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Abstract
For the most important variables in the Portuguese Household Finance and Consumption
Survey (ISFF), missing data is imputed using a stochastic multiple imputation algorithm, as
agreed in the Household Finance and Consumption Network of the Eurosystem (HFCN). This
paper describes the implementation of this methodology in the ISFF. The objective is to get
interested readers, namely data users and other producers of survey data, acquainted with one
of the most complex and time-consuming stages of the data preparation.
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1. Introduction

This paper describes the imputation process developed for the third wave of
the Portuguese Household Finance and Consumption Survey (ISFF, the Portuguese
acronym for Inquérito à Situação Financeira das Famílias). This survey collects
household-level information about real assets and their financing, other liabilities
and credit constraints, private businesses, financial assets, intergenerational
transfers and gifts, consumption and saving. It also gathers individual-level
information on demographics, employment, pension entitlements, and income.
The ISFF is part of the Household Finance and Consumption Survey (HFCS),
a project developed by a network of the Eurosystem, the Household Finance and
Consumption Network (HFCN), which aims at gathering harmonized micro-level
information on households’ finance across the euro area. The survey is carried out
at country level, through national surveys, but countries are required to collect a set
of harmonized variables, using common methodological principles, namely about
the treatment of missing data.

One of the common difficulties among wealth surveys is non-response. When
reporting complex and sensitive issues such as real and financial assets, debt,
income and consumption, inevitably some respondents are reluctant, unwilling or
unable to provide all of the requested information. This leads to both unit and
item non-response. Unit non-response refers to cases where a household refuses to
participate in the survey. Item non-response corresponds to situations where the
household accepts to participate in the survey, but does not report all of the required
data. In either case, non-response patterns are not likely to be random. There are
characteristics of the households that affect the likelihood of not answering some
questions or even the whole survey. Ignoring the presence of missing data in the
analysis of survey data can lead to misleading conclusions.

Unit non-response can be addressed by oversampling households with higher
non-response rates, by the replacement of non-responding households or simply by
correcting the final sample weights, taking into account non-response patterns. In
the ISFF, unit non-response is addressed by oversampling richer households (which
usually have higher non-response rates), and correcting the final sample weights.

There is also a variety of approaches to deal with item non-response, which is the
object of this paper. Sometimes interviews that have missing values in at least one
variable are merely discarded. Inference based on data subject to this procedure will
only be unbiased under the strong assumption of Missing Completely at Random
(MCAR), i.e., if missing observations are independent of both observable and
unobservable characteristics of households.

An alternative solution is to impute the missing values, which consists on
assigning a value to each observation that is missing. In the ISFF, as agreed
in the HFCN, item-non response is treated using stochastic multiple imputation
techniques. These techniques were developed by Rubin (1987) and are applied, for
example, in the Survey of Consumer Finances (SCF) of the Federal Reserve Board.
This method takes into account observable determinants of non-response and
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thus only needs to assume that non-response is independent of the unobservable
household characteristics, i.e., it assumes the data is Missing at Random (MAR).

As referred in Rubin (1996), the main objective of this method is to provide the
tools for valid statistical inference, as opposed to optimal point prediction. This
means that the main objective of stochastic multiple imputation is not to replace
missing data by values that best fit the variables of interest, but to preserve the
characteristics of their distribution and the relationships between different variables.
In fact, as opposed to stochastic imputation methods, the deterministic methods
(for instance, methods that replace the missing values with means or medians or
with other predictions obtained from a simple regression), do not preserve the
characteristics of the joint distributions of variables, undermining the validity of
statistical inference. Additionally, multiple imputation (i.e., the existence of several
imputed values for each missing observation) allows to take into account the
imputation uncertainty in statistical inference. As explained in Barceló (2006) and
Barceló (2008), multiple stochastic imputation has the advantage, compared with
single stochastic imputation, of taking into account not only the within-imputation
variance of the statistics, computed using a single imputed data set, but also the
between-imputation variance due to the uncertainty about the imputed values.
Thus, it avoids situations of erroneous statistically significant results.

The aim of this paper is to deliver a detailed description of the procedures
entailed to impute the third wave of the ISFF, while attempting to provide
approachable examples of the different steps undertaken.

Section 2 discusses the general features of multiple imputation. Section 3
describes characteristics of the ISFF that are relevant for imputation. Section 4
analyses a set of indicators of non-response. Section 5 gets the reader acquainted
with the Federal Reserve Imputation Technique Zeta (FRITZ) software package,
which is used to implement the multiple imputation techniques in the ISFF. Section
6 illustrates the imputation algorithm used. Section 7 reviews the data preparation
procedures. Section 8 describes the data structure and presents some examples
to motivate the operational decisions concerning imputation. Section 9 shows
the criteria for covariate selection and imputation order. Section 10 describes the
evaluation of the imputation models and results. Section 11 concludes.

2. General features of imputation in the ISFF

Imputation consists on assigning a value to an observation that is missing in the
dataset. Ideally, all survey variables should be imputed. Nevertheless, given time
and computational restrictions which exist at country level, the HFCN agreed on a
minimum set of variables that should be imputed by all countries. In the ISFF, the
set of imputed variables includes not only the agreed minimum set, but also almost
all the remaining monetary variables and other variables that were considered to be
important for the imputation process. In the third wave of the ISFF, 317 variables,
out of 545 variables with missings in total, were imputed, of which 139 correspond
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to monetary variables, 75 to binary variables, 21 to categorical variables and 82 to
other type of numerical variables.

In general terms, the stochastic multiple imputation technique used in the ISFF
has the following characteristics:

– The process involves the estimation of models for the variables with missing
observations, using as much information as possible. This means that the
methodology follows the broad conditioning approach, in which ideally one
should include all the variables in the dataset as covariates in the estimation
models;

– The process is sequential, which means that imputed values for one variable
are used in the imputation of the following ones;

– The imputation process is iterative, so that the whole imputation sequence is
repeated, based on the values obtained from the previous iteration, as many
times as necessary until the process converges;

– The process is stochastic, since there is a randomization process applied to the
point estimates obtained from the imputation models;

– The imputation is multiple, which means for every missing observation there
will be five imputed values (five implicates) as established in the HFCN1;

This technique, which was proposed by Rubin (1987), draws its theoretical
framework from the Expectation Maximization algorithm and Gibbs sampling.2

Proposed by Dempster et al. (1977), Expectation Maximization is defined as
an iterative method to find maximum likelihood estimates of the model parameters
in the presence of missing data. Using observed data, Expectation Maximization
computes starting values of the model parameters to simulate the distribution
of the missing values. Then, it uses the collected information along with the
previously simulated values to adjust parameter estimations. This deterministic
process proceeds iteratively until the estimates are close to a fixed point. Gibbs
sampling, or stochastic relaxation, described in Geman and Geman (1984), can be
used to apply the Expectation Maximization intuition to complex data structures.
It is a Markov Chain Monte Carlo algorithm that simulates the distribution of
variables, conditional on observed data and simulated distributions of preceding
variables within the same iteration. Geman and Geman (1984) show that the
process converges under regularity conditions and the simulated distribution of
missing data iteratively draws closer to the true latent distribution.

Multiple Imputation, described in Rubin (1987), aims to reflect the uncertainty
about the true imputation and non-response models in the statistical inference.
This is accomplished through an additional source of variability, in the form of

1. According to Rubin (1976), this number of implicates is a reasonable compromise between
potential estimation efficiency gains from having an additional implicate and the corresponding
computational burden
2. See Kennickell (1991), Kennickell (1998) and Barceló (2006) for a more detailed review of
imputation theory.
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multiple stochastically imputed values (implicates) for each missing observation in
a dataset. These values are computed by adding a stochastic shock to the point
estimates obtained from the imputation model. Multiple imputation provides an
honest picture of the limited knowledge about missing data and avoids situations
of erroneous statistically significant results. 3

3. Survey characteristics relevant for the imputation process

This section describes the technical characteristics of the ISFF that have
implications for the imputation process.

