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Abstract
This article studies the co-movement between large daily revisions of short- and long-
term inflation expectations using copulas. The main findings are: first, the co-movement
between unusually large changes in short- and long-term inflation expectations increased
markedly since mid-2012, which implies that long-term inflation expectations might not be,
in a precise sense, well-anchored. Second, this co-movement measure is quite noisy. Finally,
the result is shown not to be an artifact of the methodology or of the specific data used in
the analysis. (JEL: C14, C46, G12)

Introduction

Market-based inflation expectations are widely used by market
participants and policymakers for decision making and for
inferring the likely monetary policy decisions of central banks.

The alternative survey-based inflation expectations are also widely used but,
for the purposes of this article, are not suitable given the lower frequency
of available data. Market-based inflation expectations can be determined in
several ways but perhaps the most popular method resorts to market prices
of zero-coupon inflation swaps. These financial instruments are composed
of a fixed leg and a variable leg and can be used to wedge against inflation
fluctuations. For example, suppose that market participant A wants to insure
herself against inflation fluctuations for holding a nominal asset for a period
of five years starting from now. She can enter a zero-coupon inflation swap
contract in the following terms: at the end of the five years, she receives the
actual change in the relevant inflation index, which in the euro area can be
for example the HIPC excluding tobacco, times the notional amount of the
contract. This exactly compensates her for the changes of opposite sign in
the real value of the nominal asset. At the same time, she pays the fixed leg
of the contract to counter-party B, which is determined using the fixed rate
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compounded for five years. Only one cash flow is exchanged at maturity, but
the position can be closed at any moment by selling the contract in the market.
The rate of the fixed leg of the contract is the expected inflation rate for the
next five years. In fact, B enters the contract only if she believes that the fixed
leg rate is going to be at least the actual inflation rate at maturity. On the other
hand, A enters the contract only if she believes that the actual inflation is going
to be at least the fixed leg rate. Of course there are additional effects involved.
In particular, because A is effectively wedged against inflation risk, B has to
be compensated through an inflation risk premium.

Using market-based inflation rate expectations, this article assesses the
co-movement between daily revisions in short- and long-term inflation
expectations using copulas, a special class of multivariate distribution
functions. The main advantage of using copulas lies in their simple
implications in terms of dependence of random variables, especially in the
tails of the distribution. This allows for an assessment of the degree with
which changes in long-term inflation expectations co-move with large swings
in short-term inflation expectations. Moreover, certain copulas allow one to
distinguish between upward and downward revisions in expectations.

Policymakers often mention that long-term inflation expectations are
“well-anchored”. However, this expression can mean different things.
Sometimes it refers to the fact that the level of expectations is hovering close
to a commonly accepted target level. On other occasions, the expression
simply asserts that revisions of short-term inflation expectations should not
per se imply revisions of long-term inflation expectations. One implication
of this is that revisions in short- and long-term inflation expectations should
not co-move significantly. The two meanings are not equivalent and have
distinct implications in terms of the suitable methods for investigating
whether inflation expectations are well-anchored. While the first focuses
on levels and calls for a more traditional time series analysis, the second
suggests using methods with an emphasis on correlation and co-movement,
and not necessarily keeping track of the level of the inflation expectations.
This article adopts the second type of approach. Moreover, special attention
is paid to large innovations in inflation expectations, as these are more
likely to represent fundamental changes in expectations than normal market
fluctuations of smaller magnitude.

In a world where the central bank is deemed credible by market
participants and with perfectly anchored long-term inflation expectations,
one would expect that large revisions of short-term inflation expectations
displayed little co-movement with large revisions of long-term inflation
expectations. For example, a sudden oil price drop implying a large revision
downwards of the short-term inflation expectations should not imply a
revision of the same magnitude (in relative terms) in long-term inflation
expectations.
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Likewise, if one observes large revisions in long-term inflation
expectations when there are large revisions in the short-term expectations,
then the idea that long-term inflation expectations are solidly anchored
becomes less obvious. In the limit, if one were to observe a one-to-one co-
movement between these two measures, surely inflation expectations would
not be anchored: they would be reacting immediately and significantly to
the same information that produced swings in short-term expectations, with
potentially highly disruptive effects in the effectiveness of monetary policy.

