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Abstract

The aim of this article is to highlight the usefulness of wavelet analysis in economics. 

Wavelet analysis is a very promising tool as it represents a refi nement of Fourier analysis. 

In particular, it allows one to take into account both the time and frequency domains 

within a unifi ed framework, that is, one can assess simultaneously how variables are 

related at different frequencies and how such relationship has evolved over time. 

Despite the potential value of wavelet analysis, it is still a relatively unexplored tool in 

the study of economic phenomena. The basic theoretical building blocks are reviewed 

and some empirical applications are provided.

1. Introduction

Time domain analysis is, far from doubt, the most widespread approach in the economic literature to 

study time series. Through such approach, the evolution of individual variables is modelled and multiva-

riate relationships are assessed over time. Another strand of literature focus on the frequency domain. 

Frequency domain analysis is a complementary tool to time domain analysis. In particular, with spectral 

analysis, one can investigate the importance of different frequency components for the behaviour of a 

variable and the relationship between variables at the frequency level.

Wavelets analysis reconciles both approaches, in the sense that both time and frequency domains are 

taken into account. Hence, wavelets are a very promising tool as they represent a refi nement in terms of 

analysis. Despite its potential usefulness, wavelets have been more popular in fi elds other than econo-

mics. For example, in geophysics, for the analysis of oceanic and atmospheric fl ow phenomena, seismic 

signals and climatic data; in medicine, for heart rate monitoring, breathing rate variability and blood 

fl ow and pressure; in engineering, for the assessment of machine process behaviour; just to name a few 

(see, for example, Adisson (2002) for a comprehensive overview). The two most well-known real-life 

applications of wavelets are the FBI algorithm for fi ngerprint data compression and the JPEG algorithm 

for image compression.

Although there are still relatively few papers in economics resorting to wavelet analysis, such analysis can 

provide fruitful insights about several economic phenomena. In fact, as mentioned by Ramsey (2002), 

“Wavelets are treated as a ‘lens’ that  enables the researcher to explore relationships that previously 

were unobservable” while “... the ability to apply a new ‘lens’ to inspect the relationships in economics 

and fi nance provides great promise for the development of the discipline”. For instance, the pioneer 

work of Ramsey and Lampart (1998a,b) draws on wavelets to study the relationship between several 

macroeconomic variables, namely money supply and output in the fi rst case and consumption and 

income in the second. A survey concerning wavelet applications in economics is provided, for example, 

by Crowley (2007). 
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The aim of this article is to review the basic building blocks underlying the continuous wavelet transform 

and discuss some empirical applications.1 Recent work using the continuous wavelet transform includes 

Crowley and Mayes (2008), Rua (2010), Aguiar-Conraria and Soares (2011a), Rua and Silva Lopes (2012) 

who resort to wavelets for business cycle analysis, Rua and Nunes (2009) assess the international como-

vement of stock market returns, Aguiar-Conraria and Soares (2011b) study the relationship  between oil 

prices and industrial production, Rua (2012) investigates the link between money growth and infl ation in 

the euro area and Rua and Nunes (2012) propose wavelet-based measures of market risk, among others.

Despite the growing literature in the last few years, there is clearly scope to widen further the applica-

tion of wavelet analysis in economics. Wavelet analysis has a huge potential as it allows one to unveil 

relationships between economic variables in the time-frequency space, that is, it allows one to assess 

simultaneously how variables are related at different frequencies and how such relationship has evolved 

over time. On the one hand, in a continuously changing economic environment, capturing the time 

dimension is obviously crucial for the assessment of time-varying behaviour. On the other hand, as argued, 

for instance, by Clive Granger, the 2003 Nobel Prize in economics, there is no reason to believe that 

economic variables should present the same relationship at all frequencies. Hence, taking into account 

the frequency dimension can also be extremely important for the economic analysis.

The article is organised as follows. In section 2, the basic building blocks underlying wavelet analysis are 

reviewed. In section 3, some empirical applications are discussed and section 4 concludes.

2. From Fourier analysis to wavelet analysis

In 1807, Jean Baptiste Joseph Fourier, a French mathematician, claimed that any periodic function can be 

expressed as an infi nite sum of sine waves and cosine waves of various frequencies. Such idea led to the 

development of the well-known Fourier transform. The Fourier transform is the conventional method for 

studying the frequency content of a signal and it involves the projection of a series onto an orthonormal 

set of trigonometric components (see, for example, Priestley (1981)). In particular, the Fourier transform 

uses a basis of sines and cosines of different frequencies to determine how much of each frequency the 

signal contains. The Fourier transform of the time series x(t) is given by

( ) ( ) i t
xF x t e dt

 


 

where   is the angular frequency and cos( ) sin( )i te t i t      according to Euler’s formula.

