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Abstract
In this paper we apply dynamic model averaging (DMA) to forecast Portuguese and Spanish
house prices. DMA is a useful method for forecasting because it inherently allows for uncertainty
in both the combination of predictors (model uncertainty), as well as in the marginal effect of
each predictor (parameter uncertainty). In doing so we are able to track which predictors are
relevant over the forecast period. Besides fundamental macroeconomic determinants to house
prices dynamics we also include as predictors business and consumer confidence and financial
markets volatility. We find that different predictors have varying inclusion probabilities for both
Portugal and Spain. In Portugal, most predictors appear to have some value when it comes to
forecasting changes in house prices, including volatility and consumer confidence. Furthermore,
each predictor’s importance appears to increase over time. For Spain, most economic predictors
appear to be useful for forecasting, and there appears to be less variation in each predictor’s
importance over time. However, volatility measures appear to be less important in Spain than in
Portugal for predicting house prices. (JEL: C22, C53, R31)

1. Introduction

House prices have received considerable attention in recent years. The housing
market and its developments can affect economic activity through the credit
channel and through the impact that housing wealth has on consumption.

Empirical evidence indicates that real estate is the main asset of households (Costa et al.
(2020), ECB (2020) and EFF (2019)), and that changes in the value of wealth in housing
can affect homeowners’ consumption (Englund et al. (2002) and Case et al. (2005)). The
impact on the economy resulting from changes in housing wealth may be greater than
that resulting from movements in share prices (Helbling and Terrones (2003)). For an
interesting overview of the dynamics of house prices in Europe, see e.g. Lourenço and
Rodrigues (2015).
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Economic uncertainty is not observable and reflects the doubts that economic agents
have, be they consumers, entrepreneurs or policy makers, about any future event, be it
economic (e.g. GDP or house price growth) or non-economic (e.g. a natural disaster).1

There is no consensus among economists on how to measure it and in the economic
literature an extensive set of proxies have been used to measure economic uncertainty
dynamics (Bloom (2013)). These include stock-market (or financial market) volatility,
GDP and income volatility, forecaster disagreement (i.e. the standard-deviation across
economic forecasts from a number of different institutions), news mentions of the term
’uncertainty’ and other related terms (Baker et al. (2015)), and differences between
the actual release values for variables such as GDP and their pre-release expected
values. Other measures include unemployment expectations (Carroll and Dunn (1997)),
sentiment indicators (Bachmann et al. (2013); Ling et al. (2015)), and internet searches for
terms related to uncertainty (Dzielinski (2012)).

According to Bloom (2013), economic uncertainty is generally caused by the same
events that cause recessions, such as oil-price shocks and credit crunches. This is further
compounded by the fact that recessions themselves increase uncertainty, meaning that
as economic growth deteriorates uncertainty is endogenously increased further. Pástor
and Veronesi (2012) and Kozeniauskas et al. (2016) argue that it is the unfamiliarity
of recessions which leads to an increase in uncertainty. In these situations, fiscal and
monetary policy become more unpredictable as policy-makers attempt innovative ideas
in order to boost economic growth, and find it more difficult to forecast something
different from the usual pattern of positive growth.

The main link between uncertainty and house prices is that uncertainty leads
consumers to be more cautious when making purchases. This is especially so for
residential property, which involves a large outlay of money and in most cases a bank
loan. Moreover, house purchases are very difficult to reverse, and, unlike purchases of
necessities, can be delayed through a ’wait and see’ approach. Consumers also tend to
put away more savings as a precautionary measure in periods when uncertainty over
their future income is high. Bertola et al. (2005) concluded that an increase in uncertainty
reduces consumers’ durable expenditure, while Ling et al. (2015) argued that house
prices are affected by changes in sentiment among important market participants.

Identifying individual sources of uncertainty is difficult, and most commonly the
total expected forecast uncertainty is reported. Typically this is presented as either
standard deviations (usually with an underlying assumption of normality), or fan
charts (densities). Calculation methods differ across the major forecasting institutions.
Most common uncertainty measures are explicitly based on past forecasting errors and
include those linked to mean-absolute forecast errors (MAFE) or root mean squared
forecasting errors (RMSFE). These can be derived from a static specification, but are
more commonly based on recursive model estimates and are usually simple to calculate
and interpret. Such measures are used by a large number of forecasters – for example,

1. An economic distinction between uncertainty and risk was proposed by Knight (1921). According to
Knight, ’risk is present when future events occur with measurable probability. Uncertainty is present when
the likelihood of future events is indefinite or incalculable.’
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OECD in their Interim Outlook, FOMC and FEDs, Bank of England, Bank of Canada,
Sveriges Riksbank and ECB/ESCB or Bundesbank. The main limitations of the simplest
approach are the normality assumption, proneness to large outliers (the ECB and OECD
exclude some particularly large outliers from the calculations) and lack of relationship
to most recent developments.

From the point of view of speculators, who purchase property solely for investment
purposes, the return-risk ratio is negatively impacted by increased uncertainty over
expected returns, and increased costs of financing from banks unwilling to lend in an
environment of higher default risk.