There is a relatively large literature on this topic which uses high frequency
data and focuses mostly on the effects of news on long-term inflation
expectations. This literature usually looks at the possibility of occurrence
of structural breaks in a context of regression analysis (see, for example,
Gürkaynak et al. 2010; Galati et al. 2011; Nautz and Strohsal 2015). In this
article it is assumed that news are incorporated both in short- and long-
term expectations but, if long-term inflation expectations are well-anchored,
the effect on them would be small, whereas the effect on the short-term
ones would be large. This should induce a low degree of co-movement
between inflation expectations at long and short horizons. Using estimated
copulas, it is shown that co-movement between changes in short- and long-
term inflation expectations increased since 2012. This is in contrast with
the absence of any significant co-movement in the previous low inflation
period of end-2009. Moreover, these effects are shown not to be an artifact
of the data, as simulations with random permutations of data eliminate them.
Tail dependence between revisions in short- and lagged long-term inflation
expectations persists but only for lags of one or two days, especially in the
most recent portion of the sample. Finally, different choices for short- and
long-term inflation expectations do not change the results in any meaningful
way. While noisy, the observed co-movement in large swings suggests an
increasing likelihood that long-term inflation expectations might have become
de-anchored.

Inflation expectations and co-movement

In this article inflation expectations are taken from zero-coupon inflation swap
rates. In terms of notation, average inflation prevailing from now until five
years from now, for example, is denoted by π5y0y, average inflation prevailing
from next year for the following three years is π3y1y, and average inflation
prevailing five years from now for the following five years is π5y5y. There are
restrictions among these values, and these restrictions allow one to compute
all relevant expectations based only on zero-coupon inflation swap rates. For
instance, if market participants are risk neutral in perfectly competitive and
frictionless markets, the equality (1 + π5y0y)

5 = (1 + π2y0y)
2(1 + π3y2y)

3 must
hold. Notice how the two zero-coupon rates can be used to estimate π3y2y.
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Another example: (1 + π5y5y)
5 = (1 + π4y5y)

4(1 + π1y9y) must hold. In this
article, the value of the short-term inflation expectation will be the expected
inflation one year ahead for one year (π1y1y), and the long-term inflation
expectation measure will be defined in the period five years ahead for five
years (π5y5y).

Data

Data are daily from Bloomberg and span the period from 22Jun04 until
17Feb15. Figure 1 presents the evolution over time of the two chosen variables,
π1y1y and π5y5y, as well as observed inflation at monthly frequency. Table 1
presents summary statistics of the levels and first differences of π1y1y and
π5y5y, along other variables (see below). The first differences correspond to the
daily revisions of long- and short-term inflation expectations and constitute
the focus of this article. Table 2 displays contemporaneous correlations among
these variables.

Variable Obs. Mean Std. Dev. Min. Max. Autocorr.

π1y1y 2781 1.787 0.504 0.293 3.751 0.978
π5y5y 2781 2.304 0.205 1.483 2.803 0.987
4π1y1y 2780 -0.001 0.105 -1.163 1.132 -0.418
4π5y5y 2780 0.000 0.033 -0.196 0.220 -0.267
x 2780 -0.005 0.999 -5.968 11.334 -0.065
y 2780 0.000 1.000 -7.368 5.507 -0.019
u 2780 0.500 0.289 0.000 1.000 -0.005
v 2780 0.500 0.289 0.000 1.000 0.028

TABLE 1. Summary statistics. Daily data for period 22Jun04–17Feb14. π1y1y and
π5y5y are market-based inflation rates one year from now during one year and
five years from now during 5 years, respectively, and 4π1y1y and 4π5y5y are first
differences; x and y are 4π1y1y and 4π5y5y filtered through an AR(1) process for the
conditional mean and a GARCH(1,1) for the conditional variance; u and v correspond
to the empirical quantiles of variables x and y, respectively. Values for π1y1y , π5y5y ,
4π1y1y and 4π5y5y in percentages, except autocorrelations. Values for x, y, u, v and
autocorrelations in natural units.