During the nineteenth century the Fourier transform solved many problems in physics and engineering. 

However, throughout the twentieth century, mathematicians, physicists, and engineers came to realize 

a drawback of the Fourier transform. The Fourier transform does not allow the frequency content of 

the signal to change over time and therefore it has trouble reproducing signals that have time-varying 

features. In other words, it can tell us how much of each frequency exists in the signal but it does not 

tell us when in time these frequency components exist.

To overcome such limitation it has been suggested the short-time Fourier transform. As the name 

suggests, the basic idea is to use the Fourier transform for short periods of time. It consists in applying 

a short-time window to the signal and performing the Fourier transform within this window as it slides 

across all the data.

However, any time-frequency analysis is limited by the Heisenberg uncertainty principle. In 1927, the 

physicist Werner Heisenberg stated that the position and the velocity of an object cannot both be measured 

1 There are other variants of the wavelet transform such as the discrete wavelet transform (see, for example, Rua 

(2011)).
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exactly at the same time even in theory. In signal processing terms, this means that it is impossible to 

know simultaneously the exact frequency and the exact time of occurrence of this frequency in a signal. 

In fact, there is a trade-off between time and frequency resolution. This means that for narrow windows 

one gets good time-resolution but poor frequency resolution whereas for wide windows one gets good 

frequency resolution and poor time-resolution.

The problem with the short-time Fourier transform is that it uses constant length windows. These fi xed 

length windows give the uniform partition of the time-frequency space. When a wide range of frequen-

cies is involved, the fi xed time window tends to contain a large number of high frequency cycles and 

a few low frequency cycles which results in an overrepresentation of high frequency components and 

an underrepresentation of the low frequency components. Hence, as the signal is examined under a 

fi xed time-frequency window with constant intervals in the time and frequency domains, the short-time 

Fourier transform does not allow an adequate resolution for all frequencies.

In contrast, the wavelet transform uses local base functions that can be stretched and translated with 

a fl exible resolution in both frequency and time. In the case of the wavelet transform, the time resolu-

tion is intrinsically adjusted to the frequency with the window width narrowing when focusing on high 

frequencies while widening when assessing low frequencies. Allowing for windows of different size 

makes it possible to improve the frequency resolution of the low frequencies and the time resolution of 

the high frequencies. This means that, a certain high frequency component can be located better in time 

than a low frequency component. On the contrary, a low frequency component can be located better 

in frequency compared to a high frequency component. As it enables a more fl exible approach in time 

series analysis, wavelet analysis is seen as a refi nement of Fourier analysis.

The above discussion can be illustrated through Chart 1. For a time series in the time domain each point 

contains information about all frequencies. In contrast, in the case of the Fourier transform, every point 

in the frequency domain contains information from all points in the time domain. For the short-time 

Fourier transform, the time-frequency plane is divided using a constant length window whereas for the 

wavelet transform the window width is adjusted to the frequency.

The continuous wavelet trans

*
,( , ) ( ) ( )x t sW s x t t dt 




 

form of a time series x(t) can be written as

where * denotes the complex conjugate.2 Hence, the wavelet transform decomposes a time series x(t) 

in terms of some basis functions (wavelets), , ( )s t , analogous to the use of sines and cosines in Fourier 

analysis. The term wavelet means a small wave. The smallness refers to the condition that this function 

is of fi nite length. The wave refers to the condition that this function is oscillatory. These basis functions 

are derived from the so-called mother wavelet ( )t  and are defi ned as

,

1
( )s

t
t

ss


 
 

   
 

where  determines the time position and s is the scale. In terms of frequency, low scales capture rapidly 

changing details, that is, high frequencies, whereas higher scales capture slowly changing features, that 

is, low frequencies.

To be a mother wavelet, ( )t  must fulfi l certain criteria (see, for example, Percival and Walden (2000)). 

There are a number of functions that can be used for this purpose. The most commonly used mother 

wavelet for the continuous wavelet transform is the Morlet wavelet. 

2 As the continuous wavelet transform at a given point in time uses information of neighbouring data points, 

results should be read carefully close to the beginning or the end of the time series.
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Geologists usually locate underground oil deposits by making loud noises. Because sound waves travel 

through different materials at different speeds, geologists can infer what kind of material lies under 

the surface by sending seismic waves into the ground. However, seismic signals contain lots of abrupt 

changes in the wave as it passes from one rock layer to another. As discussed earlier, the Fourier trans-

form is unable to retain all this information. In 1981, Jean Morlet, a geophysicist working for a French 

oil company, developed what are now known as Morlet wavelets to solve signal processing problems 

for oil prospection.