The aim of this paper is to discuss forecasting models and the importance of
variables proxying for economic uncertainty as predictors of residential property
prices in Portugal and Spain. We use a forecasting methodology known as dynamic
model averaging (DMA) applied to house price dynamics encompassing a wide set
of variables. These include macroeconomic determinants, such as income, GDP, labor
force, unemployment and interest rates but also shorter-term drivers, such as housing
investment, housing loans, business and consumer confidence and financial markets
volatility. DMA owes its success in part to its inherit flexibility, not only by incorporating
uncertainty across different forecasting models, but also uncertainty pertaining to each
parameter within any given forecasting model. This is done through the use of model
averaging, and the usage of two forgetting factors that reflect uncertainty in both
parameters and models.

The paper is organized as follows. Section 2 briefly describes the DMA methodology
used in the forecasting exercise of house prices in Portugal and Spain. Section 3
discusses the data and evaluates the forecast performance of the DMA methodology.
This evaluation includes a discussion on the usefulness of each predictor for forecasting
at any given time; and provides a further analysis using factors extracted from the
predictors using principal component analysis to forecast house prices, thereby reducing
the dimension of the predictor set. Lastly, Section 4 concludes.

2. Methodology

The forecasting methodology employed in this analysis is known as dynamic model
averaging (DMA). Initial work on the methodology was done by Raftery et al. (2010) who
applied it to an industrial context. Later Koop and Korobilis (2012) adapted it to forecast
inflation. Koop and Korobilis found evidence suggesting that DMA was a superior
forecasting method when compared to several alternatives, including other time varying
parameter models. Since then a number of studies have used the methodology in a
variety of contexts. In terms of house price forecasting, Bork and Møller (2015) analyzed
the performance of DMA to forecast average house prices of US states, Risse and Kern
(2016) applied the method to European house prices, and Hill and Rodrigues (2020)
used DMA to forecast house prices of major economies using a new dynamic forgetting
(DF) strategy. Overall, DMA has been shown to be a valuable tool for macroeconomic
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forecasting. For other applications of the DMA methodology see, for instance, Moretti
et al. (2019) and Nicoletti and Passaro (2012).

We will briefly discuss the DMA approach, emphasizing its relevance for uncertainty.
We apply different tuning parameters to the DMA which reflect the flexibility that the
methodology has in terms of model averaging and time variation of model coefficients.
We also use dynamic model selection (DMS), which can be seen as a special case of
the DMA approach described below. For more technical details the reader is referred to
Raftery et al. (2010), Koop and Korobilis (2012) and Hill and Rodrigues (2020).

2.1. Between Model Uncertainty

The DMA procedure is initiated with the researcher specifying a set of potential models.
In practice, this usually means selecting a group of predictor variables and generating
a set of linear models with all possible combinations of predictors. For instance, for K
predictors there would be 2K different linear models. DMA then uses Bayesian model
averaging of each model’s forecast to generate the forecasts. The averaging is Bayesian
in the sense that weights assigned to each model are based on how well each model
performed in the past. Let ŷt be the forecasted variable of interest, in our case house
prices and let each of the 2K models be labeled as Mk, k ∈ (1, ..., 2K). The weighted
average is computed as,

ŷt =

2K∑
k=1

P (modelt = Mk | Ft−1)ŷt(k) (1)

where ŷt(k) is the forecast from model k, Ft−1 represents the information set available
at the time of the forecast and modelt refers to the forecasts generating model. The
posterior probability weight P (.) changes according to how well one of the k models
forecasts in comparison with all the other available models. Weights are updated after
each iteration. The update involves prior probabilities of model k, as well as a normal
likelihood with mean ŷt(k) and the predicted variance evaluated at the actual yt. One
important contribution of Raftery et al. (2010) was the use of a forgetting factor, labeled
α, that reflects the degree of model uncertainty. The parameter α dictates how much
uncertainty we wish to attach to the posterior weight as it is updated, i.e. becomes the
prior in the next iteration. With fixed forgetting factors, the researcher can set α between
0 and 1, with lower values reflecting more model uncertainty. In practice α is usually set
somewhere between 0.95 and 1. With α < 1, models that perform better than the average
receive proportionally less weight than they would if α = 1, while weights of the models
performing worse than average receive a higher weight. The lower α the stronger this
effect. Therefore, DMA allows for initial uncertainty by allowing the researcher to be
unsure of the data generating model, and α flattens the distribution over all possible
models.

We also conduct analysis using a model selection framework based on dynamic
model selection (DMS). This is shown in Table 1 below as dynamic model selection,
or Bayesian model selection (DMS or BMS). In this setting there is no averaging over
models as described above, instead the forecast comes from the model with the largest
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weight. This is a special case of DMA, in which the weights are 1 for maxk(P (modelt =

Mk | Ft−1)) and 0 for all the other K − 1 models. The model with the largest weight
acts as the selected model and gives the exclusive forecast for a particular period. In the
following period, weights are adjusted according to how well each model performed
in the past, with α dictating, as indicated above, how much memory is involved in
the process. This gives DMS an advantage when there appears to be one model that
outperforms, while other models are confounding.