Variable types

According to their type of information, the survey variables can be classified in
four groups:

– Household-level (H) variables: provide information about the household as a
whole, containing mostly data related with assets, liabilities, consumption and
intergenerational transfers and gifts;

– Person-level (P) variables: yield information for each individual with at least
sixteen years old, referring to employment, income and pension rights;

– Demographic-related (R) variables: information for every individual related with
demographic aspects (e.g., age, gender, marital status);

– Sample (S) variables: include information about the sample and contacts made
by the interviewers (e.g., number of contacts, dwelling rating, dwelling outward
appearance);

In the imputation process, not only the collected survey variables are used, but
also some derived (D) variables, which are calculated from the collected variables.

Relative to their format, variables can either be:

– Numerical: monetary values, years, interest rates, number of units;
– Binary choice: yes/no;
– Categorical: e.g. education level, employment status, loan purpose;

The existence of all these different types of variables has implications for the
imputation process. For example, the existence of variables at the household and
person-level implies the need to use a special data structure, as will be described
in Section 8. Different data formats imply the need to use different imputation
models, as will be described in Section 5, and different variable transformations,
as described in Section 7.

3. See Zhu and Eisele (2013) for analysis of Multiple Imputation vs. other imputation methods.
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Logical tree: parent-child variable relationship

The design of HFCS has a built-in hierarchical and logical relationship between
variables, which determines the questions that are made during the interview.
Variables standing in the beginning of each logical tree, called parent variables must
be replied by all households, regardless of the answers to previous questions. In the
branches of the logical trees there are child variables, whose response is conditional
on the value of one or more parent variables. Some child variables may also have
their own branches in a multi-layered flow. The imputation routine must account
for this highly stratified relationship between variables, by defining an imputation
sequence were parent variables are always imputed before the corresponding child
variables.

HB0300

HB1000

HB2300

HB1010

HB0300=1 or HB0300=2

HB0300=3

HB1000=1

Figure 1: Logical tree example

In the simplified example of Figure 1, the branch starts with HB0300, which is a
categorical variable about Household Main Residence (HMR) tenure status. If the
household’s response equals 1, "own all", or 2, "own part" the interview proceeds
to HB1000, a binary variable about the existence of loans using HMR as collateral.
If the household has any of those loans (HB1000=1), the next question (HB1010)
is about how many are there and then the questionnaire proceeds on that branch,
collecting further loan information.

However, if the HMR is rented (HB0300=3), the questions of the HB1000
branch will be skipped, because they are not applicable to that household. In this
case, the household will be asked about the monthly amount paid as rent (HB2300).

Suppose HB1000 is applicable, but the household does not respond, either
because it is unwilling to or simply does not know the answer. If so, HB1000 will
be missing and its child variables (such as HB1010) will be also missing due to
higher order missing.

For the imputation routine, it is very important to distinguish the non-applicable
cases from the missing values, since only the latter have to be imputed. Additionally,
it is important to distinguish the first order missings from the missings due to higher
order missing. One of the roles of the flag variables presented later on in this section
is to make this distinction easier.
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Variable bounds

The variables in the ISFF might have three different types of bounds, which
have to be taken into account simultaneously in the imputation process, in order
to ensure the imputed values comply with them. First, the survey variables have
upper and lower absolute values bounds for acceptable responses (e.g., age must
not be lower than zero, the percentage of business ownership must not be greater
than one hundred percent).

Second, monetary variables may also have bounds reported during the interview.
When asking questions about monetary items, the respondent often does not know
the exact answer or does not want to provide a point value. In those cases there is
the possibility of answering with a range of values.

Finally, in ISFF, survey responses must also comply with critical validation rules,
which are variable relationships that must hold, in order to ensure their consistency
(e.g., the number of years an individual has worked cannot be greater than its
age; the household cannot have become the owner of its main residence before
the oldest person in the household was born). The enforcing of these rules is done
through dynamic bounds, which are bounds that depend on the values of other
variables.

Flag variables

One of the most important pieces of the imputation puzzle is the information
about the origin of the variables’ content, which is provided by flag (F) variables.
Each collected survey variable has its corresponding F variable. There are many
different flag values in the ISFF.4 Nevertheless, as far as imputation is concerned,
flags can be classified in three categories:

– 0: inapplicable (filtered) cases;
– 1000 ≤ flag value < 2000: missing values;
– other flag values: non-missing values;

The flags of the missing values identify observations to possibly be imputed and
correspond to the following cases:

– 1050: don’t know;
– 1051: no answer;
– 1052: higher order missing (missing due to don’t know or no answer in a parent

variable);
– 1053: value collected in range;
– 1054: value deleted (considered incorrect or unreliable);
– 1057: value not collected due to a software or interviewer error or to editing of

parent variable.

4. More information about flags can be consulted here.

https://www.bportugal.pt/page/inquerito-situacao-financeira-das-familias
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The different flags values for the missing cases have different implications for the
imputation process. Flag values 1050, 1051 and 1053 have always to be imputed.

Observations with flag value 1052 are imputed conditional on the imputation
outcome of the corresponding parent variables. Taking the example in Figure 1, if
HB1000 is imputed with a value of 1, HB1010 will be imputed as well. If HB1000
is imputed with value 2, HB1010 will become inapplicable.

Finally, flag values 1054 and 1057 can both refer to first order missing or to
higher order missing. This happens because, once one observation is missing and
has a flag value 1054 or 1057, all the child variables also become missing with the
same flag.

Table 1 shows the flag value proportions calculated as a percentage of the total
number of observations to be imputed. Most of the observations to be imputed are
associated with monetary variables reported in ranges (flag value 1053), either for
H or P variables. The cases where the respondent does not know or is unwilling to
provide an answer (flag values 1050 and 1051, respectively) account for almost one
third of the total missing values. The proportion of missings due to higher order
missings (flag value 1052) is lower for H variables. The sum of flag values 1054
and 1057 corresponds to less than two percent of the total number of observations
to be imputed.

1050 1051 1052 1053 1054 1057 Total

All variables 27.26 4.16 8.00 58.82 0.53 1.23 100
H 28.72 2.84 4.62 62.05 0.44 1.33 100
P 22.57 8.36 18.78 48.56 0.83 0.90 100

Table 1. Flag values in percentage of the total number of observations to be imputed

4. Item non-response in ISFF

The amount of missing information in each variable of the database has a great
influence in the imputation process, since it impinges on the specification of the
imputation models and also on the imputation sequence.

One of the difficulties of calculating item non-response rates is related to the
treatment of higher order missing cases. Their status is undetermined, meaning that
before the imputation of the parent variables it is not possible to know whether
these cases are not applicable or missing.

Additionally, when calculating non-response rates, it is also important to take
into account that missing cases where the value was reported in range differ
fundamentally from other types of missings. The narrower the interval reported
by the household, the more precise and accurate the imputation will be.