Sources: Bloomberg and author’s calculations.

From the summary statistics it is readily seen that, historically, short-
term inflation expectations have lower mean and higher volatility than long-
term inflation expectations. In first differences, this behavior carries through
for volatility but not for the mean, as expected. Level variables have strong
persistence. In first differences there is negative autocorrelation, suggesting
that increases in inflation expectations are often followed by corrections in the
next trading day. Contemporaneous correlation between revisions of short-
and long-term inflation expectations is only -0.007.
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FIGURE 1: Market-based inflation rate expectations and observed inflation. Daily data
for period 22Jun04–17Feb15. All values in percentage.

Source: Bloomberg.

4π1y1y 4π5y5y x y u v

4π1y1y 1
4π5y5y -0.007 1
x 0.761 0.047 1
y 0.028 0.915 0.094 1
u 0.681 0.049 0.893 0.088 1
v 0.024 0.857 0.089 0.931 0.097 1

TABLE 2. Correlation matrix. Daily data for period 22Jun04–17Feb14. See legend of
Table 1 for definitions of variables.

Sources: Bloomberg and author’s calculations.

Conditional tail dependence

The study of co-movement between two random variables X and Y can
be done in various ways. The first would be a simple correlation. This



Banco de Portugal Economic Studies 6

measure between −1 and 1 computes how X and Y co-move around their
respective means. Sometimes this measure is enough for one’s purposes.
For example, the co-movement between two gaussian variables can be fully
characterized by correlation. One problem with correlation as a measure of
cross dependence is the fact that zero cross correlation does not in general
imply independence. For example, the cross correlation between a random
variable and its square is zero but they are clearly not independent. This in fact
is a valid reason for not using correlation (or a linear regression coefficient) to
study essentially unknown dependence among variables. Another problem
with correlation is that it cannot be defined for certain distributions with
heavy tails, as often is the case with financial returns (for examples of such
distributions, see Resnick 2007).

An alternative way of studying co-movement between two variables is
conditional tail dependence, and this is the focus of this article. To understand the
notion of conditional tail dependence it is necessary first to define quantiles
of a random variable. Quantile k of a random variable X is the value such
that the probability of a random draw from X being less than or equal to that
number is k. For example, the quantile 0.5 of a random variable is its median,
and the interval defined by quantiles 0.025 and 0.975 is the 95% confidence
interval for that random variable.

The idea of conditional tail dependence is simple: take values of variable
X above a certain quantile k; compute the probability that the corresponding
values of variable Y are above Y ’s quantile k; take the limit as k goes to 1.
This is the so-called upper tail dependence. A similar measure can be computed
for lower tail dependence, but in this case the limit is taken when k goes to 0.
Intuitively, this amounts to measuring the co-movement of two variables whenever
either of them displays unusually large fluctuations.1

This measure can be computed given the cumulative joint distribution
function of the two variables, a function denoted by F . This function specifies
the probability that a random realization of the two variables has both
elements below the respective argument of F , so that for example F (2, 1) is
the probability that, in a random draw from the joint distribution of X and Y ,
the draw from X is lower than 2 and the draw from Y is lower than 1. The
marginal cumulative distribution is the cumulative distribution of one of the
variables unconditional on the other; for example FX(x) = F (x,+∞) would
be the marginal cumulative distribution of X .

One way to proceed would be to estimate some parametric form for
distribution F and then compute tail dependence. In practice, however, such
an estimation is difficult and suffers from frequent scale and domain problems
in terms of variables X and Y . An easier route to compute conditional tail
dependence is using copulas.