2.2. Parameter Uncertainty

Parameter uncertainty in the DMA framework is addressed through the use of state
space methods, namely the Kalman filter. We can formulate this with a measurement
and a state equation as,

yt = x′t−1θt + εt (2)

θt = θt−1 + νt (3)

where εt and νt are normally distributed error terms with εt being a scalar and νt a
vector of the same dimension as θt, θt is a vectors of coefficients, and xt a vectors of
predictors. Raftery et al. (2010) provide a more detailed explanation, here we simply
state that parameter uncertainty is accommodated via the coefficient vector θ, that
evolves as a random walk. The Kalman filter can be thought of as a recursive least
squares approach, which iteratively solves an OLS problem, thus giving a series of
coefficient estimates. To avoid the filter converging on a specific θ, the DMA includes
a second forgetting factor defined as λ, which effectively places more weight on recent
observations of the recursive OLS problem, thereby allowing for some uncertainty in the
coefficients. There are a number of ways of considering λ. Raftery et al. (2010) and others
consider it to be a constant parameter which is set by the researcher a priori. As with α,
λ in practice takes values between 0.95 and 1, with 1 indicating recursive OLS where
recent and past observations carry the same weight. A lower λ increases the flatness of
the coefficient covariance matrix implying more uncertainty over the generating process
of θt. A drawback of a lower λ is that it makes the system more susceptible to noise
which causes the filter to over-adjust.

Hill and Rodrigues (2020) explore a solution to the over-adjustment problem by
employing predictor specific dynamic forgetting factors. This allows the filter to permit
more uncertainty in the process, without over-fitting noise. The individual forgetting
factors also decrease (originating more forgetting) when forecast errors are large,
implying that, for instance, a structural break in the generating process will increase
forgetting across all predictors. The main idea in Hill and Rodrigues is to limit the
size of the covariance matrix from above and below, so as to allow forgetting, without
the drawback of over-sensitivity (we present results using fixed as well as dynamic
forgetting in Table 1). The role of the forgetting factor λ is the same under model
averaging or model selection as its role is related to the rate of variation of parameters
over time within each model.
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3. Forecasting House Prices

3.1. Data

Real estate market dynamics have gained particular interest in recent years, following
the US sub-prime collapse in 2007 which quickly spread worldwide and led to
a significant impact of housing markets on the economy. Understanding the price
determination process in real estate markets is of foremost importance if we want to
forecast. Determinants of housing demand include growth in household disposable
income and gradual shifts in demographics, such as the relative size of older and
younger generations. Permanent features of the tax system that might encourage home
ownership as opposed to other forms of wealth accumulation also matter, as well as
the average level of interest rates possibly related to the long-term behavior of inflation.
The availability and cost of land, as well as the cost of construction and investments
in the improvement of the quality of existing housing stock are also relevant (Poterba
et al. (1991) and Tsatsaronis and Zhu (2004)). For instance, the growth of the housing
stock can be constrained in the short run as a result of a number of factors that include
the length of the planning and construction. There could also be shorter-term drivers
related to constraints in the growth of the housing stock, prevailing conditions in the
provision of housing loans, or uncertainty about future prospects. Higher GDP and
disposable income, more confidence in the economy, less unemployment, more labor
and an increase in mortgage lending are expected to have a positive impact on the
housing market. In contrast, higher interest rates are expected to drive borrowing costs
up and demand down leading to a subsequent fall in house prices and make alternative
applications of wealth more interesting. The same with residential investment, if it
increases prices may go down.

The predictors we use in our analysis consist of fundamental macroeconomic
covariates, such as real money market rate, labor force, real disposable income per capita,
real GDP per capita, real mortgage rates, real gross fixed capital formation (GFCF) in
housing, real loans for house purchases, and the unemployment rate. However, we
also include other variables that attempt to gauge uncertainty, such as, business and
consumer confidence and financial markets volatility which we also expect to have a
positive impact on house prices.

Our data set comprises quarterly time series from 1988:Q1 to 2019:Q3 for Portugal
and Spain. Data on house prices, real GDP, real GFCF in housing, disposable income,
labor force, unemployment, population and private consumption deflator were collected
from the OECD, the Eurostat, Statistics Portugal and Banco de Portugal, while loan
for house purchases, short-term interest rates and mortgage rates were taken from the
European Central Bank. Short-term interest rates correspond to 3-month inter-bank
money market yield rates. Mortgage rates correspond to the interest rate on loans
for house purchase. Confidence data refer to the Economic Sentiment Indicator of the
European Commission Surveys. Historical volatility from the PSI-20 and IBEX 35 is the
annualized standard deviation of 60-day average of daily volatility. The VIX, VDAX and
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VSTOXX are market indexes representing the market’s expectation of 30-day forward-
looking volatility based on the price inputs of the S&P 500, DAX and EuroStoxx50
index options. These were taken from Refinitiv. All series in real terms were computed
using the private consumption deflator. GDP and GFCF in housing are chain linked
volume. House price indices correspond to seasonally unadjusted series constructed
from national data from a variety of public and/or private sources, such as, national
statistical services, mortgage lenders and real estate agents. House price series may
differ in terms of dwelling types and geographical coverage. For Portugal and Spain they
are country-wide and refer to newly and existing apartments. The house price indexes
are based on hedonic approaches to price measurement characterized by valuing the
houses in terms of their attributes (average square meter price, size of the dwellings
involved in transactions and their location).