Table 2 illustrates item non-response rates (proportion of missing over
applicable cases) for selected aggregates, in order to provide a broad picture of
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missing data in ISFF. The bottom of the table includes non-response rates for
some variables to illustrate the variety of cases that had to be addressed during
the imputation process.5 Non-response rates for a set of variables are the sum of
the number of missings, over the sum of the number of total applicable cases in
each variable. See the non-response rate for n H variables, nrh:

nrh =

∑n
i=1 #misshi∑n
i=1 #caseshi

=
#missh
#casesh

(1)

(1) (2) (3) (4) (5) (6) (7)

All variables
H 1.6 3.8 1.3 4.1 3.9
P 2.5 4.4 0.9 3.0 2.6
R 0.0 0.0 0.0 0.0 0.0

Binary variables
H 0.1 0.6 0.1 0.2 0.1
P 0.4 0.8 0.4 0.6 0.5

Monetary variables
H 5.9 21.8 69.2 5.9 21.8 21.4 69.2
P 5.7 22.7 58.5 5.6 22.0 20.1 61.5

Includes non-imputed? Y Y Y N N N N

PE0100A: Main labour status 0.2 0.2 0.2 na
HC0901: Non-collateralised loan i-rate 46.6 47.2 47.1 na
PG0110: Gross annual employee income 3.5 16.7 16.6 76.9
PG0410: Gross annual income from OPPP 5.7 41.0 18.6 56.3
HB0900: Current price of HMR 7.4 26.6 26.6 71.9
HD0801: Business value 22.3 47.0 47.0 48.1
HB2100: Money owned other HMR loans 0.0 52.9 0.0 0.0

(1), (4): #F [1050]+#F [1051]
#F [6=0] ;

(2), (5): #F [1000,2000[
#F [6=0] ;

(3), (7): #F [1053]
#F [1000,2000[ ;

(6): #F [1000,2000[
#F [6=0] , excluding the ex post non-applicable cases;

Table 2. Item non-response rates (%)

Column (1) shows the non-response rate including as missings only the cases
where the respondent does not know or is unwilling to provide an answer, which
correspond to flag values of 1050 and 1051, respectively. Column (2) treats every
observation with flag value between 1000 and 2000 (including values collected in

5. S variables are not imputed and so they are excluded from the calculation of non-response
rates.
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ranges) as missing. Thus, (1) and (2) are respectively the lower and upper bounds
of the many different non-response rates that may be computed. Column (3) shows
the proportion of missing values identified in (2) that are actually values collected in
ranges. Columns (4) and (5) display the same indicators as (1) and (2), respectively,
excluding all the variables that were not imputed but were eligible for imputation
(had some form of missing or range-reported value).6

Column (6) was inspired in Zhu and Eisele (2013) and presents non-response
rates based on the imputed data. Only after imputation it is possible to know if the
higher order missing observations were actually missing, or non-applicable. This
will influence the non-response rates, since the more higher order missing cases
are deemed as non-applicable, the lower the non-response rate will be, because
those will be excluded from the missing counting. Therefore, while (4) and (5)
provide the ex ante lower and upper bounds for non-response, (6) shows its ex
post materialization.

Considering all survey variables, (1) and (2) show that H variables have lower
missing rates, on average, compared to P variables. R variables have no missing
information. Once non-imputed variables are excluded, the previously established
relationship between H and P variables is reversed, as seen in (4) and (5). Column
(6) shows that ex post non-response rates are close to their upper bound, meaning
that most of the higher order missing cases were considered to be applicable in the
imputation process.

As expected, binary variables have the lowest non-response rates among the
survey variable types. Respondents have no trouble and are willing to answer most
of the yes/no questions. Accounting for the filtering due to higher order missing in
this type of variables does not have a significant impact in the non-response rates,
since most logical trees start with a binary variable and those are seldom found in
deep branches. The latter also impinges on the decision to impute almost every
binary variable, which explains the similar results between columns (1) and (4).

A great number of respondents has trouble in providing monetary amounts,
either because they do not know or are unwilling to. Not surprisingly, monetary
variables have higher-than-average non-response rates, as reported in columns (1)
and (2). However, if values collected in ranges are treated as non-missing, the
upper bounds for non-response in column (2) decline to 6.7 and 9.4 for H and P
variables respectively.

Most of the monetary variables were imputed, which explains the similar results
for monetary variables in columns (1) and (4) and also in (2) and (5).

The bottom of the table shows variables that were imputed, so data is presented
in columns (4) to (7).

The first variable, PE0100A (main labour status), illustrates a relatively simple
situation, as far as imputation is concerned: it stands on top of the logical tree,

6. Correspondence for column (3) was not presented, because all the monetary variables were
imputed, except for a small number of national P variables.
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meaning that it is unaffected by the survey filtering structure and only a residual
amount of respondents (0.2%) does not provide a valid answer. This should not
pose an imputation challenge. On the other hand, some variables such as HC0901
(non-collateralized loan interest rate) have a high non-response rate, as reported in
its ex ante lower and upper bounds in columns (4) and (5), respectively. Questions
about loans usually require the respondent to browse documentation and a fair
share of people has trouble answering some loan details.

Turning to monetary variables, PG0110 (gross annual employee income) has a
low non-response rate. Notice that the difference between 3.5% in the lower bound
and 16.7% in the upper bound is mainly driven by interval values. The upper bound
is actually 4%, not accounting for those values. However, some income variables
such as PG0410 (gross annual income from occupational and private pension plans)
have higher non-response rates and higher order missing cases, on top of a low
number of applicable cases.7

Despite being one of the main assets of most households, a non-negligible
proportion of respondents does not know how (or is unwilling) to price their main
residence (HB0900). The minimum of the non-response rates is 7.4%, in column
(4), and it has a high proportion of interval values. HD0801 (value of the main
business) illustrates monetary variables with high ex ante non-response rates, which
builds on the uncertainty about the imputation outcome.

The last case to be illustrated is related to variables that stand on the bottom
of long logical trees and are applicable to a very low number of households. This is
the case of HB2100 (money still owned on additional HMR loans), which applies
to households with more than three loans using the main residence as collateral.
The complexity of the filtering structure becomes apparent on the wide non-
response range (between 0% and 52.9%), which in this case turned out to be
the lower bound, given that all higher order missing values became inapplicable
after imputation.

5. FRITZ outline

In waves one and two of the ISFF, imputation closely followed the program
emir, which was developed by the ECB team for the HFCN and provides a baseline
for countries to impute their national surveys. The core of emir is based on FRITZ
(Federal Reserve Imputation Technique Zeta), the SAS program developed by
Arthur Kennickell to impute the Survey of Consumer Finances (SCF) in the US.
FRITZ was designed to impute the SCF using multiple imputation techniques and
Gibbs sampling methods, as described in Kennickell (1991) and Kennickell (1998).

In wave three of ISFF, emir was used as a starting point to create a more
flexible program. The new program still relies on FRITZ as the core of the multiple

7. PG0110 has close to 6000 applicable cases, while PG0410 has around 100.
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imputation routines, but enables the usage of the implemented algorithm and
data structure, which will be described in Sections 6 and 8, respectively. Arthur
Kennickell was also instrumental for the design of the current ISFF imputation
program and the conceptualization of the data structure.

Initially, FRITZ restricts the dataset to cases where the variable to be imputed
is applicable and to the variables chosen to be used as covariates. Then, it uses
the restricted dataset to compute a Sum of Squares and Cross Products (SSCP)
matrix or Conditional Frequency (CF) table, which contains all the information
required to estimate the parameters of the imputation models. Next, the program
identifies the observations that are going to be imputed, using the logical filter
of the variable to be imputed and its flag values. Notice that both the filter and
the flags must be used, since the flags alone do not suffice in the identification
of missing values in the higher order missing cases. Then, the program proceeds
sequentially for each identified observation, estimating the imputed values using
the observation-specific parameters computed from the SCCP (or CF) and applying
a randomization process.

Finally, the program updates the dataset with the imputed values and moves
to the next variable, repeating the whole process until all selected variables have
been imputed.

FRITZ provides three imputation models: continuous, binary and frequency,
which are suited for different variable types. Binary and frequency models are
used to impute binary response and categorical variables, respectively. All of the
remaining variables are imputed using the continuous model. Zhu and Eisele (2013)
provide a narrative description of FRITZ models, while Barceló (2006) takes a
formal approach. The remaining of this section illustrates the different types of
models by providing examples of the processes described above.