1. See Appendix A for formal definition of tail dependence.
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Copulas: intuition

Copulas are a special class of cumulative distribution functions; see Patton
(2006b) for the etymology of this designation and a rationale for the use of
copulas in practical applications, and Nelsen (2006) and Patton (2012) for
a detailed exposition of the theory and practical aspects of copulas. The
distinguishing features of a copula are two: first, its underlying random
variables are defined in the [0, 1] interval; second, its marginal distributions are
those of an uniform distribution. Using a copula involves specifying marginal
cumulative distribution functions of each random variable along with a
function (that is, the copula) that connects them. In this way, the researcher
can separate the modeling of the marginal distributions from the dependence
between the two variables. The copula specification implies a certain shape
for the dependence between the marginal distributions. In the case where the
copula is the product of the two marginal cumulative distribution functions,
the two variables are independent and one can separately estimate each
marginal. Otherwise, one can efficiently resort to the estimation of the joint
distribution using a copula. Since the copula captures dependence structures
for any shape of the marginal cumulative distribution functions,2 the copula
approach to modeling related variables can be very useful from an estimation
perspective.3

Data transformation

As with many distribution functions, copulas can be fitted to the data using
maximum likelihood methods. However, inflation rate expectations do not
necessarily have to lie on the interval between 0 and 1, as required by copulas,
nor do they exhibit temporally uncorrelated behavior. In order to clean up
data, in this analysis the original data, π1y1y and π5y5y, will be transformed
in three steps. First, the variables of interest (daily revisions) are obtained by
computing the first differences of the levels, yielding4π1y1y and4π5y5y.

Second, because the sole interest of the analysis is dependence between
variables, and to avoid spurious dependence stemming from persistence or
heteroscedasticity, the resulting variables are filtered through an AR(1) model
for the conditional mean and a GARCH(1,1) specification for the variance
(for a similar approach, see for example Christoffersen et al. 2012). This yields
standardized daily revisions in inflation expectations x and y, respectively for
4π1y1y and4π5y5y.

2. In fact, the dependence between the two distributions is, using a copula, invariant to
monotonic transformations of the two random variables.
3. For a brief exposition of basic copula theory, as well as the notion of a dynamic copula, see
Appendix B.
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Third, standardized daily revisions in inflation expectations are mapped
into numbers between 0 and 1 so that the resulting variables can be used to
fit a copula. This is done through the computation of an empirical marginal
cumulative distribution function. More specifically, take the time series of,
say, the standardized revisions in inflation expectations one year ahead for
one year, that is, the collection {xt}t=1,...,T . Then there is a certain empirical
marginal cumulative distribution function F̃X so that ut = F̃X(xt). (This
function is an empirical, non-parametric counterpart to FX .) Do a similar
procedure for the long-term inflation expectations, y. Figure 2 represents the
two empirical distribution functions. Variables u and v thus obtained are by
construction approximately uniformly distributed.
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FIGURE 2: Empirical cumulative marginal distribution functions of x and y, the
revisions of inflation expectations 1y1y and 5y5y standardized through applying an
AR(1) conditional mean model and a GARCH(1,1) conditional variance model to the
daily revisions of level variables.

Sources: Bloomberg and author’s calculations.

Figures 3 and 4 present the daily innovations in inflation expectations,
the standardized series and the uniform variables for the two variables of
interest. Notice that there is substantial heteroscedasticity in both4π1y1y and
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4π5y5y, even though the latter exhibits less volatility, as previously seen.
Heteroscedasticity is effectively removed by applying the filter mentioned
above in both variables. Finally, the uniform transformations of x and y exhibit
the expected behavior. Figure 5 shows a detail (observations during 2014) of
the evolution of x and y.
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FIGURE 3: Evolution of 4π1y1y , x and u. See legend of Table 1 for definitions of
variables.

Sources: Bloomberg and author’s calculations.

Going back to Tables 1 and 2, it can be seen that autocorrelation is mostly
removed through the application of the AR(1) and GARCH(1,1) filters to the
first differences of inflation expectations. Moreover, revisions of short- and
long-term variables display relatively low contemporaneous correlation: the
highest is u with v (0.097).

Results

The analysis consists of estimating several types of copulas in rolling windows
of roughly one year, at the beginning of each quarter, and computing the
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FIGURE 4: Evolution of 4π5y5y , y and v. See legend of Table 1 for definitions of
variables.