Before analyzing the empirical results it is important to briefly describe the evolution
of the real estate markets, house prices and macroeconomic variables. During two
decades, until the beginning of the financial crisis in 2007, house prices grew on average
less than 1 per cent per year in real terms in Portugal and 7 per cent in Spain (Figure
1a)). Since the crisis and until the end of 2019 house prices fell 2 per cent on average in
Spain and increased 1 per cent in Portugal. However, this masks a highly differentiated
evolution over the past decade. House prices declined in both economies, though
more in Spain, between 2008 and until the recovery in 2013, and increased in both
countries over the past five years, especially so in Portugal. In terms of activity, there
was a major difference between Portugal and Spain from the late 90’s and until 2007,
associated to the impact of immigration flows to Spain resulting in a significant increase
of active population at the beginning of the XXI century, which probably contributed to
an increase in housing demand (Lourenço and Rodrigues (2014)). During this period,
Spanish residential investment grew at an average annual rate of about 8 per cent, while
in Portugal it recorded a 2 per cent contraction (Figure 1b)). In turn, GDP accelerated
slightly in both economies, although less in the Portuguese case (Figure 1c)). In the five
years following the financial crisis and until the recovery in 2013, both countries saw
a similar contraction in GDP and housing investment, although most strongly in terms
of investment, over 11 per cent compared to 1 per cent in GDP. The unemployment
rate increased sharply and labor force declined, which may be related to emigration
flows (Figures 1d) and 1e)). Between 2014 and 2019, amidst increasing confidence, GDP
accelerated 2 per cent in Portugal and in Spain and residential GFCF increased 4 and
6 per cent, respectively (Figure 2a)). Given its relevance for the housing sector and the
impact it may have on the cost of financing it is also important to analyze credit in
detail. Data on bank lending indicate the existence of episodes of very high growth in
mortgage loans between the mid-1990s and 2007 (Figure 2b)). This annual growth was
about 15 per cent on average in Portugal and in Spain, in the context of declining costs
of bank loans and high and sustained growth in household disposable income, which
was reflected in an increase of indebtedness of families (Figures 1f) 2b) and 2c)). The
significant deceleration of credit to housing from 2010 onward should be seen in the
context of the international financial crisis which had a negative impact on the supply,
given a significant tightening in lending conditions, and on housing credit demand. The
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volatility variables (Figure 2d)) display spikes during the crises (e.g. subprime crisis
followed by a recession and sovereign debt crisis).
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3.2. Empirical Results - All Variables

In our analysis we consider forecasts from a number of DMA specifications, from DMS
and from a first order autoregressive model (AR(1)). The forgetting factor α is generally
fixed between 0.95 and 1 in most applications of DMA in the literature. We find that
varying αwithin this range does not alter forecasts significantly. Therefore for simplicity,
we fix α at 0.97 in our analysis and allow λ to vary. We select four different specifications
for λ; 0.95, 0.99, 1 and the dynamic forgetting of Hill and Rodrigues (2020), denoted by
the superscript DF .

We measure the performance of each approach using the mean squared forecast
error (MSFE), as well as the mean absolute forecast error (MAFE) for the pseudo out-
of-sample period starting from T0 =2009 Q1 to the end of the sample at T =2019 Q3.
The MSFE is computed as

∑T
t=T0

(yt − ŷt)2/Tos and the MAFE as
∑T

t=T0
|yt − ŷt|/Tos,

where Tos is the number of out-of-sample periods. We also report the p-values of the
Clark and West (2007) test of equal predictability performance and the out-of-sample R2

(R2
os) given by

R2
os = 1−

∑T
t=T0

(yt − ŷt)2∑T
t=T0

(yt − ȳt)2
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where ȳt is the historical average of the yt series and ŷt is the forecast from our model in
question. The R2

os is positive if the forecasting model beats the historical average, while
the opposite is true if the R2

os is negative.

3.2.1. Forecast Performance

Table 1 shows that in general, across all time periods, the dynamic forgetting (DF)
approach appears to have an advantage over fixed forgetting for the one period ahead
forecasts. For longer periods, the results are mixed. For Spain the baseline AR(1) model
seems to out-perform all competing models when h = 4 is considered. It is not clear
which parametrization of λ offers the best forecast performance across both Portugal
and Spain. This suggests the need for a forgetting scheme that is adaptable to different
data generating processes.

Aside from the dynamic forgetting, at one period ahead, a low λ indicating more
forgetting appears to have smaller forecast errors. This suggests that parameters in
equation 3 provide better forecasts when we increase their variance, in other words
increasing the uncertainty of the parameter estimates and thus preventing the Kalman
filter from stabilizing provides us with lower forecast errors. In terms of discounting
past data, a λ of 0.95 means that data at t− 4 carry about 80% of the weight as data at
time t. For two periods ahead, the results for the two countries are more mixed. Dynamic
model selection, in which the model weights are 1 for the best performing model and
0 otherwise, has the lowest forecast error for Spain, indicating that the data generating
process may closely resemble one specific model, while other potential models tend to
miss the mark. In this case the models that are selected for most of the out of sample
period are the models that include only the lagged dependent variable and intercepts
and the model that includes lagged real GDP per capita and loans for house purchases.
In both Portugal and Spain, the two period ahead forecast horizon is not dominated by
a single specification, instead both model selections with dynamic forgetting appear to
do well. At four periods ahead, the high forgetting specification and dynamic forgetting
do well in the case of Portugal, whereas in Spain, the AR(1) outperforms the DMA and
DMS.
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Portugal
h=1 h=2 h=4

