.

As stated in Ingersoll (1987), a risk averse agent accepts to pay an insurance risk

premium (Πi) in order to avoid a lottery:4

(2) E U W U W i+ = −ε1 6 1 6Π

Using a Taylor expansion of both sides of (2), we will be able to determine the

risk premium, as following:5

(3)
E U W U W U W U W

U W U W U Wi i i

0 5 0 5 0 5 0 5

0 5 0 5 1 6

+ + + +�
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$# =

= − + −

ε ε ε αε
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’ ’’ ’’’

’ ’’

1
2

1
6

1
2

2 3

2Π Π Π

                                                          
2 Global risk aversion arises when the decision-maker is risk averse at all relevant wealth levels.
3 See appendix A. If the decision-maker is risk averse, though not strictly, the inequality signal
becomes ≤.
4 Conversely, a risk averse agent would demand a compensatory premium (Πc) in order to
participate in a lottery: E U W U Wc+ + =Π ε1 6 1 6 . This definition is more usual in finance

literature, while the former is more representative in economic analysis. If the risk is small and
the utility function is sufficiently smooth, the two risk premiums are roughly equal.
5 The coefficients α and β are such that the Taylor expansions of both sides of equation (2) may be
represented by the third- and the second-order expansions presented in equation (3).
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being α a coefficient of the expansion’s remainder ( 0 1≤ ≤α ).

Given that the utility function is assumed to be sufficiently smooth, the last term

in the left-hand side (LHS) will approximately be nil. Besides, assuming that the

risk premium is small, the last term of the right hand side (RHS) is

approximately nil too. Thus, under the assumption of E ε = 0  we get the

following expression from (3):

(4) 1
2

2ε U W U Wi’’ ’0 5 0 5≅ −Π

i.e.

(5) Π i

U W
U W

= −
�
! 

"
$#

1
2

var
’’
’

ε0 5 0 5
0 5

The term in brackets in equation (5) corresponds to the usually known Arrow-

Pratt absolute risk-aversion function and it is a measure of local risk-aversion,

independent from the scaling factor 
1
2

var ε0 5 .6 If the representative agent is risk-

averse, this function must always by positive, i.e., the utility function must be

concave. As the Arrow-Pratt risk-aversion function is a measure of the relative

change in the slope of the utility function at a given wealth level, it must be

decreasing and convex in the wealth level under the risk-aversion assumption.

                                                          
6 The variance in the scaling factor may be approached by the variance of the returns of a
financial asset.
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3. Risk-aversion functions

The risk-aversion functions can be derived in a context of a single-period

or of an intertemporal model. Within the former framework, let us assume a

complete market economy,7 where all investors take decisions on the quantity of

state-contingent claims to purchase. The target is the maximisation at the current

date t of their expected utility in T, subject to the constraint of the discounted

expected value of wealth at T being equal to their initial wealth:8

(6)

Max p S U S dS

e q S dS W

ST
T

T

T S T T

r
S T T t

ζ

τ

ζ

ζτ

1 6 3 8

1 6

,
−∞

+∞

−

−∞

+∞

I
I =subject to 

being

p = subjective or true density (in order to wealth states, henceforth denoted by

SD), representing the probability measure P;

q = RND (in order to wealth states), representing the probability measure Q, or

the price vector of the state-contingent claims;

ζ ST
 = quantity of state-contingent claims purchased;

U() =  utility function, depending on the quantity of state-contingent claims

purchased and the future state of nature;

ST = state of nature or underlying asset price in T;

Wt = endowed or initial wealth;

r = τ-maturity risk-free interest rate, with τ = −T t ;

                                                          
7 A market in which each state is insurable, i.e., for each state one can find a portfolio of assets
with a non-zero return only in that state (like Arrow-Debreu securities). As stated in Ingersoll
(1987), a complete market guarantees that a representative investor exists, though not necessarily
the utility function of the representative investor.
8 The constraint may also be read as the identity between the initial wealth and the value of the
state-contingent claims purchased.
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W ST T ST
1 6 = ζ , i.e., the wealth in T as a function of each state corresponds to the

number of state-contingent claims purchased, as previously stated.9

As usually, the equilibrium will be given by the first order conditions,

differentiating the Lagrangean of the optimisation problem (denoted by L) in

order to the consumption:

(7a)
∂

∂
= − =−L

p S U S e q S
S

T S T
r

T

T

Tζ
ζ λζ

τ1 6 3 8 1 6’ , 0

(7b)
∂
∂

= − =−

−∞

+∞IL
W e q S dSt

r
S T TTλ

ζτ 1 6 0

From (7a), one can easily conclude that in equilibrium the following condition

must hold:

(8) U S e
q S

p SS T
r T

T
T

’ ,ζ
τζ λ3 8 1 6

1 6= −

In order to estimate the Arrow-Pratt absolute risk aversion measure, the second

derivative of the utility function will be required. From (8) this corresponds to:

(9) U S e
q S p S q S p S

p S
S T

r T T T T

T
T

’’ ,
’ ’

ζ
τζ λ3 8 1 6 1 6 1 6 1 6

1 6=
−−

2

Therefore, the Arrow-Pratt absolute risk aversion will be:

                                                          
9 Notice that in the objective function it is considered the SD in order to weight the utility values,
while in the budget constraint it is used the risk-neutral density, given that it corresponds to the
price of the state-contingent claims, as previously stated.
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(10) RA S
U S

U S

p S

p S

q S

q ST

S T

S T

T

T

T

T

T

T

1 6 3 8
3 8

1 6
1 6

1 6
1 6= − = −

’’ ,

’ ,

’ ’ζ

ζ

As referred at the beginning of the section, the risk-aversion function can also be

derived from an intertemporal equilibrium model. In fact, let us consider a

standard dynamic exchange economy with dynamically complete securities

markets, a single consumption good, no exogenous income, where a

representative agent maximises his expected utility at each date t in order to his

consumption and saving decisions, subject to the usual budget constraints.10 This

problem may be formalised as follows:

(11) Max E U Ct
j

t j
j

δ +
=

∞

∑
�
! 

"
$#3 8

0

where δ is the time constant discount factor, Ct j+  is the investor’s consumption in

the period t+j andU Ct j+3 8  is the utility of consumption in that period. One of the

Euler conditions of the problem stated in (11) consists in the solution of the same

optimisation problem in a two-period setting:

(12)

Max  

s. t. 

      

ζ
δ

ζ
ζ

U C E U C

C e P

C e P

t t t

t t t
R

t t t
R

1 6 1 6+

= −

= +

+

+ + +

1

1 1 1

being e the income, P R  the price of a financial asset providing real cash-flows

and ζ  is again the number of asset units bought. Inserting the constraints in the

objective function, the following optimisation problem arises:

                                                          
10 As stated in Ingersoll (1987), a complete market guarantees that a representative investor exists,
though not necessarily the utility function of the representative investor.
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(13)  Max
ζ

ζ δ ζU C C U e P E U e Pt t t t
R

t t t
R, + + += − + +1 1 11 6 2 7 2 7

One of the Euler conditions will then be:

(14)  
∂

∂ζ
δ

U
P U C E U C Pt

R
t t t t

R1 6 1 6 1 6= ⇔ = + +0 1 1’ ’

Therefore, in equilibrium the marginal utility of consuming one real monetary

unit less at time t must be equal to the discounted expected value of the marginal

utility of consuming at time t+1 the proceeds of an investment of P R  monetary

units at time t in the financial asset.

Following equation (14), the basic pricing or the consumption CAPM (CCAPM)

equation is easily obtained:

(15) P E P Dt
R

t t
R

t= + +1 1

where D
U C

U Ct
t

t
+

+=1
1δ

’

’
1 6
1 6  is the intertemporal marginal rate of substitution, the

stochastic discount factor (sdf) or the pricing kernel.

Given that real assets are usually scarce,11 equation (2.15) if often adapted to

nominal assets. Following Campbell et al. (1997), if the nominal price index at

                                                          
11 The most well known are inflation-indexed Government bonds and they exist only in a few
countries. The UK inflation-indexed Government bond market is the most prominent and its
information content has been studied in several papers (see, for instance, Deacon and Derry
(1994) and Remolona et al. (1998)).
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time t is denoted by Qt, with Π t
t

t

Q

Q+
+=1

1 being the rate of inflation from t to t+1,

we get:

(16)
P

Q
E

P

Q
Dt

t
t

t

t
t=

�
! 