Sources: Bloomberg and author’s calculations.

implied tail dependence. The estimated copulas differ in their parametric
functional forms and, hence, in their characteristics in terms of symmetry and
tail dependence.4 A set of additional exercises and tests was also conducted
but will only be briefly mentioned here.

Before looking at the evolution of tail dependence, a selection procedure
was followed in which several different copulas were estimated. See Trivedi
and Zimmer (2005) and Patton (2004, 2006a,b) and references therein for full
descriptions of each copula. Table 3 summarizes the results. The ranking
criterion was the number of times a copula is the best performer in each of the
39 quarters of the sample as measured by the value of its likelihood function.
Under this criterion, the Student’s t copula is the best performer, followed by

4. See Appendix B for a parametric example of a copula and references therein for full
descriptions of copulas used in this section.
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FIGURE 5: Evolution of x and y during 2014. See legend of Table 1 for definitions of
variables.

Sources: Bloomberg and author’s calculations.

the Normal, the Symmetrized Joe-Clayton (SJC), the Gumbel and the Rotated
Gumbel.

At the beginning of each quarter, a copula was estimated using the
available data of the previous 350 calendar days. The results are presented
in Figures 6–8. The shaded areas are 90 percent confidence bands obtained
through a bootstrap procedure (see Patton 2012). Looking at the results of
Student’s t copula (Figure 6), two features stand out. First, tail dependence
is a noisy measure. The results are noisy and this volatility of the measure is
still visible in the quarterly estimations reported in the figure.

The second salient aspect is that tail dependence increased markedly
towards the end of the sample. The start of the increase in tail dependence
can be traced back to 2012. The average tail dependence until 12Q3 was 0.011,
and from 12Q4 on was 0.138. This is in stark contrast with the absence of
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Copula Tail dependence # of quarters in
which it was
best

Student’s Yes, symmetric 20
Normal No 9
Symmetrized Joe-Clayton (SJC) Yes 7
Gumbel Yes, upper tail 3
Rotated Gumbel Yes, lower tail 0

TABLE 3. Ranking of estimated copulas according to the number of quarters that each
copula performs the best.

Source: author’s calculations.

any significant tail co-movement during the low inflation period of end-2009,
when a fall in oil prices induced a marked decrease in inflation.

The figure also depicts the correlation parameter.5 While at first tail
dependence is fairly small, there is a period when, while there is correlation
between the two series, the distribution becomes approximately Normal
and no tail dependence occurs. After that, in 12Q4, tail dependence starts
increasing consistently.

Among the copulas displaying tail dependence, the second best performer
is the SJC copula and from the results depicted in Figure 7 one can see that
upper tail dependence was higher than lower tail dependence during most of
the sample. This means that large positive revisions in short- and long-term
inflation expectations were more likely to be associated than large negative
revisions. Towards the end of the sample (14Q2) lower tail dependence
increases markedly. It should be noted that, since highly volatile data are being
used, the distinction between upward revisions and downward revisions is
not so clear-cut as with, say, quarterly data. Indeed, even when there seems to
exist a secular trend to lower inflation, when one looks at longer spans of time
(like, for example, during 2014 in Figure 1) daily filtered data still looks like
white noise (see for example the filtered series in Figure 5), as expected, and
there are as many upswings as there are downswings.

For the Gumbel copula, tail dependence decisively exceeds the 0.1 mark
from 12Q3 on, and climbs to 0.4 towards the end of the sample. The Rotated
Gumbel results are similar and hence not shown.

The Normal copula also performs well, although it has zero tail
dependence. That is not surprising because the Student’s t copula (which nests

5. Student’s t copula estimation involves two parameters: correlation and degrees of freedom.
When the estimated degrees of freedom of the copula become large, the copula converges to the
Normal copula and there is no tail dependence.
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the Normal copula as a particular case) has many degrees of freedom in many
quarters, and this makes it very similar to the Normal copula in those quarters.

FIGURE 6: Tail dependence using estimated Student’s t copulas at the beginning of
each quarter using data from the previous 350 calendar days.