forecasting method MSFE MAFE CW test R2
os MSFE MAFE CW test R2

os MSFE MAFE CW test R2
os

DMA α = 0.97, λ = 0.95 0.2160 1.1123 0.0000 0.4141 0.2464 1.2520 0.0002 0.2724 0.2994 1.4475 0.0003 -0.0078
DMA α = 0.97, λ = 0.99 0.2170 1.1131 0.0001 0.4086 0.2412 1.2152 0.0001 0.3027 0.3028 1.5247 0.0014 -0.0305
DMA α = 0.97, λ = 1 0.2174 1.1107 0.0002 0.4062 0.2398 1.2025 0.0001 0.3106 0.3011 1.5231 0.0020 -0.0190
DMA α = 0.97, λDF 0.2149 1.1104 0.0000 0.4197 0.2411 1.2146 0.0001 0.3034 0.2996 1.4949 0.0010 -0.0086
AR1 0.2225 1.1161 - 0.2654 0.2540 1.2574 - 0.1986 0.3207 1.6266 - 0.0521
DMS α = 0.97, λ = 0.95 0.2188 1.1717 0.0002 0.3986 0.2314 1.1214 0.0001 0.3579 0.3132 1.5167 0.0001 -0.1026
DMS α = 0.97, λ = 0.99 0.2192 1.1065 0.0031 0.3964 0.2378 1.1909 0.0030 0.3223 0.3087 1.5215 0.0035 -0.0714
DMS α = 0.97, λ = 1 0.2163 1.0885 0.0043 0.4124 0.2426 1.2202 0.0061 0.2947 0.3045 1.5094 0.0049 -0.0425
DMS α = 0.97, λDF 0.2154 1.0897 0.0009 0.4170 0.2307 1.1310 0.0008 0.3622 0.3099 1.5033 0.0013 -0.0793

Spain
h=1 h=2 h=4

forecasting method MSFE MAFE CW test R2
os MSFE MAFE CW test R2

os MSFE MAFE CW test R2
os

DMA α = 0.97, λ = 0.95 0.1949 0.9768 0.0050 0.7160 0.2222 1.0400 0.0113 0.6394 0.3864 1.8016 0.0072 -0.0677
DMA α = 0.97, λ = 0.99 0.1948 0.9820 0.0036 0.7163 0.2139 1.0333 0.0110 0.6660 0.3463 1.6295 0.0085 0.1426
DMA α = 0.97, λ = 1 0.1980 0.9957 0.0035 0.7070 0.2107 1.0325 0.0095 0.6758 0.3330 1.5751 0.0089 0.2069
DMA α = 0.97, λDF 0.1935 0.9731 0.0043 0.7200 0.2169 1.0224 0.0125 0.6566 0.3609 1.6834 0.0082 0.0683
AR1 0.2283 1.0577 - 0.1025 0.2213 1.0470 - 0.1382 0.3212 1.3483 - 0.0729
DMS α = 0.97, λ = 0.95 0.2070 1.0206 0.0067 0.6798 0.2251 1.0359 0.0194 0.6299 0.4022 1.8920 0.0119 -0.1569
DMS α = 0.97, λ = 0.99 0.2146 1.1079 0.0076 0.6557 0.2223 1.1120 0.0129 0.6391 0.3683 1.7581 0.0088 0.0299
DMS α = 0.97, λ = 1 0.2092 1.0885 0.0084 0.6730 0.2129 1.0646 0.0077 0.6689 0.3643 1.7419 0.0097 0.0508
DMS α = 0.97, λDF 0.2017 1.0204 0.0067 0.6958 0.2272 1.0884 0.0142 0.6232 0.3770 1.7803 0.0084 -0.0163

TABLE 1. Results when all predictors are considered

It is important to note that recent figures do not yet reflect the impact of the Covid-
19 pandemic on the world economy. The unprecedented nature of this crisis makes
it challenging to gauge its repercussions on the predictors used in this analysis, and
of course on house prices themselves. The impact will, to a certain extent, depend
on changes in fundamentals that support the housing market, such as, banks funding
lines, interest rates, housing shortages within key locations, and unemployment, where
particularly the latter may be one of the main stress factors in the coming months.

The pandemic will likely result in structural changes in the housing market and in
the marginal effects of house price predictors. However, the model averaging as well as
the time varying parameter characteristics of DMA should grant the forecasting method
adequate flexibility to incorporate these structural changes. The speed at which DMA
will be able to react to the changes brought on by the pandemic will depend on the
tuning parameters α and λ, that represent the forecasters uncertainty pertaining to the
set of predictors and the marginal effect of each predictor in this set.