"
$#

+

+
+

1

1
1

Multiplying (16) by Qt, an equation similar to (15) is obtained for nominal bond

prices, with the stochastic discount factor M
D

t
t

t
+

+

+

=1
1

1Π
.

For call-option prices, equation (16) corresponds to:

(17) C X E S X Mt P t T T0 5 1 6= − ⋅, ,max 0

where C(X)t is the price in t of an European call-option with expiry date T, ST is

the underlying asset price at the expiry date and the subscript P denotes that the

expected value is computed using the true or original probability measure P,

represented by a density function p.

As stated above, within the consumption-based CAPM, the stochastic discount

factor is the nominal intertemporal marginal rate of substitution, denoted by

MRSt T, . Therefore, from equations (16) and (17) it is obtained:

(18)
C X E S X

U C

U C
Q
Q

E S X MRS

t t T
T

t

T

t

t T t T

0 5 1 6 1 6
1 6

1 6

= −
�
! 

"
$#

�
!
  

"
$
##

= − ⋅

max

max

,
’

’

, ,

0

0

δ



10

where MRS
U C

U C
Q
Qt T

T

t

T

t
,

’

’
= δ

1 6
1 6 . In order to compute the expected value in (18),

one has to use the density pt related to the probability measure P:

(19)

C X S X MRS p S dS

S X
MRS p S

MRS p S
e dS

e S X q S dS

e E S X

t T t T t T T

T
t T t T

t T t T

r
T

r
T t T T

r
Q t T

t

t

0 5 1 6
1 6

1 6
1 6

= − ⋅

= − ⋅

= −

= −

∞

∞
−∞

− ∞

−

I
II

I

max

max

max

max

, ( )

,
( )

( )

, ( )

,

,

,

,

,

,

,

0

0

0

0

0

0

0

0

τ

τ

τ

τ

τ

τ

where rt,τ is the risk-free rate in t for maturity τ

(τ = Τ−τ) and q
MRS p S

MRS p S
t

t T t T

t T t T

= ∞I
,

,

( )

( )
0

is alternatively known as the risk-neutral

probability density associated to the probability measure Q (see Cox and Ross

(1976)), the equivalent martingale measure (see Harrison and Kreps (1979)) or the

state-price density (SPD), being, as referred in Ait-Sahalia and Lo (2000), the

continuous-state counterpart to the prices of Arrow-Debreu state-contingent

claims.12 It can be easily concluded that qt(ST) is a probability density function, as

it assumes values only in the interval between 0 and 1 and its integral is equal to

1. Moreover, as according to (19) the call-option price is the discounted expected

value of its future pay-off, St is a martingale in the probability measure Q.

Differentiating (19) in order to the strike price, we obtain:

                                                          
12 These assets were introduced in economics by Arrow (1964) and Debreu (1959). They are
characterised by paying one monetary unit in a given state and nothing in all other states.
Probability density functions could be directly obtained from the prices of Arrow-Debreu
securities if these were traded for every state.
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(20a)
))(1(

)(

T

X

T
r

TX T
r

dSSqe

dSSqe
X
C

∫
∫

∞−

−

∞−

−−=

=−=

τ

τ

τ

τ

∂
∂

i.e.,

(20b) [ ]XSPeX
C

TQ
r ≤=+ ττ

∂
∂1

Thus, we have the cumulative probability distribution function. Obviously, the

density function will be obtained by the differentiation of the LHS of (20b):13

(21) 2

2 )(
)(

X
XC

eXq r

∂
∂ττ ⋅=

In order to get information on the risk-aversion of the representative agent, one

has to compare the SD and the RND, for instance, computing the ratio between

them:

(22) ζ t T
t T

t T

Y
q Y

p Y
1 6 1 6

1 6=

From (19) we see that this ratio is proportional to MRS, i.e.:

(23) ζ θ θt T t T
T T

t t

Y MRS
U Y

U Y
1 6 = = ′

′,

( )

( )

                                                          
13 Notice that for put option prices, the result is the same, as the only difference is in the sign of
the first element of the LHS of (20b).
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Instead of looking at ζT, we can extract information on risk-aversion using the