Continuous

For continuous variables, FRITZ relies on the linear regression model to impute
the missing observations. Suppose an imputation model is defined for a continuous
variable y using x1 and x2 as covariates. The linear regression model for y would
be described by equation (2):

y = α+ β1x1 + β2x2 + ε (2)

The program computes the 3x3 normalized SSCP matrix, using the subset of
observations where y is applicable:

SSCP = V AR(y) + ȳ2 COV (y, x1) + ȳx̄1 COV (y, x2) + ȳx̄2
COV (x1, y) + x̄1ȳ V AR(x1) + x̄21 COV (x1, x2) + x̄1x̄2
COV (x2, y) + x̄2ȳ COV (x2, x1) + x̄2x̄1 V AR(x2) + x̄22

 (3)
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Variances and covariances in SSCP cells are computed using SAS PROC CORR
default options, which proceeds with pairwise deletion when observations contain
missing values. PROC CORR includes all non-missing pairs of values for each pair
of variables in the statistical computations. Therefore, variances and covariances
reported may be based on different numbers of observations.

On the one hand, this procedure retains as much data as possible for estimation
of the linear regression parameters. Listwise deletion would severely reduce the
sample size, particularly in the first iteration, where covariates have the most
missing values. On the other hand, pairwise-calculated SSCP is not guaranteed to
be positive definite, which may result in pathological situations, such as a negative
variance of the estimation residuals σ̂2.

The linear regression parameters are computed using subsets of SSCP, according
to the non-missing covariates of each case to be imputed. This implies possible
different parameter estimations for each missing observation (i.e. for different
households).

Suppose a household i where x1 and x2 are non-missing. The vector of
parameter estimates β̂i will be given by:

β̂i = Σ(XX)−1i Σ(XY )i (4)

Σ(XX)i is a 2x2 matrix:

Σ(XX)i =

[
V AR(x1) + x̄21 COV (x1, x2) + x̄1x̄2

COV (x2, x1) + x̄2x̄1 V AR(x2) + x̄22

]
(5)

Σ(XY )i is a 2x1 vector:

Σ(XY )i =

[
COV (x1, y) + x̄1ȳ
COV (x2, y) + x̄2ȳ

]
(6)

This results in a β̂i 2x1 vector:

β̂i =

[
β̂1i
β̂2i

]
(7)

The linear projection of y for household i is obtained using β̂i and the values of x1
and x2:

ŷi = Xiβ̂i = β̂1ix1i + β̂2ix2i (8)

The stochastic process consists of adding a random noise term to the point
estimate ŷi. First, FRITZ computes the observation-specific variance of the linear
regression errors, σ̂i2:

σ̂i
2 = Σ(Y )′iΣ(Y )i − Σ(XY )′iΣ(XX)−1i Σ(XY )i,

Σ(Y )i =

 V AR(y) + ȳ2

COV (x1, y) + x̄1ȳ
COV (x2, y) + x̄2ȳ

 (9)
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The imputed value ˆimpi is given by:

ˆimpi = ŷi + drawi, draw ∼ N(0, σ̂i) (10)

The random value drawi is picked from a normal distribution with mean zero
and σ̂i standard deviation, in order to account for the uncertainty associated with
the estimation of imputed values. Lower regression standard errors contribute to
a narrower range of values between the different implicates. First, the program
searches the draw distribution, within a −1.29σ̂i < draw < 1.29σ̂i (80%) range,
for a value that is compatible with all of the bound restrictions (absolute, reported
and dynamic bounds). If it is unable to find such a value after 100 draws, the
program widens the search to the −1.96σ̂i < draw < 1.96σ̂i (90%) range. The
value is forced to the nearest bound if the program cannot hit an admissible value
after 100 more draws.

Notice that if x2 was missing for another household k, different subsets of
SSCP would have been used to compute the model parameters (a single beta, in
this case):

Σ(XX)k =
[
V AR(x1) + x̄21

]
,

Σ(XY )k =
[
COV (x1, y) + x̄1ȳ

]
,

Σ(Y )k =

[
V AR(y) + ȳ2

COV (x1, y) + x̄1ȳ

]
,

β̂k =
[
β̂1k
]

ŷk =β̂1kx1k

(11)

Finally, it is important to notice that the process described from equations (2)
to (10) is performed independently for each implicate. This means that the program
always computes a linear projection before adding the random noise term, which
differs from estimating ŷi beforehand and then obtaining the between implicate
variability by adding different random draws. In the current setup, ŷi can be
different across implicates, if the covariates have been previously imputed. This
ensures the information coherence for each variable in each implicate.

In the higher order missing cases, there can be situations where the child
variable is deemed as applicable in a given implicate and non-applicable for
another implicate. Thus, performing the imputation process independently for each
implicate ensures the consistency between the different variables. This makes the
process more burdensome, also.

Binary

The imputation of binary variables relies on a linear probability model, which
is relatively similar to the continuous model. The imputed value is obtained by
comparing draws from a uniform distribution with the predicted probability ŷi.
Adapting the example from the continuous case and taking the upper and lower



15 Imputation of the Portuguese Household Finance and Consumption Survey

predicted probability limits as 1 and 0, respectively, the imputed value ˆimpi will be
given by:

ˆimpi =

{
1, if drawi < ŷi
0, if drawi ≥ ŷi

, draw ∼ U(0, 1) (12)

If the predicted probability is very close to extreme values, (lower than 5% or
greater than 95%) FRITZ imposes that value and ignores the randomization, which
prevents uncanny random draws.

Frequency

The process for imputing categorical variables is similar to a hot-deck procedure.
It can be described as randomized imputation from a conditional frequency table.
For each categorical variable to be imputed, the program restricts the data to a
frequency table based on the dependent variable filter and the covariates chosen.
Only two covariates can be specified in the frequency imputation model.

The program computes a conditional frequency table of the variable to be
imputed based on the values of the specified covariates. Next, it extracts from that
table the observations with the same covariate values as the observation being
imputed. The imputed value is obtained from a random process applied to the
cumulative frequency distribution of those observations.

If the number of cases that match the covariate values of the observation being
imputed is smaller than a user-specified threshold, the program will proceed in one
of two ways, depending on the user specification.

If the user chooses not to collapse values, the program will consider only the
first covariate to look for a sufficient number of cases. If there are still not enough
observations, FRITZ will account only for the second variable. If it still does not
find enough cases, it will compute the unconditional frequency distribution of the
missing variable, meaning that the imputation will be independent of the covariates
specified.

If the user chooses to collapse values, the program will try to collapse adjacent
cells of the second classifying variable and then proceed as in the no-collapsing
case. Therefore, the specification of the covariate order is relevant in the collapsing
case. The second covariate should have an ordinal meaning (e.g., age satisfies this
criterion, while the household’s main residence tenure status does not).

In the randomization process, the program computes the cumulative frequency
distribution of observations with the same (or collapsed) covariate values as the
observation being imputed and then draws a value from a uniform distribution to
determine the position of the chosen value in the frequency distribution.

Suppose, for example, an imputation model for the level of education (PA0200),
using the main labour status (PE0100A) and age (RA0300) as the first and second
covariates, respectively. Consider that the program is imputing the implicate i of
PA0200 for a retired individual (PE0100A=5) with 56 years of age (RA0300=56).
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Table 3 shows the relevant part of the conditional frequency table computed for
PA0200:

PA0200 PE0100A RA0300 Frequency

3 7 48 40
5 3 48 30
6 5 48 55
6 5 48 30
1 5 55 30
3 5 55 55
4 5 55 20
2 5 56 25
2 5 68 5
3 5 68 35
1 5 85 5

Table 3. Conditional frequency table for PA0200

First, the program scopes the conditional frequency table for the peers of this
particular individual. There are 25 observations (row highlighted in green) that
match exactly its characteristics. If the minimum cell size required to compute the
conditional frequency distribution of PA0200 was lower than 25, the program would
proceed to the computation of the cumulative frequency distribution. Alternatively,
let us suppose the minimum cell size is 30 and the collapsing option is activated.