In particular, the Morlet wavelet can be written as

2

0

1

4 2( )
t

i tt e e 





One can see that the Morlet wavelet consists of a complex sine wave within a Gaussian envelope. One 

of the advantages of the Morlet wavelet is its complex nature which allows for both time-dependent 

amplitude and phase for different frequencies. The parameter 0 controls the number of oscillations 

within the Gaussian envelope. By increasing (decreasing) 0 one achieves better (poorer) frequency 

Chart 1 
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localization but poorer (better) time localization. In practice, setting 0 to 6 provides a good balance 

between time and frequency localization. Moreover, for 0= 6, the wavelet scale s is almost equal to 

the Fourier period which eases the interpretation of wavelet analysis. See, for example Adisson (2002) 

for further details on the Morlet wavelet.

Likewise in Fourier analysis, several interesting quantities can be defi ned in the wavelet domain. For 

instance, one can defi ne the wavelet power spectrum as 
2

( , )xW s  which measures the contribution to 

the variance of the series around each time and scale. Another quantity of interest is the cross-wavelet 

spectrum which captures the covariance between two series in the time-frequency space. Given two time 

series x(t) and y(t), with wavelet transforms ( , )xW s  and ( , )yW s  one can defi ne the cross-wavelet 

spectrum as 
*( , ) ( , ) ( , )xy x yW s W s W s   . The wavelet squared coherency is given by

 
2

1

2

221 1

( , )
( , )

( , ) ( , )

xy

x y

S s W s
R s

S s W s S s W s




 



 


  
  

   

where S(.) denotes smoothing in both time and scale. As well as in Fourier analysis, smoothing is also 

required; otherwise squared coherency would be always equal to one. The idea behind the wavelet squared 

coherency is similar to the one of squared coherency in Fourier analysis. The wavelet squared coherency 

measures the strength of the relationship between the two series over time and across frequencies (while 

the squared coherency in Fourier analysis only allows one to assess the latter). The R² ( , )s  is between 

0 and 1 with a high (low) value indicating a strong (weak) relationship. Hence, through the plot of the 

wavelet squared coherency one can distinguish the regions in the time-frequency space where the link 

is stronger and identify both time and frequency varying features.

Additionally, one can also compute the wavelet phase, which captures the lead-lag relationship between 

the variables in the time-frequency space. The wavelet phase difference is defi ned as

 
 

1
( , )

( , ) tan
( , )

xy

xy

W s
s

W s


 



     
 

where   and   are the real and imaginary parts, respectively. The resemblance with the analogue 

measure in Fourier analysis is clear. It provides information about the lead-lag relationship between the 

two series. However, besides providing information about the lead-lag across frequencies as in standard 

Fourier analysis, the wavelet phase also allows one to assess how such lead-lag relationship has changed 

over time.

3. Some empirical illustrations

In this section, some applications of the above concepts are provided. Let us start by assessing the 

relationship in the time-frequency space of the Portuguese economic activity vis-à-vis the euro area as 

well as vis-à-vis Spain, which is the most important Portuguese trade partner. Using real GDP data from 

the fi rst quarter of 1978 up to the fi rst quarter of 2012, the wavelet squared coherency between the 

corresponding quarterly growth rates is presented in Chart 2. The horizontal axis refers to time while the 

vertical axis refers to frequency. To ease interpretation, the frequency is converted to time units (years). 

Hence, through the inspection of the chart one can identify both frequency bands (in the vertical axis) 

and time intervals (in the horizontal axis) where the series move together. The black bold line in the chart 

delimits the statistical signifi cant area at the usual signifi cance level of fi ve per cent.

From Chart 2, one can conclude that the Portuguese economic activity has presented a high and signi-

fi cant link at long-term movements, namely at fl uctuations that last more than 8 years, with both the 
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Chart 2 

WAVELET SQUARED COHERENCY
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Source: Author’s calculations. 

euro area and Spain over the whole sample period. At the typical business cycle frequency range, that is, 

for fl uctuations that last more than 2 but less than 8 years, the strength of the relationship has started 

increasing since the beginning of 2000’s and has become statistically signifi cant since the mid-2000’s 

refl ecting an increasingly economic integration. Concerning shorter-run movements, one can identify 

episodes where the link has been temporarily stronger. For example, the wavelet squared coherency has 

been particularly high vis-à-vis the euro area during the 1992-1993 recession, vis-à-vis Spain around the 

1983-1984 period and with both during the so-called Great Recession in 2009.

To assess the corresponding lead-lag relationship, the wavelet phase is plotted in Chart 3. As the wavelet 

phase difference can be poorly estimated when coherency is low, the statistical signifi cant area of the 

wavelet squared coherency is also plotted in Chart 3. One can conclude that Portuguese economic acti-

vity lags slightly at long-term movements but at the other time-frequency regions delimited by the bold 

line, it oscillates between a slight lag and slight lead without presenting any noteworthy lead or lag.