Arrow-Pratt absolute risk aversion in (10), which can be easily computed from ζT

and its first derivative, which corresponds to:

(24) ζ θt T
T T

t t

t T t T t T t T

t T

Y
U Y

U Y

q Y p Y q Y p Y

p Y
’

’’( )

( )

’ ’1 6 1 6 1 6 1 6 1 6
1 6=

′
=

−
2

Computing the symmetric of the ratio between ζT and ζT’, we get:

(25) − = −
′
′

= −
′

=
ζ
ζ

θ θt T

t T

T T

t t

T T

t t

T T

T T
T

Y

Y

U Y

U Y

U Y

U Y

U Y

U Y
RA Y

’ ’’( )

’( )

( )

( )

’’( )

( )

1 6
1 6 1 6

Consequently, using equations (22) and (24), we can estimate the risk-aversion

function from the probability density functions p and q:

(26a) RA Y
Y

Y

q Y p Y q Y p Y

p Y

q Y

p YT
t T

t T

t T t T t T t T

t T

t T

t T

1 6 1 6
1 6

1 6 1 6 1 6 1 6
1 6

1 6
1 6= − = −

−ζ
ζ

’ ’ ’
2

i.e.

(26b) RA Y
p Y

p Y

q Y

q YT
t T

t T

t T

t T

1 6 1 6
1 6

1 6
1 6= −

’ ’

4. The representative agent’s preferences

Rubinstein (1994) shows that, in a general equilibrium model, any two of the

following imply the third: (i) the preferences of the representative agent; (ii) the

asset’s stochastic process; and iii) the RND. Consequently, one can identify the

asset’s stochastic process in accordance with a given utility function (see, e.g.,

Bick (1990), Wang (1993) and He and Leland (1993)). Instead, the stochastic
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process may be obtained if specific preferences are assumed (see, e.g., Derman

and Kani (1994) and Dupire (1994)).

Therefore, a relevant question arising is the identification of the utility function

compatible with the risk-aversion function to be estimated. For instance, if the

RND shape is similar to a log-normal density, then there is evidence that Black-

Scholes model holds. As shown in the literature (see, e.g., Bick (1987)), this

implies that the representative agent has Constant Relative Risk Aversion

(CRRA) preferences, resulting from the following utility function:

(27) U Y

Y

Y

0 5
0 5

= −
≠

=

%
&
KK

'
KK

−1

1

λ

λ
λ

λ

,  if 1

,  if 1 ln

being λ a nonnegative parameter representing the level of relative risk aversion,

as can be easily seen from the resulting risk-aversion function:

(28) RA Y
Y

0 5 = λ

Other useful utility functions to consider are those included in the linear risk

tolerance (LRT) or hyperbolic absolute risk aversion (HARA) class.14 These are

defined as:

(29) U Y
aY

b0 5 = −
−

+�
�

�
�

1
1

λ
λ λ

λ

, with b >0,

and the risk-aversion functions have the following specification:
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(30) RA Y
a

aY b
0 5 0 5

0 5=
−

+ −
1

1
γ

γ
.

Another interesting class of utility functions is the negative exponential class:

(31) U Y e Y0 5 = − −λ

which gives a constant absolute risk-aversion λ.

5. The estimation methodology

In order to estimate the risk-aversion functions, the estimation of both

probability densities above mentioned is required. Regarding the SD, a kernel

estimation of the returns’ density was performed.15 As referred in Rosenberg and

Engle (1997), assuming a kernel smoothing of the past returns as a good proxy

for future returns may be seen as a martingale assumption for pricing kernel.

This technique is very useful as it permits to estimate the SD without avoiding to

impose a parametric structure on the representative agent’s utility function.