3.2.2. Posterior Probability of Inclusion Plots

An interesting feature of the DMA approach is that using the posterior probability
distributions (PIPs) from each model, one can construct inclusion probabilities for each
predicting variable. Every model in the DMA model set that contains a particular
variable is given a PIP upon propagation of the Kalman filter. The total probability
attached to each of these models is then used as a posterior probability of inclusion for
a given predictor. The PIPs are presented in Figures 3 and 4 for Portugal and Figures
5 and 6 for Spain. The inclusion probabilities have been divided between economic
and financial/volatility predictors. The PIPs for the lagged autoregressive predictor,
as well as for the constant are not included, given that these have been very high and
relatively stable over the whole period considered. Each line represents the probability
that the corresponding predictor is included in the applied model for a given period. In
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other words, each line represents the relative importance of a predictor for forecasting
house prices. As shown in Figures 3 to 6 some of the variables change significantly over
time. This indicates that a forecasting framework that incorporates model uncertainty is
justified.
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FIGURE 3: Portugal - one period ahead forecast horizon
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FIGURE 4: Portugal - four periods ahead forecast horizon
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FIGURE 5: Spain - one period ahead forecast horizon
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FIGURE 6: Spain - four periods ahead forecast horizon

The PIPs should be regarded as a measure of a particular predictor’s importance
for forecasting relative to other competing models. This is because the construction of
the PIPs is based on the model weights used in the model averaging, which all sum
to one and increase or decrease in proportion to the model’s performance relative to
the forecast performance of all other models. Therefore, when we see the financial and
volatility predictors increasing over time as a group in Figures 3 and 4, this suggests a
steady increase in importance of volatility and interest rate variables relative to other
predictors. This includes the first lag of real house prices, which although has a PIP
of 1, since it is included in all the models which contain other predictors, has a model
averaging weight that could be decreasing in time and does not show up in the chart of
PIPs.

For example, in the one period ahead PIPs for Portugal we notice the set of
financial predictors all being relatively clustered together and increasing over time. The
clustering of the PIPs for financial and volatility predictors likely stems from their strong
correlation. We also see a slightly weaker increase in the PIPs of the real economic
variables. Since all PIPs are increasing, they may be doing so at the expense of the
lag of house prices. A possible interpretation of this is that the autoregressive property
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of the house price series is decreasing in favour of predictability from other variables,
particularly financial/volatility variables.

For the four quarter forecast horizon, we notice more separation between the
inclusion probabilities of predictors, particularly for housing loans. This predictor
displays strong predictive power for the 2004 to 2013 period. It is later replaced by
labour force in terms of significance after around 2013. The steady increase of PIPs for
the financial/volatility predictors are, as per the one quarter ahead forecast, likely the
result of the autoregressive property of the differenced house price series weakening.
Given the DMA’s lower performance for longer forecast horizons, it could be the case
that the decrease in the autoregressive predictability of differenced real house prices is
not being compensated by an improving predictive power of other predictors. Agents
on the supply and demand side could be reacting quicker to changes in fundamentals
and driving price changes in short horizons as opposed to longer ones.

Both sets of PIPs for Portugal suggest some volatility in terms of model switching
around 2013. By itself, this is not sufficient evidence for a regime change in terms of the
drivers of house prices, but it does suggest that dynamics may have shifted around this
period. This question warrants further investigation; see e.g. Lourenço and Rodrigues
(2017) and section 3.3.

The PIPS from Spain’s one quarter ahead forecasts suggest that the labour force
predictor was a relatively important variable for forecasting house prices up until 2013.
This is the case for both one and four quarter ahead forecasts. However, after roughly
2013, in both forecast horizons the importance of labour force drops. Its importance is
replaced by real disposable income for one quarter ahead, while for the four quarter
ahead forecast there does not appear to be any variable that stands out aside from
real house loans which jumps around 2013 but fall shortly afterwards. The financial
and volatility predictors for Spain co-move over the forecast period, again likely due to
the strong correlation of those predictors. Interestingly however, the real money market
rate maintains a steady importance relative to other predictors over the forecast period.
It is interesting to note that, similar to the case of Portugal, the shifts in the PIPs for
one quarter ahead forecasts suggest some significance surrounding the year 2013. We
also note that this coincides with the beginning of Spain’s economic recovery. This
corroborates work done on the subject of the Spanish housing market by Cuestas and
Kukk (2019) who identify Q2 2013 as a break date in their analysis of drivers of house
prices in Spain.

The differences in the dynamics of PIPs between Portugal and Spain is not clear. Both
housing markets were affected by external factors over the sample period. However
real loans for housing in Portugal appear to have played an important role pre-2013
for both long and short forecast horizons. Loans became an important driver in Spain
during the bust period between 2008 and 2013. After that, real disposable income plays
an important role. During the bust period, the availability of loans decreased as more
restrictions were placed on lending thereby leading to a fall in housing loans observed in
both countries, this also coincides with a fall in housing price and results in the increased
importance of the housing loans predictor in both cases. The difference in the importance
of the volatility predictors between the two countries is also interesting. Volatility, as a
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proxy for economic uncertainty, seems to play a bigger role in Portugal than in Spain.
This could be due to a number of reasons. Portuguese lenders and buyers may be more
cautious during higher volatility than their counterparts in Spain, and the composition
of buyers could also be different.