Source: author’s calculations.

The general conclusion of the exercise is that the increase in tail
dependence is very sharp since late 2012.

Additional exercises

Three additional exercises were performed.6 The first is a robustness check
where the whole procedure is repeated with a random permutation of time
series {yt}t=1,...,T instead of the original series. The idea is to check whether
there are artifacts of the data not related to co-movement that induce tail
dependence. Given that the permutation should destroy all the time and cross
dependence, one should observe essentially no tail dependence between the

6. Detailed results available upon request.
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FIGURE 7: Tail dependence using estimated Symmetrized Joe-Clayton copulas at the
beginning of each quarter using data from the previous 350 calendar days.

Source: author’s calculations.

two variables. Indeed, the results show very low tail dependence throughout.
The tail dependence parameters are found to be essentially zero. The second
exercise was to perform the analysis with lags of one day and five days
(which for this data set is one week) in variable y. The results for a 1-day lag
display co-movement, although at a smaller level than the original estimates
and concentrated in the final part of the sample. The co-movement dies out
very fast and at a one-week lag it essentially has disappeared. All in all, this
exercise suggests that there is time tail dependence at very short lags. The
third exercise was to perform the analysis with different measures of short-
and long-term inflation expectations, such as π2y1y and π3y5y. The results,
however, remain essentially unaltered.

Concluding remarks

This article addresses the question of co-movement between revisions of
short- and long-term inflation expectations. In particular, it focuses on a
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FIGURE 8: Upper tail dependence using estimated Gumbel copulas at the beginning
of each quarter using data from the previous 350 calendar days.

Source: author’s calculations.

measure called tail dependence, which looks at the probability that the two
variables co-move when relatively large changes occur in one of them. Under
the particular interpretation that inflation expectations are well-anchored
when large innovations in short- and long-term inflation expectations do
not co-move, this article shows that the case for well-anchored inflation
expectations is not as strong since mid-2012 as it was before. This result is
robust to different definitions of short- and long-term inflation expectations
and does not seem to be an artifact of the data, produced for example by
persistence or heteroscedasticity, and rapidly fades away when the data are
not synchronous. Further work would include investigating the possibility of
structural breaks in tail dependence in the context of copulas, and assessing
the direction of causality, if any, in co-movement.
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Appendix A: Tail dependence

In this article, attention is restricted to the bivariate case; in most instances the
theoretical generalization to the m-dimensional case is straightforward. It is
useful to provide some theoretical background. Given two random variables
X and Y , define the joint cumulative distribution function F as:

F (x, y) = Pr{X ≤ x and Y ≤ y} . (A.1)

In order for F to qualify as a cumulative distribution function, it has to fulfill
certain requirements. Intuitively, it is clear that F has to be 0 if any of its
arguments is below the lowest value that the respective random variable can
attain; it has to be 1 if all its arguments are higher than the highest value that
each random variable can attain; and it must assign a non-negative value for
the probability of any rectangle in its domain. Formally, these ideas would be
expressed as limx→−∞ F (x, y) = 0 (and similarly for y), limx,y→+∞ F (x, y) = 1,
and F (x1, y1) + F (x2, y2) − F (x1, y2) − F (x2, y1) ≥ 0 for any (x1, y1) and
(x2, y2).

The one-dimensional margins are defined as FX(x) = limy→+∞ F (x, y)
and FY (y) = limx→+∞ F (x, y). Let xk denote quantile k of variable X , that
is, the value of x that solves equation FX(x) = k, and similarly for y.7 The
conditional upper tail dependence is defined as

λU = lim
k→1

Pr{y > yk|x > xk} . (A.2)

Similarly, it is possible to define the lower tail dependence λL taking the limit
as k goes to zero and reversing the inequalities.