As we are interested in the density of prices, instead of returns, some

transformations were required. Using the density function of the returns,

denoted by pv(v), it is possible to compute the distribution function of YT:16

                                                                                                                                                                            
14 The risk-tolerance function is just the inverse of the risk-aversion function.
15 This method was also used in Jackwerth (1997) and Ait-Sahalia and Lo (2000).
16 For details on the kernel estimation of the returns’ density, see appendix B.
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(32) Prob Prob ProbtY Y Y e Y u Y Y p v dvT
u

t t v j

Y Y

j
t

t

< = ≤ = ≤ =
−∞
I1 6 2 7 1 62 7 3 8
1 6

log
log

Using the definition of probability density function and the Leibniz rule for

differentiating an integral, we get:

(33) p Y
Y Y

Y

p v dv

Y

p v
Y Y

Y
p v

Y
Y Y

p v

Y

T

v j

Y Y

j

v j
t

v j
t

t

v j

t

( )

log

log

=
∂ ≤

∂
=

∂
�
��

�
��

∂

= ⋅
∂

∂
= =

−∞
I

Prob1 6 3 8

3 8 1 6 3 8 3 8

1 6

1

Regarding the estimation of the RND, several methods may be found in the

literature. Some estimate the RND using non-parametric techniques, i.e.,

avoiding to impose any specification on the stochastic process of the financial

asset, the option premium function in order to the strike price, the implied

volatility or the RND.

The most straightforward way to get the RND from option prices is using the

prices of state-contingent claims or Arrow-Debreu securities. Though these

securities are not usually available in financial markets, one can construct them

from the option prices.17 Another non-parametric technique is presented in

Jackwerth and Rubinstein (1996), where a discrete approximation to the fourth

derivative of the option price function in order to the strike price is minimised.

Though these methods provide more immediate results, the density functions

obtained are frequently too irregular. 18

                                                          
17 See appendix C.
18 For more details see, e.g., Adão et al. (1997), Bahra (1996), Melick and Thomas (1997) or
Sderlind and Svensson (1997).
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Alternatively, one can estimate the RND imposing a parametric specification to

some function related to the RND, such as the price or the volatility curve (see,

e.g., Shimko (1993)). A very popular parametric technique, given its flexibility

and promptness, has been the fitting of a mixture of two log-normal

distributions, solving the following optimisation problem:

(34)

( ) ( )
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0
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and where ( )L Si i Tα β, ; is the log-normal density function i (i = 1, 2), the

parameters α1 and α2 are the means of the respective normal distributions, β1 and
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β2 are the standard-deviations of the latter and θ the weight attached to each

distribution.

Melick and Thomas (1997) developed a similar method for the estimation of the

RND using American option prices, based on a mixture of three log-normal

densities and on bounds constructed upon European option values. The RND

estimates presented in the following section were obtained with a linear

combination of two log-normal distributions, both for European and American

options, using call and put option prices for each market and maturity dates.19

6. Data and results

The SD functions were estimated using monthly average Brent and WTI oil

prices collected by Datastream and Bank of Portugal, from January 1977 and

February 1982, respectively, to each maturity date considered. Though there are

some more complicated methods to determine the optimal bandwidth (h*), we

adopted a similar rule to Jackwerth (1997), i.e., h n* = −σ 1 5 , where σ is the

standard deviation of the series to be smoothed and n the number of

observations.20

The RND functions for the Brent price were estimated using call and put option

prices of the Brent Crude Options traded at International Petroleum Exchange,

for the following dates of 1999: 12 April, 12 May, 12 July and 12 August.21 For

                                                          
19 Some of the observed prices were eliminated from the database, whenever a concavity in the
option price function appeared.
20 As it is referred in Jackwerth (1997), solving an optimisation problem, in order to the
bandwidth, to obtain the smoothest distribution consistent with the observed returns gives
similar results but is significantly slower.
21 Though these options are American, they may be treated as European, given that the premium
is paid only at expiry date and margins are adjusted daily on a market-to-market basis. Therefore,
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WTI price, call and put option prices observed on 2 September 1999 for several

maturities were used.

Given the restrictions on data availability, Brent oil data was considered for the

analysis of time and maturity evolution of RND and risk-aversion functions,

while WTI oil data is richer for getting information on longer maturities.

Therefore, our goal was not to compare results obtained for both oil prices, but

instead to use them as complementary.

First, we identified the evolution of risk aversion functions along time, uniquely

using options with two months to maturity for the Brent, i.e., respectively the

July, August, October and November contracts for each date referred.22

Consequently, two-month returns were used.

The Brent kernel densities estimated exhibit a very similar shape (see chart 1).

Regarding the price densities, as we originally estimated the density of the

returns and prices increased along the period considered, they evidence

significant differences (chart 2), as well as noticeable departures from the log-

normal shape.23 Chart 3 shows the kernel smoothing of Brent two-month returns

up to 12 August.