3.2.3. Posterior Size Plots

A further interesting feature of the DMA methodology is the concept of posterior size
probability. Each of the models which are averaged over in the DMA process contains
a certain number of predictors. Taking the number of predictors of each model, and
producing a weighted average using the posterior predictive probability of that model
as a weight, provides an indication of the number of variables actually used to predict
the change in real house prices (Koop and Korobilis (2011). For both Portugal and Spain,
the number of predictors appears to increase over time. This is consistent with the
posterior probability of inclusion plots, which show the probability of inclusion for most
variables increasing over time. The distinct increase in the size of the best performing
models indicates that they are changing over time. This suggests that the a priori model
uncertainty was justified, since the ’optimal’ model changes over time, i.e., it seems that
there was not a single model specification that was appropriate over the whole sample.
Hence, the implicit uncertainty, and updating in the DMA process was utilized in the
forecasts. Had the lines in these charts been more or less constant, there would be less
evidence for model change throughout the sample.
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FIGURE 7: Left graph is for Portugal and the right graph for Spain

3.3. Empirical Results - Factors

Factor models have been used in a wide variety of forecast applications and have
been found to be useful for dimension reduction which often improves out-of-sample
forecasting. An added benefit is that the computational burden is drastically reduced
when 12 predictors are replaced by 3 factors as we have done. We follow Koop and
Korobilis (2011) and create block factors. We divide the predictors into three blocks;
an economic uncertainty block consisting of the volatility indices; a financial block
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consisting of the real money market and mortgage rates, and a real economy block
consisting of the remaining predictors. Thus, we extract the common variation in each
predictor block, and use the resulting factor in place of the original predictors. This
leaves us with 23 = 8 models to average over in the DMA/DMS procedure. We extract
factors using an eigenvalue decomposition of the standardized block predictor matrix.
We confirm that one principal component captures most of the within block variation by
examining the relative size of the largest eigenvalue and finally use these eigenvalues to
extract the factors for the block matrix.

The analysis of the results suggests that there are gains in using factors instead of a
large number of predictors. This is demonstrated by lower forecast errors in most cases
across both countries and forecast horizons, in particular at longer forecast horizons.
This suggests the there was perhaps some mild over fitting occurring in the DMA using
all predictors, although the difference is not substantial enough to markedly alter the
forecasts in this case.

Portugal

h=1 h=2 h=4
forecasting method MSFE MAFE CW test R2

os MSFE MAFE CW test R2
os MSFE MAFE CW test R2

os

DMA α = 0.97, λ = 0.95 0.2142 1.1166 0.0000 0.4237 0.2401 1.1937 0.0000 0.3087 0.2826 1.4199 0.0018 0.1023
DMA α = 0.97, λ = 0.99 0.2139 1.0834 0.0001 0.4250 0.2397 1.1827 0.0002 0.3113 0.2866 1.4499 0.0006 0.0771
DMA α = 0.97, λ = 1 0.2138 1.0763 0.0002 0.4255 0.2388 1.1793 0.0008 0.3165 0.2853 1.4510 0.0009 0.0851
DMA α = 0.97, λDF 0.2131 1.1186 0.0000 0.4293 0.2391 1.1972 0.0000 0.3146 0.2775 1.3671 0.0015 0.1343
AR1 0.2225 1.1161 - 0.2654 0.2540 1.2574 - 0.1986 0.3207 1.6266 - 0.0521
DMS α = 0.97, λ = 0.95 0.2134 1.0926 0.0001 0.4282 0.2371 1.1641 0.0003 0.3259 0.2801 1.3958 0.0037 0.1180
DMS α = 0.97, λ = 0.99 0.2128 1.0706 0.0002 0.4309 0.2371 1.1657 0.0000 0.3259 0.2870 1.4511 0.0018 0.0743
DMS α = 0.97, λ = 1 0.2133 1.0719 0.0005 0.4286 0.2360 1.1690 0.0001 0.3323 0.2853 1.4400 0.0033 0.0854
DMS α = 0.97, λDF 0.2120 1.0881 0.0001 0.4353 0.2336 1.1502 0.0002 0.3460 0.2742 1.3543 0.0028 0.1548

Spain
h=1 h=2 h=4

forecasting method MSFE MAFE CW test R2
os MSFE MAFE CW test R2

os MSFE MAFE CW test R2
os

DMA α = 0.97, λ = 0.95 0.1860 0.8860 0.0183 0.7414 0.2129 0.9550 0.0280 0.6690 0.3459 1.5850 0.0193 0.1445
DMA α = 0.97, λ = 0.99 0.1912 0.9102 0.0227 0.7265 0.2090 0.9611 0.0367 0.6809 0.3170 1.4260 0.0294 0.2815
DMA α = 0.97, λ = 1 0.1954 0.9403 0.0199 0.7146 0.2085 0.9687 0.0402 0.6826 0.3081 1.3816 0.0317 0.3211
DMA α = 0.97, λDF 0.1842 0.8756 0.0166 0.7463 0.2119 0.9443 0.0275 0.6720 0.3543 1.6434 0.0133 0.1021
AR1 0.2283 1.0577 - 0.1025 0.2213 1.0470 - 0.1382 0.3212 1.3483 - 0.0729
DMS α = 0.97, λ = 0.95 0.1867 0.9002 0.0149 0.7393 0.2087 0.9529 0.0290 0.6819 0.3384 1.5504 0.0160 0.1809
DMS α = 0.97, λ = 0.99 0.1911 0.9140 0.0218 0.7270 0.2080 0.9812 0.0289 0.6841 0.3127 1.4165 0.0204 0.3008
DMS α = 0.97, λ = 1 0.1995 0.9783 0.0141 0.7024 0.2094 1.0080 0.0248 0.6798 0.3029 1.3576 0.0223 0.3439
DMS α = 0.97, λDF 0.1855 0.8904 0.0145 0.7426 0.2080 0.9410 0.0313 0.6840 0.3458 1.5962 0.0117 0.1448