Appendix B: More about copulas

The first important characteristic of a copula is that its underlying random
variables are defined in the [0, 1] interval. The second important characteristic
is that the copula’s marginal distributions are uniform. Copulas are relevant
because they connect multivariate distributions to their one-dimensional
margins. Under pretty standard regularity conditions, a theorem due to
Sklar (1959, 1973) states that there exists a copula C satisfying F (x, y) =
C(FX(x), FY (y)). In other words, any bi-dimensional cumulative distribution
function can be decomposed into its marginal distributions and a copula.
Moreover, the latter completely characterizes the dependence between the two
variables. If the marginal cumulative distribution functions are continuous,
this copula is unique.

7. The conditional cumulative distribution functions are, in case F is differentiable,
FX|Y (x, y) = ∂F

∂y
(x, y) and FY |X(x, y) = ∂F

∂x
(x, y).
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One important consequence of this is that using the inverse of the marginal
cumulative distribution function of X , F−1X , to transform a uniformly
distributed variable in [0, 1], U , yields a variable that is distributed according
to FX . The same happens for Y and a uniformly distributed variable V in
[0, 1]. Therefore, (FX(x), FY (y)) has copula C as its cumulative distribution
function, and (F−1X (u), F−1Y (v)) has F as its cumulative distribution function.
Because order relations in equation (A.2) are maintained between (x, y)
and the corresponding uniformly distributed values (u, v), conditional tail
dependence occurring for F will also occur for C.

Copulas turn out to be especially useful because tail dependence can be
easily computed from their functional forms. Moreover, their domain fits
nicely to the language of quantiles and percentiles necessary to study co-
movement. There are a few notable copulas, some of which will be used in
the body of this article. See Trivedi and Zimmer (2005) and Nelsen (2006) for
a thorough exploration of different copulas and their properties. It is enough
here to give just one example, which will be the Gumbel copula. Its expression
is

C(u, v) = exp

(
−
(
(− log(u))θ + (− log(v))θ

) 1
θ

)
, (B.1)

where θ ∈ [1,+∞]. If θ is 1, the copula collapses to C(u, v) = uv, which is
the case where variables are independent. If θ goes to +∞, then C(u, v) =
min{u, v}, which corresponds to maximum dependence; this would imply
correlation 1 between the two variables. This copula does not exhibit lower
tail dependence, which may or may not be an obstacle to its utilization,
but in turn can display arbitrarily large upper tail dependence. If one is
interested in focusing on the co-movement between large upward revisions
of short-term inflation expectations and long-term inflation expectations, then
a Gumbel copula would be appropriate.8 The formula above also allows for
the computation of the upper tail dependence as expressed by equation (A.2);
the result is λU = 2− 2

1
θ . As θ approaches 1 upper tail dependence approaches

0, which means no dependence; as θ approaches +∞ upper tail dependence
approaches 1, which means full correlation between the upper tails of the two
variables. Figure B.1 provides a visual representation of the Gumbel copula
for several levels of tail dependence: θ equal to 1, 1.3, 2.5 and +∞, which
entail upper tail dependence of 0, 0.3, 0.68 and 1, respectively. Several of the
typical characteristics of copulas are evident. First, the marginal distributions
are uniform, as can be seen from the straight line segments connecting (1,0,0)
to (1,0,1), and (0,1,0) to (0,1,1). Second, as tail dependence increases from
the independence case (θ = 1) to the full correlation case (θ → ∞) the iso-
probability curves (the “level curves” in the copula graph) go from hyperbolas

8. In fact, it is also possible to study lower tail dependence using the so-called Rotated Gumbel
copula, whose expression is that in (B.1) with the arguments replaced by 1− u and 1− v.
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(with equation k = uv) to two segments connected at right angles at points
such that u = v.

FIGURE B.1: Gumbel copula for several values of θ.

Source: author’s calculations.

A last topic in terms of copulas concerns dynamic copulas. Dynamic
copulas were first introduced by Patton (2006b) and are essentially the same
as static copulas except that a subset of, or all, the parameters governing
dependence is allowed to change over time. Patton (2006a), Braun and Grziska
(2011) and Oh and Patton (2013) provide examples of dynamic copulas. The
way in which parameters evolve over time is somehow arbitrary. Several
dynamic copulas were also estimated for the data used here. The results do
not differ significantly from those reported in this article and are available
from the author upon request.