The Brent RND functions estimated are presented in chart 4. They show a

rightward movement, with some variance reduction. As we can see from charts 5

to 8, the Brent densities on 12 August evidence a striking difference regarding

the first derivative in the left tail of the distribution, which, according to

equations (10) or (17b), can be taken as an indicator of a risk premium increase.

                                                                                                                                                                            
they may be considered as including a futures contract and a plain-vanilla European option for
the maturity date.
22 Notice that oil option contracts expiry in the previous month to the settlement.
23 According to Sundaresan (1984), equilibrium spot prices are lognormally distributed along the
optimal extraction path.
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In Chart 9, Brent risk-aversion functions for several dates and two-month

maturity are presented.24 It can be seen that these functions have a very irregular

shape and some negative values, which is in contrast with the result expected for

a risk-averse representative agent. However, these values are consistently

around zero. These irregularities may arise from some of the assumptions

imposed, concerning namely the RND estimation technique, the kernel

bandwidth or the proxy chosen for the SD, and/or from options mispricing.25

The most striking result is the risk-aversion increase for lower wealth levels in

July 1999. In this date, our estimations suggest that for an expected Brent price of

USD 8, the risk aversion would be circa USD 3,5, while it was around zero in

April 1999. In order to transform the risk-aversion in a value for the risk

premium, a figure for the scaling factor in equation (5) must be used.

Approaching var ε0 5  by the product between the variance of returns and the

squared strike prices, the risk premium would be near 2.4 USD for the same

expected Brent price in July 1999. For higher prices, closer to the futures levels,

the risk premium is virtually nil, though it decreases at a slower pace on 12

August 1999.

When comparing Brent RNDs for several maturities in the last day reported, one

can conclude that risk-neutral expected values point to a Brent price decrease

(chart 10). Another relevant difference regards the higher positive skewness in

the longest maturities considered. Similar conclusions are obtained in what

concerns to expectations of WTI prices (chart 11).

                                                          
24 The density derivatives were computed by arithmetic approximation. Given that a very thin
grid was used, it can be taken as a reasonable proxy for the analytic derivative.
25 See Jackwerth (1997) for possible explanations of his estimation results. The shape of risk-
aversion functions estimated is similar to those obtained by Ait-Sahalia and Lo (2000).
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Comparing the Brent risk-aversion functions, our estimates show significant risk-

aversion only for the one-month maturity and for the lowest strike prices (chart

12). In fact, for an expected value around USD 14, the risk-aversion is around

USD 4. Using the previously mentioned approach for the risk premium, its value

for the same expected price is close to USD 3. Additionally, it can be concluded

once more that the risk aversion is around zero for expected values above USD

15.

Decreasing risk-aversion functions in the terms to maturity are in accordance

with the stylised fact that in most market days the oil futures curve exhibits a

negative slope.26 It can be also interpreted as evidencing expectations that the

current price increase is perceived as a short-term phenomenon.

The figures around zero for the risk-aversion may be considered in line with

what could be anticipated, as they respect to short maturities.27 However, low

risk-aversion levels are also obtained when WTI options with longer maturities

are considered (chart 13), with slightly higher values for shorter maturities.

Our results of roughly nil risk-aversion levels seem to be corroborated by the

differences between the Brent futures prices and the ex-post realised spot prices.

In fact, according to chart 14, the average differences are around zero for the

whole term spectrum available and there is an upward sloped term structure of

standard-deviation (chart 15). Thus, assuming estimation errors with zero mean

and a given standard deviation, those average differences may be taken as a

proxy for the risk premium.

                                                          
26 According to Litzenberger and Rabinowitz (1995), between February 1984 and April 1992, the
nine months West Texas Intermediate futures price was backwardated (i.e. had a negatively
sloped futures price curve) most of the time (more than 75% of the time). An identical conclusion
is stated in Considine and Larson (1996) for 1988-1994.
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Though almost all risk-aversion functions vary around zero, the curvature of the

Brent risk-aversion function estimated for the one-month maturity in the 12th

August seems to be too pronounced to allow an adequate fitting by a risk-

aversion function implied by a CRRA utility function. Conversely, its shape is

not too far from that implied by a HARA utility function (chart 16).28

7. Conclusions

Information on investor’s preferences may be extracted from spot and option

prices. From Brent oil data we concluded that risk aversion is typically small for

levels near the futures prices, for terms to maturity up to four months. Using

data on WTI oil prices, the results obtained suggest that the risk premium is still

close to zero for terms up to around 24 months. Consequently, one can argue for

using futures prices as a proxy for the expected value of oil price.