TABLE 2. Results when factors are used as predictors

3.3.1. Posterior Probability of Inclusion Plots

Regarding the posterior probability of inclusion plots (Figure 11), we see that extracting
the common variance and reducing the dimensions changes some of the inclusion
probabilities. We notice that for the 1 quarter ahead forecasts for Portugal, the
uncertainty block factor becomes relatively more important towards the end of the
sample, indicating that the common fluctuations of volatility indices have predictive
power for house prices post 2012, albeit with a four quarter delay. Moreover, each factor
has an increasing probability of being included in the data generating model, with a
bump for each factor around the time of the financial crisis, across all forecast horizons.
All factors tend to have roughly similar inclusion probabilities for Portugal, whereas in
Spain we notice that the uncertainty block factor is less important for forecasting than



69

the financial and real economy factors. The use of factors to reduce the dimension of the
set of predictors is helpful as it illustrates clearly the usefulness of each set of factors for
forecasting house prices.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2004 2006 2008 2010 2012 2014 2016 2018 2020
Real Financial Uncertainty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2004 2006 2008 2010 2012 2014 2016 2018 2020
Real Financial Uncertainty

a) Portugal - one period ahead forecast horizon b) Spain - one period ahead forecast horizon

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2004 2006 2008 2010 2012 2014 2016 2018 2020
Real Financial Uncertainty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2004 2006 2008 2010 2012 2014 2016 2018 2020
Real Financial Uncertainty

c) Portugal - four periods ahead forecast horizon d) Spain - four periods ahead forecast horizon

FIGURE 8: Posterior probability plots - Factors

In order to gain further insight we conduct a Quandt tests for each of the models in
the factor model set and record the F test for a structural break. Although the limiting
distribution of the Quandt test is not known precisely, we do see high values of the
F statistics around 2013 for each of the models in the (factor predictor) model space.
Although more research is needed in order to uncover what exactly is going on around
2013, we can say that there appears to be a structural break around that year.
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FIGURE 9: Portugal Quandt test - lines represent F statistics from a Quandt test at a given date
for all 8 factor forecasting models. High values for the F statistic occur around the 2012 to 2014
period, suggesting a break date within that time frame.

4. Conclusion

Dynamic model averaging is a useful method for forecasting as it inherently permits
uncertainty in both the combination of predictors as well as in the marginal effect
of each predictor. Through the use of the two forgetting factors discussed above,
DMA avoids converging onto a specific set of predictors and parameter estimates
thereby allowing parameters and the predicting model to shift over time. These
factors can be interpreted as mirroring the forecasters uncertainty towards estimated
parameter and model distributions, with less ’forgetting’ the forecaster is able to have
more confidence in filtered parameter and model distributions. With more forgetting,
the estimated distributions at each iteration of the filter are flattened reflecting the
forecaster’s uncertainty towards the estimates. This makes it a particularly useful
approach for forecasting house prices for large out of sample periods, as we expect
relevant predictors, and their marginal effects to change over time. In this paper, we
applied DMA to forecast Portuguese and Spanish house prices, in doing so we are also
able to track which predictors are relevant over the forecast period.

We experiment with different values for each forgetting factor and also apply
a dynamic forgetting approach which attempts to minimize excess instability in
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estimating the coefficients of each model, while still permitting them to move quickly
over time. We find that while there is no one-size-fits-all forgetting scheme, dynamic
forgetting appears to offer lower forecast errors in most cases. We also carry out the
analysis with block factors instead of a set of individual predictors. To acquire these
factors, predictors were organized into real economy, financial, and volatility blocks.
A specific factor was extracted from each block of predictors via the first principal
component. We find that this dimension reduction technique provided gains in terms
of forecast errors and should be considered in future forecasting exercises using DMA.

We find that different predictors have varying inclusion probabilities for both
Portugal and Spain. The shifts in PIPs for Portugal (both sets) and Spain (one-quarter
ahead) indicate some volatility in terms of model switching around 2013. Although
by itself, this is not sufficient evidence for a regime change in terms of the drivers
of house prices, nonetheless it does suggest that dynamics may have shifted around
the beginning of the economic recovery. In Portugal, most predictors (including the
economic uncertainty proxies) appear to have some value when it comes to forecasting
changes in house prices. Furthermore, each predictor’s importance appears to increase
over time. For Spain, most real economy predictors appear to be useful for forecasting,
and there appears to be less variation in each predictor’s importance over time. Volatility
measures appear to be more important in Portugal than in Spain for predicting house
prices. This could be due to a number of reasons, for example it might be the case that
Portuguese lenders and buyers may be more cautious during higher volatility than their
counterparts in Spain or that the composition of buyers could also be different.
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