Since the cell size is below the required threshold, the program will collapse
the first adjacent "categories" of RA0300, which corresponds to all rows where
RA0300 equals 55 or 68 (highlighted in blue). In this case, the cell will have 170
observations.8

The program proceeds by computing the cumulative frequency distribution of
PA0200, based on the cell observations, as illustrated in Table 4.

PA0200 Frequency Relative
Frequency

Cumulative Rel.
Frequency

1 30 0.18 0.18
2 30 0.18 0.35
3 90 0.53 0.88
4 20 0.12 1.00

Table 4. Cumulative frequency distribution of PA0200

For the randomization process, FRITZ draws a random number from a uniform
U(0, 1) distribution and compares it with the cumulative relative frequency of

8. Notice that if the collapsing option was not activated, FRITZ would condition only on the first
variable, which would be equivalent to collapse all values of RA0300 where PE0100A equals 5,
leading to a cell size of 260 observations.
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PA0200. The imputed value corresponds to the first row where the cumulative
relative frequency is higher than the random draw. For example, if the random
draw was 0.05, 0.76, 0.14 or 0.29, the imputed value for PA0200 in implicate
i would be 1, 3, 1 or 2, respectively. Notice that the whole frequency imputation
process must be executed for each implicate, in order to ensure variable consistency,
as explained for continuous models.

6. Imputation algorithm

The examples illustrated in the previous section overlooked the fact that
multiple imputation is an iterative and sequential procedure. Each iteration is
a whole new imputation round, that builds from the results obtained from the
previous iteration, in order to impute the five implicates of each missing observation
all over again. This process should be repeated as many times as necessary until
convergence is achieved.9

Figure 2 illustrates the imputation process for the first two iterations.
Interpretation of further iterations is straightforward, as the process is similar from
the second iteration henceforth.

Output0 is the ISFF pre-imputation dataset.10 It is used as input (Input1) in the
first iteration. The first iteration differs systematically from the remaining, since
its purpose is to obtain initial values for the missing data. In the beginning of the
first iteration all values to be imputed will be empty, except for the range-reported
values which contain the midpoints of the respective intervals.

Input1 is the source for the calculation of the SCCP matrices (or CF tables,
for the frequency models). It is also being sequentially updated with the results
of the imputation process. Recalling equation (2) this means that, in the first
iteration, the estimations of β1 and β2 and the covariates x1 and x2 are based on
the same dataset, which is being updated throughout the imputation procedure.
In this iteration, both the estimation of the model parameters and the values of
the covariates are based on pre-imputation values as well as on the imputed values
obtained in this first iteration for the covariates that have already been imputed
(i.e. that have a lower order in the imputation list).

The sequencing of the variable imputation is particularly important in the first
iteration, since it impinges both on the parameter estimation, as well as on available
observations for the different covariates. Imputed observations are treated as if they
were non-missing for imputing the remaining variables.

After the imputation of all the variables in the imputation sequence, the results
of the first iteration are available in the Output1 dataset.

9. Section 10 provides an assessment of convergence.
10. Sections 7 and 8 describe the content and the structure of the pre-imputation dataset.
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Output0=Input1

Iteration 1

Input1SSCP

Imputation

Output1=Input2

Iteration 2

Input1SSCP

Imputation

Output2=Input3

Update

Update

Figure 2: Imputation algorithm

The main difference from the first iteration to the second (and onwards) is
that the dataset used in the previous iteration will be used as input (Input2) of
the SSCP matrices. Input2 will be used only to compute the imputation model
parameters and will not be updated with the results obtained during this iteration.
Those parameters will be used along with Input1 in order to calculate the imputed
values. Notice that at the beginning of each iteration Input1 contains only pre-
imputation data and will be sequentially updated with the imputation results of
the current iteration.

Recalling equation (2), this means that from the second iteration until the end
of the imputation process, β1 and β2 will be computed using pre-imputation data
and the imputed data from the previous iteration. By contrast, the covariates x1 and
x2 will always refer to the pre-imputation data, plus the imputed data during the
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current iteration. It immediately follows that after the first iteration, the estimation
parameters will no longer be directly affected by the imputation order, since their
computation will be based on the complete dataset obtained at the end of the
previous iteration. In other words, after the first iteration, the parameters of the
imputation models do not change during the imputation sequence and are only
updated at the end of each iteration.

One alternative would be to use the dataset currently being imputed also as
the source of the parameter estimations, in line with what happens during the
first iteration. Nevertheless, that leads to stability and convergence issues, which
are related with the fact that both the parameter estimates and the covariate
information is being modified during the imputation sequence of each iteration.

7. Data transformation

In order to properly implement the imputation algorithm, several
transformations have to be done to the data. This section motivates and describes
those changes.

Categorical variables

Categorical variables have different types of transformations depending on
their role as covariates, or as variables to impute. For their use as covariates,
it is necessary to compute dummies for the different classes. Additionally, in
some cases the categories were aggregated (e.g., foreign nationalities into EU and
extra-EU aggregates). This saves some degrees of freedom, while preserving the
relevant information. When categorical variables are imputed using the frequency
model, in most cases their original format is kept. As referred in Section 5,
one caveat of this model is that it does not allow the use of more than two
covariates. Such limitation can be overridden by using as covariates computed
variables that are the combination of two or more variables (e.g. age×education).
In the ISFF, the alternative strategy to overcome this limitation was to split some
important categorical variables and to impute them in two steps. As an example,
the categorical variable that corresponds to the main labour status (PE0100A),
was decomposed in a binary variable that disentangles the cases where individuals
are working from the remaining cases and in a categorical variable that includes the
labour status other than working. With this artifact, the first variable was imputed
with the binary model and only in cases where it was imputed that the individual
is not working it was necessary to use the frequency model in a second step.

Monetary variables

Monetary variables were converted to logs when only positive values were
allowed. When zeros were an admissible value, they were replaced by 0.1 and
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then a log transformation to that variable was applied. Concerning negative values,
variables were split into non-negative and negative parts and imputed separately.

Derived variables

Derived variables are calculated from the collected variables and typically refer
to household level information (e.g. total income, total debt, age of the oldest
person in the household). These variables were computed in order to be used as
covariates in the imputation models, because aggregates such as total income may
have a different meaning than each income component used separately. Moreover,
using aggregates as covariates also saves some degrees of freedom.

Dealing with inapplicables

FRITZ estimates the imputation models using pairwise deletion as described
in Section 5. With this procedure, if inapplicable cases are left empty, variances
and covariances are potentially calculated based on very different numbers of
observations, which can lead to the negative variance issues explained in Section
5, and ultimately restrict the choice of covariates used in each model. In order
to minimize this problem, in the pre-imputation dataset inapplicable cases were
filled with values that reflect their inapplicable nature. In the case of monetary
variables, inapplicable observations were filled with zeros. The same approach was
applied to variables related with the number of assets and liabilities (e.g. number
of vehicles, number of HMR collateralized loans). Additionally, most of inapplicable
binary variable cases were filled with its "no" equivalent, which is typically "2". For
example, if households do not own their main residence, the variable referring to the
possession of loans that use HMR as collateral will have a value of "2", instead of
empty. Similar procedures were applied to other variables on a case-by-case basis.

This approach of using variables with treated inapplicable cases as covariates
requires that the corresponding parent variables have to be included in the
imputation models, in order to ensure the distinction between inapplicables and
pre-imputation values.

Splitting person-level variables

Individuals within a given household have different characteristics and roles.
Thus, the imputation process is likely to benefit from distinguishing and specifying
different models for different types of individuals, provided that there are enough
observations to do so.