The results seem to be confirmed by the average differences between the Brent

futures prices and the ex-post realised spot prices, which vary around zero.

The risk-aversion functions estimated seem to be compatible with HARA utility

functions, though they exhibit high volatility in the tails. More robust

conclusions may be obtained by estimating non-parametrically the distribution

of the risk-aversion functions, e.g. using bootstrapping methods.

                                                                                                                                                                            
27 Brent options for higher maturities are not sufficiently liquid to be considered.
28 The implied HARA utility function results from the parameters offering the lowest sum of
squared differences to the estimated risk-aversion function.
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Appendix A - Condition for risk-aversion

If x is a random variable with density function denoted by f(x) and mean

represented by x and G is a strictly concave function of x with finite derivatives

of n-th order in the region between x and x ( x x h= + ), then using Taylor series

we have:

(A1)
G x G x x x G x x x G x x x

n
G x

G x x x G x x x G x

n n1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6
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Given that the first integral on the RHS is equal to one (as it is the sum of all

density values) and the second one is nil (as it is the difference between the

expected value of x and itself), we have:

(A3) E G x G x G x x x f x dx1 6 1 6 1 61 6 1 6= + −
−∞

+∞I1

2
2

’’ *

As G is a strictly concave function, G’’< 0  and E G x G x1 6 1 6< .

Therefore, E U W U E W U W+ < + =ε ε1 6 2 7 1 6 .



27

Appendix B - Kernel estimation29

Our goal is to obtain a sufficiently smooth probability density function from the

observed values of a series. Therefore, we have to get the histogram from the

series and smooth the histogram.30

The probability density function is the first derivative of the distribution

function. Thus, for each value of the variable the density may be computed from

the difference between two close values of the distribution function:

(B1) p v
ob V v h ob V v h

v h v h
ob v h V v h

hv h h
0 5 0 5 0 5

0 5 0 5
0 5

=
< + − < −

+ − −
=

− < < +
→ →

lim
Pr Pr

lim
Pr

0 0 2

being h usually known as the bandwidth.

A common proxy for the probability of a given value is the ratio between the

number of observations inside the bin centred on that value (# v0 5 ), with

bandwidth h, and the total number of observations (n). By definition, the area of

the histogram is equal to one, as the histogram is the discrete representation of

the density function:

(B2)  p v hv s
s

* 1 6
=−∞

+∞

∑ ⋅ = 1

being p vv s
* 1 6  the value of the histogram in a bin centred on vs . Thus, one

conclude that

(B3) p v
hv s

s

* 1 6
=−∞

+∞

∑ = 1

                                                          
 29 This appendix is based on lecture notes by Yacine Ait-Sahalia.



28

As the density values correspond to the probabilities multiplied by a constant

(and the sum of all probabilities is one), the histogram may be estimated as

following:

(B4) p v
h

v
ns1 6 0 5

= ⋅1 #

 From (B1) or (B4), an estimator for a centred histogram is:

(B5)    p v
v n
h

v
nhv

* # #0 5 0 5 0 5
= =

2 2

This density estimator gives the same positive weight to all observations in the

bin and a zero weight to the remaining observations. In fact, if we define a

uniform density function as

(B6) K u
u0 5 =

<%&'
1 2 1
0
/  if 
 otherwise

the estimator for the centred histogram in (B5) may be written as
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��=
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1

From (B7) it is clear that when the distance between each Vi and the v for which

the density is being computed is higher than h, i.e., when the observations are

outside the bin, the weight is nil. Otherwise, the observations get a uniform

                                                                                                                                                                            
30 Kernel smoothing techniques can also be implemented to filter a series, instead of its histogram
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weight of 1/2. One can also see from (B7) that an estimator for the density value

on each YT corresponds to the average of all terms 
1
h

K
v V

h
i−�

��
�
�� , i.e., the values of

the kernel density for all Vi (i = 1, …, n) divided by the bandwidth.