Suppose now that one is interested in measuring the contemporaneous comovement. As mentioned 

earlier, the wavelet squared coherency allows one to assess the strength of the relationship but it disregards 

how much the variables are out of phase, that is, the lead-lag. This latter information is provided by the 

wavelet phase difference. In other words, one can think of the fi rst as the maximum squared correlation 

between the two variables which is attained when the phase difference is given by the second.3 Within 

Fourier analysis, Croux, Forni and Reichlin (2001) have proposed a spectral-based measure, the dynamic 

correlation, which allows one to measure the comovement between two series at each individual 

frequency. This measure, which ranges between -1 and 1, is conceptually similar to the contemporaneous 

correlation between two series in the time domain. However, unlike the correlation coeffi cient in the time 

domain, one now obtains a comovement measure that can vary across frequencies. Rua (2010) proposes 

a wavelet-based measure which can be seen as a generalisation of the dynamic correlation measure 

suggested by Croux, Forni and Reichlin (2001) since it provides information about contemporaneous 

comovement not only at the frequency level but also over time. This feature is of striking importance for 

assessing, for example, the degree of synchronization of macroeconomic fl uctuations across countries 

or regions which plays a key role on the discussion about the attractiveness of economic integration.

3 The same reasoning applies to the analogous measures in Fourier analysis (see, for example, Rua and Nunes 

(2005)).
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Chart 3 

WAVELET PHASE
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Note: A positive value denotes a lead whereas a negative one corresponds to a lag (in years). 

Chart 4 

CONTEMPORANEOUS COMOVEMENT IN THE TIME-FREQUENCY SPACE
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In Chart 4, the results obtained with the measure proposed by Rua (2010) are presented. Qualitatively, 

the fi ndings from Chart 4 are not that different from those resulting from Chart 2, refl ecting the fact 

that there is no substantial lead-lag relationship. From Chart 4, it becomes clear that synchronization has 

always been high at long-term fl uctuations. At the typical business cycle frequency range, synchroniza-

tion has become gradually higher since the establishment of the monetary union in 1999. This higher 

synchronization was also extended to short-run fl uctuations during the Great Recession but one should 

note that afterwards there is evidence of decoupling.

In order to take on board more than two series when assessing comovement, Croux, Forni and Reichlin 

(2001) have extended the dynamic correlation to the multivariate case and named this generalised 

measure as cohesion. Cohesion is essentially a weighted average of the dynamic correlations between 
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all possible pairs of series within a group of variables. For instance, this measure can provide a useful 

summary statistic on the degree of synchronization across countries or regions while avoiding the problem 

of choosing a base country or region. In a similar fashion to Croux, Forni and Reichlin (2001), Rua and 

Silva Lopes (2012) have extended the bivariate measure proposed by Rua (2010) to the more general 

case in order to obtain a measure of cohesion in the time-frequency space. The wavelet-based cohesion 

also varies between -1 and 1 and it allows one to quantify the extent of cohesion among several series 

at different frequencies and investigate if such relationship has changed over time.

Let us consider the long time series for annual GDP growth provided by Angus Maddison (available at 

www.ggdc.net/maddison) updated with the latest IMF World Economic Outlook data. In particular, it 

is considered the sample period from 1871 up to 2011 for several countries (namely Austria, Belgium, 

Denmark, Finland, France, Germany, Italy, Netherlands, Norway, Sweden, Switzerland, UK, Portugal, 

Spain, Australia, New Zealand, Canada, USA, Brazil, Chile, Uruguay, Japan and Sri Lanka) accounting for 

almost 60 per cent of the world GDP in 1990. Using GDP weights, the resulting wavelet-based cohesion 

is displayed in Chart 5. A key fi nding emerges. The business cycle synchronization has never been as 

high as the observed during the latest economic and fi nancial crisis, when one considers the last 140 

years. This evidence unveils the widespread nature of such event and the current degree of the world 

economic integration.

4. Conclusions

The aim of this article is to motivate the reader to the usefulness of wavelet analysis in economics. 

However, the above discussion does not intend to be an exhaustive description of wavelet analysis. 

Instead, the goal of the article is to provide an intuitive and brief overview of the main tools related with 

the continuous wavelet transform. Firstly, the basic concepts underlying wavelet analysis are addressed 

as well as its relationship with the standard Fourier analysis. Afterwards, some empirical applications are 

provided so as to illustrate the use of the described tools.

Despite the growing literature in the last few years, there is clearly scope to widen further the applica-

tion of wavelet analysis. In fact, wavelet analysis allows one to unveil relationships between economic 

variables in the time-frequency space, that is, it allows one to assess simultaneously how variables are 

related at different frequencies and how such relationship has evolved over time. This can be of striking 

importance for the study of economic behaviour in a continuously changing world.

Chart 5
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