In the imputation process, person-level variables were split according to the
different types of individuals. Whenever there was enough observations, individuals
were split into three categories: "Representative Person" (RP), "Married to
Representative Person" (MR) and "Others" (O). Thus, for each person-level
variable (either P or R variables), three new variables were computed (e.g. PG0110
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will lead to PG0110RP, PG0110MR and PG0110O). The Representative Person is
the individual with more than 15 years of age, that the household considers as such.
Therefore, RP and MR will typically identify the main household couple. In the ISFF
dataset, the identification of the type of person is stored in the variable RA0100.
RP, MR and O correspond to the observations in the dataset where RA0100 equals
one, two and more than two, respectively.

Further fragmentation of the individuals by type would not be feasible, due
to problems associated with lack of observations. On the other hand, treating
everyone besides the main household couple in the same group may pool widely
heterogeneous individuals. In order to minimize this issue, RA0100 dummies were
included as covariates when imputing the individuals other than the main household
couple.

RA0100 dummies were also used as covariates in the cases where the low
number of observations prevented any split of the person-level variables. This
situation occurred mainly in pensions-related variables. 11

Dealing with mass points in the variables’ distributions

Interest rates and some monetary variables present very high frequencies of
zeros, while in percentage variables there are many reported values of 100 percent.
Additionally, some categorical variables such as labour status and business legal
form have a mass point in some categories.

The binary model was used in a preliminary stage to deal with these cases and
impute them separately. For this purpose, variables are split according to the mass
points of the original variables. For example, the percentage of the main real estate
property, other than the HMR, belonging to the household (HB2701) had more
than 85 percent of the applicable cases with a value of 100 percent. Thus, HB2701
was split in two variables in the pre-imputation dataset:

HB2701_1 =


1, if HB2701 = 100
0, if 0 < HB2701 < 100
missing, if HB2701 is missing

HB2701_2 =


HB2701, if 0 < HB2701 < 100
inapplicable, if HB2701 = 100 or HB2701_1 = 1
missing, if HB2701 is missing

(13)

The binary variable HB2701_1 is imputed firstly, using the binary model. If the
imputed value for HB2701_1 is equal to 1, then the imputed value for HB2701
is going to be equal to 100. Otherwise the imputation routine proceeds with the
imputation of HB2701_2 relying on the continuous model, whose outcome is going
to be a value greater than zero and lower than one hundred.

11. Section 8 discusses the integration of person-level variable splits in the dataset.
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All of the variable transformations described in this section were performed not
only in the pre-imputation dataset, but had also to be continuously updated during
the imputation procedure. For instance, after imputing a categorical variable in its
original format, all the dummy variables corresponding to that categorical variable
had to be updated, in order to be used as covariates in the imputation of the
following variables.

8. Data structure

In ISFF there are both household and person-level variables and ideally one
would consider all variables as covariates in the imputation of the remainder,
regardless of their type. However, such is not a realistic expectation due to data
and computational constraints. Nevertheless, it is possible to find a reasonable
compromise in order to achieve a properly imputed dataset. This section will
describe the dataset organization used in the imputation process in order to:

– Provide differentiated treatment of individuals within the same household;
– Use person-level information when imputing household-level variables;
– Use household-level variables when imputing person-level variables;
– Use other than self-person-level information when imputing person-level
variables.

Firstly the household and person-level variables were merged into a single
dataset in a longitudinal format (one row per person). In this format, the household-
level variables are repeated in each row for the individuals belonging to that
household, so that H variables can be used as covariates when imputing the data
of every individual. Then, person-level variables were split into RP, MR and O,
as described in the previous section, in order to have different covariates and
differentiated imputation models for each type of individual. Since there is only one
RP and a maximum of one MR per household in the third wave of the ISFF dataset,
the corresponding person-level variables can be treated as household-level variables
and thus made available for every row. Regarding O variables, the information for
these individuals is available only in their corresponding rows.12

Table 5 illustrates the ISFF dataset with the data structure described above.
SA0010 and RA0010 refer to the household and individual identifiers,

respectively. RA0100 provides the relationship of each person with the RP. In this
example, the household is composed by the RP (RA0100=1), the MR (RA0100=2)
and two children of the RP (RA0100=3). The household-level variable HB0800
corresponds to the HMR value at the time of purchase. The person-level variable
PG0110 corresponds to the annual gross employee income. The information of the
other individuals, PG0110O, will still only be available on the corresponding row.

12. In Zhu and Eisele (2013), H variables are only available in the rows where they are used as
covariates, which is a more efficient approach but may increase operational risk.
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SA0010 RA0010 RA0100 HB0800 PG0110 PG0110RP PG0110MR PG0110O

1 1 1 200,000 20,000 20,000 15,000 .
1 2 2 200,000 15,000 20,000 15,000 .
1 3 3 200,000 12,000 20,000 15,000 12,000
1 4 3 200,000 8,000 20,000 15,000 8,000

Table 5. Illustration of ISFF dataset

However it is possible to compute a household-level indicator from that information
(e.g., average) and then treat it as a household variable that can be used when
imputing the data for the other individuals.13

In order to illustrate how the dataset is filled during the imputation process,
the remaining of this section presents a very simplified example for the household
of Table 5.

RA0100 HB0800 HB0900 PG0110RP PG0110MR PG0110O PG0210RP PG0210MR PG0210O

1 200,000 . 20,000 15,000 . 18,000 . .
2 200,000 . 20,000 15,000 . 18,000 . .
3 200,000 . 20,000 15,000 12,000 18,000 . 2,000
3 200,000 . 20,000 15,000 8,000 18,000 . .

Table 6. Example of a household with missing information in ISFF

In Table 6, the blue-coloured cells highlight the places in the dataset where there
is missing information to be imputed. This household has three missing values: the
current value of HMR (HB0900) and the self-employment income (PG0210) for the
MR and the second child. Missing data for PG0210 is scattered across PG0210MR
and PG0210O, which implies defining different models. The imputation of all of
the H, RP and MR variables will take place in the first row. Then, after all of those
variables have been imputed, the imputed data will be copied for every row, making
it available for every other individual. The data of the remaining individuals (O)
will be imputed in the end of this process, using a single imputation model.

Despite being operationally possible to intertwine the imputation of the O
variables with H, RP and MR, that requires significantly more computations and
processing power. It does not seem a good trade-off, since in general RP and MR
would still be imputed before imputing data for the remaining individuals within
a household. In fact, the information about the main household couple plays, in

13. An alternative would be imputing the data using a wide-format dataset. In this format, the
person-level variables are in a single row per household. This allows for complete differentiation
of every individual within a household. However, after some experiments this turned out to be
computationally heavier and operationally harder to specify, without noticeable gains. Additionally,
the order in which people appear in the household listing does not follow any particular order, after
the RP and MR are accounted for. Thus, treating all of the 4th household members as somehow
equivalent, as the wide-format approach implies, seems dubious.
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general, a more important role in explaining the data of the other individuals than
the reverse.

Suppose HB0900 is imputed firstly using the following (very simplified)
specification:

HB0900 = α+ β1HB0800 + β2PG0110RP + β3PG0110MR

+ β4PG0210RP + ε
(14)

The imputation model of HB0900 uses as covariates HB0800, the RP and MR
information about PG0110 (PG0110RP and PG0110MR, respectively) and also
PG0210RP. A synthetic indicator of PG0110 for the other individuals could also be
included.

Table 7 shows the dataset after the imputation of HB0900.

RA0100 HB0800 HB0900 PG0110RP PG0110MR PG0110O PG0210RP PG0210MR PG0210O

1 200,000 350,000 20,000 15,000 . 18,000 . .
2 200,000 . 20,000 15,000 . 18,000 . .
3 200,000 . 20,000 15,000 12,000 18,000 . 2,000
3 200,000 . 20,000 15,000 8,000 18,000 . .