In order to obtain a smooth density function, it is more adequate to use a smooth

kernel, being the Gaussian kernel the most popular:

(B8) K u e
u

0 5 =
−

�
��

�
��1

2

2

2

π

Therefore, in order to get the Gaussian kernel density value for a given v, one has

just to compute the average of the normal density values for all observations,

with v and h, respectively, as the mean and the variance.

                                                                                                                                                                            
(see, for instance, Campbell et al. (1997), chapter 12.
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Appendix C – State-contingent claims and option prices

Following Breeden and Litzenberger (1978), a portfolio resulting from buying

two call-options with strike price X and selling two put-options, with strike

prices X-ε and X+ε, has a pay-off function usually called butterfly spread.31, 32 As

we can see from Figure 1, the pay-off is nil outside the interval [ ]X X− +ε ε,  and,

when ε approaches zero, it becomes close to the symmetric of the Dirac function

centred on X.33

Figure 1 – Pay-off function of a butterfly spread

pa
y-

of
f XX-ε X+ε

Note: pay-off excluding option prices.

By definition, the price of the symmetric of the butterfly spread presented is:

(C1)
[ ] [ ]

D X
C X C X C X C X

( ; )
( ) ( ) ( ) ( )

ε
ε ε

ε
=

+ − − − −

                                                          
31 In the present case, it is a short butterfly spread. Conversely, the symmetric butterfly spread
characterised by buying two call options with strike prices X-ε and X+ε, and selling two call
options, both with strike price X is a long butterfly spread (see, for instance, Hull (1997)). This
spread has a non-negative pay-off, similar to an inverted butterfly.
32 These spreads are not traded in structured exchanges, but only in over-the-counter markets.
33 Function that assumes 1 in X and 0 in the remaining strike prices.
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Dividing (C1) by ε, the limit of (C1) when ε tends to zero is an

approximation to the second derivative of the call-option price function, i.e.,

according to (32), the RND discounted by the riskless interest rate: 34
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X

In derivative exchange traded options, strike prices are spaced by small intervals,

though not necessarily close to zero. Thus, Neuhaus (1995) proposes the

following discrete approximation:
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34 If the premium is paid only at redemption, the discount factor in (21) becomes one.



Chart 2
Kernel densities of 2-month forward prices of Brent oil barrel

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Prices (in USD)

P
ro

ba
bi

lit
y 

d
en

si
ty

12-08-99

12-07-99

12-05-99

12-04-99

Chart 1
Kernel densities of 2-month returns of Brent Oil Barrel
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Chart 4
RND functions of 2-month forward price of Brent oil barrel
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Chart 3
Kernel Density Estimator of 2-month returns of Brent oil barrel

January 1977-August 1999
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Chart 5
RND and SD of 2-month forward price of Brent oil barrel

in 12-08-99
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Chart 6
RND and SD of 2-month forward price of Brent oil barrel

in 12-07-99
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Chart 7
RND and SD of 2-month forward price of Brent oil barrel

in 12-05-99
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Chart 8
RND and SD of 2-month forward price of Brent oil barrel

in 12-04-99
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Chart 10
RND of forward prices of Brent oil barrel in 12-08-1999
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Chart 9
Risk-aversion functions of 2-month forward prices of Brent oil barrel
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Chart 12
Risk aversion and risk premium implicit in Brent oil futures options and 

spot prices in 12.08.99 for several terms to maturity
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Chart 11
Observed WTI oil prices and risk-neutral expectations 
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Chart 13
Risk-aversion functions for WTI oil price in 02-09-99 for several maturities
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Chart 14
Average differences between futures prices and ex-post realised spot 

prices for Brent oil
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Chart 16
Risk-aversion and utility functions in 12-08-1999 for Brent oil prices (one-

month maturity)

-2

-1

0

1

2

3

4

5

14 15 16 17 18 19 20 21 22 23 24

Prices (in USD)

R
is

k-
av

er
si

on
 (i

n 
U

SD
)

estimated risk-aversion

HARA Risk-aversion

Chart 15
Standard-deviations of the differences between futures prices and ex-

post realised spot prices for Brent oil 
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