Table 7. ISFF dataset after the imputation of HB0900

As mentioned earlier, the imputation of all household level and also RP and
MR variables takes places in the first row, which corresponds to the RP row of
each household in the dataset. The cells highlighted in green show the information
used in the imputation of HB0900. The variable split, along with the replicated
information for every individual, enables the usage of more information about
PG0110, namely about MR. Otherwise, only the self-reported information would
be accounted for, since person-level data would only be available for individuals in
their corresponding rows.

In order to impute PG0210, different model specifications must be defined for
PG0210MR and PG0210O. Starting with PG0210MR:

PG0210MR = α+ β1HB0800 + β2PG0110RP + β3PG0110MR

+ β4HB0900 + β5PG0210RP + ε
(15)

Since imputation occurs sequentially, as explained in Section 5, HB0900 can be
used as a covariate, because it was already imputed, according to the specification
in equation (14). The data structure makes it possible to account for the RP
information (PG0110RP and PG0210RP) when imputing missing observations of
the MR. Table 8 illustrates the ISFF dataset after the imputation of PG0210MR.

Finally, in the imputation of PG0210O the pre-imputation data of HB0800,
PG0110RP, PG0110MR, PG0110O, PG0210RP and the imputed data for HB0900
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RA0100 HB0800 HB0900 PG0110RP PG0110MR PG0110O PG0210RP PG0210MR PG0210O

1 200,000 350,000 20,000 15,000 . 18,000 17,500 .
2 200,000 . 20,000 15,000 . 18,000 . .
3 200,000 . 20,000 15,000 12,000 18,000 . 2,000
3 200,000 . 20,000 15,000 8,000 18,000 . .

Table 8. ISFF dataset after the imputation of PG0210MR

and PG0210MR will be used:

PG0210O = α+ β1HB0800 + β2PG0110RP + β3PG0110MR

+ β4PG0110O + β5HB0900 + β6PG0210RP

+ β7PG0210MR+ ε

(16)

Table 9 shows the dataset after the imputation of PG0210O. Before imputing
PG0210O, all of the H, RP and MR observations available in the first row had to
be made available for the remaining rows, otherwise those covariates in (16) would
be missing.

RA0100 HB0800 HB0900 PG0110RP PG0110MR PG0110O PG0210RP PG0210MR PG0210O

1 200000 350000 20000 15000 . 18000 17500 .
2 200000 350000 20000 15000 . 18000 17500
3 200000 350000 20000 15000 12000 18000 17500 2000
3 200000 350000 20000 15000 8000 18000 17500 4000

Table 9. Modified dataset after the imputation of PG0210O

This section illustrated a simplified imputation example, in order to provide
the reader with the intuition behind the imputation process. It overlooked some
aspects, namely the implicates and iterations, that were explained in Sections 2
to 6. Additionally, while in these examples only a few covariates where used, in
practice more than 80 covariates were used per model on average (excluding the
frequency models, which only allow for two covariates), in order to comply with the
broad conditioning principles. The covariates used in the implemented imputation
models were chosen according to several criteria, which will be discussed in the
next section.

9. Covariates selection and imputation order

This section describes the criteria used to choose the covariates for each
imputation model and to define the order of the variables to impute. Ultimately,
this is an extensive and iterative learning-by-doing process that makes for most of
the time allocated to the imputation of ISFF.
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Selection of covariates

As mentioned in the beginning of this paper, the main goal of imputation
is not to obtain the best prediction of the missing values, but to preserve the
characteristics of the variable joint distributions. For this purpose, the covariate
selection should not be limited to the variables that are most correlated with the
variable to impute.

According to Rubin (1996), the imputation model should include as many
predictors as possible, in order to accommodate any potentially important variable.
This kind of broad conditioning would also allow to capture the different missingness
patterns, because it accounts for enough substitute covariates if others are missing,
as referred by Zhu and Eisele (2013). This approach is also in line with the
congeniality requirements explained in Takahashi (2017), which imply that the
imputation model can be larger than the corresponding substantive analysis model,
but it must not be smaller. Moreover, imputation models should also account for the
different hypotheses about competing economic theories (e.g. permanent income
hypothesis versus precautionary saving motive).

Nevertheless, the degrees of freedom impose a limit on the number of covariates
that can be used in the imputation models. To address this issue in the ISFF,
a threshold for the number of covariates equal to 20 percent of the number of
observations was imposed. Keeping this setup in mind, the definition of continuous
and binary models accounted for different sets of covariates:

– A common set of household-level variables, related with geographical location,
type of family (e.g. number of household members), income, consumption,
assets, liabilities, dwelling characteristics reported by the interviewers and the
sample design weights;

– A common set of person-level variables, especially RP and MR features such
as education, labour status, types of income received, age, gender and marital
status;

– A specific set of covariates, containing almost all variables within the same
questionnaire section as the imputed variable, as well as correlated or
potentially relevant variables from other sections.

The common sets of variables are used conditionally on the degrees of freedom.
The sets of covariates also contain parent variables of covariates whose

inapplicable cases were treated, as mentioned in Section 7. For example, when using
some monetary variables as covariates, the corresponding yes/no parent variables
are included in order to disentangle "real" zero values from the zeros due to being
inapplicable. This approach minimizes the selection bias, since these zeros may
correspond to fundamentally different subsets of the population, while enabling the
usage of otherwise jointly exclusive covariates. The alternative would be specifying
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different models for every subgroup of the population, whenever such covariates
were deemed important.14

The pool of covariates includes not only variables that are on the list of variables
to impute, but also other relevant survey variables. Variables with high non-response
rates were not used as covariates, unless there was an imperative reason, since that
introduces an additional source of uncertainty. Moreover, those would be imputed
later on in the imputation sequence and therefore would have many missing values
before being imputed, which could build on the negative variance issue described
in Section 5.

Special case: imputation of variables with very low number of observations

One important obstacle for the definition of a well-specified imputation model
is the low number of observations. In the ISFF this issue is particularly important
in the case of variables that belong to a high iteration in the questionnaire loops.15

These variables have, in most cases, a low number of applicable situations and
also suffer frequently from high non-response rates. The lack of observations to
estimate a model was addressed by applying the coefficients estimated for the first
item in the loop to the remaining within the same loop. For instance, in the case
of the monthly payments on the HMR mortgage, firstly a model is defined for the
monthly payment on the first loan, HB2001. The covariates’ parameters obtained
for HB2001 are applied to the imputation models of HB2002 and HB2003, in
order to impute the values of the monthly payments of second and third loans,
respectively.

This strategy assumes that the variable relationships do not differ significantly
across the loop, which could arguably be a strong hypothesis. Alternative strategies
that might be explored in future waves consist of estimating the coefficients with
pooled data from the three iterations, or in the case of monetary variables imputing
a sum of the items on the three iterations and then use the total to calculate the
missing parts.

Imputation order

Defining the sequence of variables to impute is a puzzle which has to take into
account, not just the survey logical tree, but also the number of missing values in
the covariates. Since competing standards are often found, the ordering is defined
according to the following criteria hierarchy:

1. Parent variables are imputed before the corresponding child variables;

14. See Zhu and Eisele (2013) for further depiction of this argument.
15. In ISFF, the assets and liabilities of the same type are collected in a loop. For example, after
asking about the number of loans that use HMR as collateral, there is a set of questions about loan
characteristics that are asked for each one of the three most important loans.
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2. Household-level, RP and MR variables are imputed before O and non-split
person-level variables;

3. Imputation of RP occurs before the corresponding MR variables;
4. Loop variables are imputed according to the loop order;
5. Variables with low non-response rates (e.g. binary, education, employment

status) are imputed first;
6. Variables that are for good predictors of the remaining variables to be imputed

are imputed first.

10. Model evaluation and assessment of imputation results

The specification of each imputation model results from an iterative process
that involves ex ante and ex post analysis.

Before running the whole imputation sequence, initial candidate covariates,
selected according to the broad conditioning purpose described in the previous
section, are included in a regression. This first step allows for some trimming of
the covariates by dropping the ones with high pairwise missingness, which could
lead to extraneous SSCP outcomes in the first iterations, as explained in Section
5. After this preliminary step, the regressions are ran in the first iteration of the
imputation process to address similar issues that were not identified earlier. The
models obtained at the end of this process are then used on a full imputation
sequence. Finally, the statistical and economic plausibility of the imputed results
is evaluated, which may lead to the exclusion from the estimates of outliers or
highly influential observations and can also result in new model specifications. This
model evaluation is a dynamic process which is entangled with the assessment of
imputation results, which will be described in the remainder of this section.

Simulated distributions should converge across the iterative process. During the
imputation procedure, as the program executes the different iterations, imputed
observations for each implicate are expected to move closer to each other, despite
the stochastic disturbance added to the point estimates.

Gelman and Rubin (1992) proposed an indicator to assess the convergence
of the imputation process. For a given dataset with m = 1, ...,M implicates
and t = 1, ..., T iterations, the Gelman and Rubin (GR) convergence diagnostic
examines the ratio between the variation of the estimates (e.g., mean of HB0900)
across the implicates in each iteration (BV ) and within each implicate across
iterations (WV ):

GR =

√
T − 1

T
+
BV

WV
(17)
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In order to calculate the between-implicate variability (BV ), firstly, for each
implicate, the mean of the imputed values in each iteration must be computed:

Xm =
1

T
×

T∑
t=1

Xt
m (18)

The between-implicate variability, BV , corresponds to:

BV =
T

M − 1
×

M∑
m=1

(Xm −X)2 (19)

where X denotes the mean of the M (five in the case of ISFF) implicate means:

X =
1

M
×

M∑
m=1

Xm (20)

The within-implicate variability (WV ) is the average of the M variances of
estimates within each implicate obtained across iterations:

s2m =
1

T − 1
×

T∑
t=1

(Xt
m −Xm)2,

WV =
1

M
×

M∑
m=1

s2m

(21)

A GR value lower than 1.1 denotes convergence, according to Gelman et al.
(1996). A high dispersion of implicates, leading to higher between implicate-
variance, contributes negatively to the convergence of the estimates, since this
signals high uncertainty and instability of the imputed values. On the other hand,
movements of the estimates of variables within each implicate along the iterative
process indicate that imputation can cover well the domain of the joint distribution,
as mentioned by Zhu and Eisele (2013).

In the ISFF, the convergence was tested with both the original GR defined
in equation (17), as well as with an alternative, more restrictive, GR, which was
calculated using 1 instead of T−1

T in equation (17). The tests were calculated
for the mean and several percentiles (10, 25, 50, 75 and 90). Nevertheless, those
indicators can only be used on continuous variables with a minimum threshold
number of imputed observations.16

In the ISFF, the imputation routine included fifteen iterations and according to
the GR tests convergence was achieved after six iterations, using a burn-in period

16. These indicators were calculated for all the imputed variables, excluding the categorical and
some continuous variables referring to very specific items, such as the third mortgage on the third
reported property other than HMR.
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of one iteration in order to reduce the dependence of the results on the initial
values.

The remainder of this section illustrates the kind of analysis done to evaluate
convergence and the plausibility of imputation results, using the example of
HB0900.

Table 10 shows the GR and its alternative definition for the different estimates
of HB0900. Both indicators signal convergence for the imputed observations of the

Mean Median P10 P25 P75 P90

GR 0.9788 1.0018 0.9823 0.9688 0.9897 0.9854
Alt GR 1.0146 1.0368 1.0180 1.0050 1.0251 1.0210
BV/WV 0.0294 0.0750 0.0363 0.0100 0.0509 0.0424
BV 40,036 95,727 30,196 6,230 468,833 619,396
WV 1,362,465 1,275,633 831,974 621,747 9,216,885 14,616,227

Table 10. Convergence indicators for imputed values of HB0900

current value of HMR, regardless of the statistics evaluated, since all measures are
below the critical value of 1.1.

The highest variation, both between and within implicates, comes from
estimates based on the P90. Nevertheless, measures relying on the P50 present
the highest proportion of between-to-within implicate variability, which explains
why both GR indicators are higher in this case.

Figure 3 illustrates the convergence process of the (unweighted) mean for
imputed values of HB0900.

The sharp adjustment of the mean of imputed values right after the first
iteration is fairly distinguishable. Such is expected since the latter is meant only
to provide the necessary values to initialize the imputation process. After that,
the implicate mean (solid red line) continues to decrease until it stabilizes from
the fifth/sixth iteration onwards. Notice that the means of each implicate in
each iteration were not necessarily computed based on the same households, as
the imputation of the parent variable related with the tenure status may lead to
different applicable cases.

Convergence alone is not a guarantee of the quality of the imputation.
Therefore, on top of the previous convergence assessment, the plausibility of the
imputed data from an economic point of view is also evaluated.

Figure 4 shows, for HB0900, the non-imputed, imputed and non-imputed +
imputed distributions and its corresponding normal density curves. Table 11 shows
the statistical indicators for the corresponding distributions. This analysis is based
on unweighted data, since it aims to assess the impact of imputation on the variable
distributions and not to draw conclusions about the population.

The distribution of the non-imputed values of HB0900 is positively skewed with
a very long tail, due to the presence of a small number of households with very high
main residence values. The distribution of the imputed values shows a similar shape.
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Figure 3: Graphical convergence assessment of the unweighted mean of HB0900
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Non-Imp Imp Non-Imp+Imp

Mean 158,416 140,286 153,601
Median 130,000 107,418 124,466
Max 2,500,000 1,269,059 2,500,000
Min 5,000 7,499 5,000
P10 60,000 46,242 50,000
P25 80,000 71,151 80,000
P75 200,000 174,110 200,000
P90 300,000 262,092 280,000
Std Dev 128,737 116,559 125,871
Coef of Var 0.81 0.83 0.82
Skewness 5.15 3.24 4.75
Kurtosis 63.07 20.52 55.04
N 17,875 6,464 24,339

Table 11. Unweighted statistics for the distributions of HB0900

Nevertheless, the distribution is less skewed and has lower percentile and mean
values. The fact that the imputed values were globally lower and less dispersed,
compared to the non-imputed ones, does not necessarily signal any problem with
the imputation process. As explained in the beginning of this paper, a correlation
between the non-response pattern and the values of the variable to be analysed
may exist. For example, in this particular case the households with imputed values
of HB0900 have lower mean and median values for the main residence size and for
the income, compared to the households where HB0900 was collected.

Ultimately, in order to analyse the impact of the imputation on the variables’
joint distribution, several relationships between the variables of the same household
had to be compared in the pre-imputation and post-imputation datasets. Evaluating
the imputation results is a complex endeavour that requires a comprehensive
analysis of different indicators besides the convergence assessment.

11. Concluding remarks

Non-response is a major theme in wealth surveys, since households may not be
willing or able to disclose sensitive information, such as the value of assets, debt
and income. Using only complete interviews would lead towards biased estimates of
statistics, as the non-response patterns may be correlated with household features.
Multiple imputation provides the means to deal with item non-response, while
preserving the characteristics of the joint distributions and ultimately enabling valid
statistical inference. It accounts for within and between-imputation variance, thus
providing a clear picture concerning the limits of the knowledge about the missing
data.

Multiple imputation of survey data is a challenging and complex procedure,
due to constraints related with complex logical trees of the questionnaire, critical
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relationships, bounds, data structure and missing patterns. This paper provides an
overview of the different stages of the imputation process, from data preparation,
to evaluation of imputation results.

This paper delivers a comprehensive and approachable description of the
imputation process in the ISFF, in order to share the imputation experience with
the interested readers, namely other data producers and the data users. Ultimately,
it will be used as a starting point for the imputation of future waves of the ISFF.
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