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PARAMETER IDENTIFICATION IN DYNAMIC ECONOMIC 
MODELS*

Nikolay Iskrev** 

 1. INTRODUCTION

Parameter identifi cation is a concept which every student of economics learns in their introductory 

econometrics class. The usual textbook treatment of identifi cation leads one to think of identifi cation 

as a technical issue relevant only to empirical work, and to regard identifi cation problems as caused 

by either defi ciencies of the available data, or of the statistical methodology used to estimate the 

models. In this note I will argue that the analysis of identifi cation has an important economic modeling 

aspect, and that it may be very useful to researchers who are not interested in estimation. I will focus 

the discussion on the class of dynamic stochastic general equilibrium (DSGE) models which have 

become one of the main analytical tools of modern macroeconomics. The essence of my argument is 

that when the economic model supplies a complete characterization of the data generating process, 

parameter identifi cation may be treated as a property of the underlying theoretical model. Parameters 

will be unidentifi able or weakly identifi ed if the economic features they represent have no empirical 

relevance at all, or very little of it. This may occur either because those features are unimportant on 

their own, or because they are redundant given the other features represented in the model. These 

issues are particularly relevant to DSGE models, which are sometimes criticized of being too rich in 

features, and possibly overparameterized (Chari, Kehoe, and McGrattan, 2009).

A second reason why it is important to study identifi cation is its econometric implications. The reliable 

estimation of a model is impossible unless its parameters are well identifi ed. Again, this is crucial for 

DSGE models as their use for quantitative policy analysis often hinges upon having accurate param-

eter estimates.

Treating parameter identifi cation as a property of the model means that we can study it without a 

reference to a particular data set. Such an a priori approach to identifi cation is not always possible in 

econometrics since typically the relationship between the economic model and the observed data is 

known only partially. For instance, the degree of correlation between instruments and endogenous 

variables in the simple linear instrumental variables model depends on nuisance parameters which, 

in the absence of a fully-articulated economic model, have no structural interpretation. In contrast, 

when we are in a general equilibrium setting, as in the case of DSGE models, all reduced-form pa-

rameters become functions of structural parameters. In this setting we can study how the instruments’ 

strength is determined by the properties of the underlying model.

* The author thanks the comments of João Sousa. The opinions expressed in the article are those of the author and do not necessarily coincide with those 
of Banco de Portugal or the Eurosystem. Any errors and omissions are the sole responsibility of the author.
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In what follows I will use three examples, one purely statistical and two simple DSGE models, to il-

lustrate the a priori analysis of identifi cation and the kind of questions we can answer with its help. 

The presentation here is based on several papers: in Iskrev (2010a) it is explained how to determine 

if the parameters of a DSGE model are identifi ed; Iskrev (2010a) shows how to evaluate the strength 

of identifi cation of identifi ed parameters; Iskrev (2010b) discusses the role of observables in the es-

timation of DSGE models.

2. A SIMPLE EXAMPLE

In this Section I use a simple model to discuss the problem of identifi cation and to explain the main 

idea behind the a priori approach to identifi cation analysis.

Consider the following autoregressive moving average (ARMA(1,1)) process:

2
1 1 2 1 1 2

= ,    | |< 1,| |< 1,    (0, )
t t t t t

x xφ ε φ ε φ φ ε σ− −+ − ∼ � (2.1)

Panel (a) of Chart 1 shows 100 observations generated by (2.1) with 1 2
= = 0.4,  = 1φ φ σ . Panel (b) 

shows the realizations of ,  = 1,...,
t

t Tε  used to generate the observations for t
x . The two series t

x  

and t
ε  are identical.

This example illustrates what in econometrics is called observational equivalence: there are two val-

ues of the vector of parameters θ 1 2
= [ , , ]'φ φ σ , θ1 = [.4,.4,1]'  and θ2 = [0,0,1]' , which can produce 

the same observations for t
x . In fact, in the ARMA(1,1) model there are infi nitely many such values; 

as long as σ is kept the same, and 1
φ  is equal to 2

φ , the realizations of t
x  would be indistinguishable 

from those of t
ε .

The reason for this observational equivalence is easy to understand if we consider the autocovari-

Chart 1

OBSERVATIONAL EQUIVALENCE WITH AN 
ARMA(1,1) PROCESS

Source: Author’s calculations. 
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ance function (ACF), which for an ARMA(1,1) process is given by: 

2 2
2 2 1 2

0 2
1

(1 2 )
= ( ) =

1t
x

φ φ φ σ
γ

φ

+ −

−

2
1 2 1 2

1 1 2
1

( )(1 )
= ( ) =

1t t
x x

φ φ φ φ σ
γ

φ−

− −

−
(2.2)

1 1
= ( ) = ,    2

h t t h h
x x hγ φ γ− − ≥

From th e defi nition it is clear that 1 2
=φ φ  is equivalent to 

2
0

= ,  = 0,  1
k

kγ σ γ ≥ . Therefore, 

when the autoregressive and moving average coeffi cients are equal, the ACF of the ARMA(1,1) pro-

cess t
x  is identical to that of the white noise process .

t
ε  This implies that we cannot distinguish data 

generated from ARMA(1,1) process with arbitrary 1 2
=φ φ  from data generated from ARMA(1,1) 

process with 1 2
= = 0φ φ .

Now consider Chart 2, which shows two series of 100 observations generated by (2.1) with 

θ1 = [0,0,1]'  (solid line) and θ2 = [.7,.8,1]'  (dashed line), using the same realizations of .
t
ε  Clearly, the 

two series are very similar, though not identical. In this case we have an example of near observa-

tional equivalence: data generated from ARMA(1,1) model with 1 2
φ φ≈   is diffi cult to distinguish from 

data generated by the model with arbitrary 
1 2
=φ φ  and the same value of σ .

How can we detect observational equivalence (lack of identifi cation) and near observational equiva-

lence (weak identifi cation)?  A powerful result, due to Rothenberg (1971), provides a general neces-

sary and suffi cient condition for identifi cation, namely, that the information matrix is non-singular. 

Chart 2

NEAR OBSERVATIONAL EQU IVALENCE WITH AN 
ARMA(1,1) PROCESS

Source: Author’s calculations.
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As Rothenberg (1971) points out, the information matrix “is a measure of the amount of information 

about the unknown parameters available in the sample”. A parameter is unidentifi ed when there is 

no information about it in the sample, or if the existing information is insuffi cient to distinguish that 

parameter from other parameters in the model. Both cases result in a singular information matrix.

In the case of the ARMA (1,1) model, the information matrix is given by: 

2
1 21

1 2

2
1 2 2

1 1
11

( , ) =
1 1

1 1

φ φφ
φ φ

φ φ φ

⎡ ⎤−⎢ ⎥
⎢ ⎥−−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

I (2.3)

From (2.4) we can compute the determinant of 1 1
( , )φ φI  

( )
2

1 2
1 2 2 2 2

1 2 1 2

( )
( , ) =

(1 ) (1 )(1 )
det

φ φ
φ φ

φ φ φ φ

−

− − −
I (2.4)

Since non-singularity is equivalent to the determinant of the matrix being different from zero, from 

(2.4) it is immediate that 1 2
φ φ≠  is necessary and suffi cient for identifi cation in the ARMA(1,1) 

model.

The information matrix is also useful for detecting weak identifi cation problems. A parameter is identi-

fi ed but poorly when the information in the sample is very little, or if it is barely possible to distinguish 

that parameter from the other parameters. In this case the information matrix has full rank, but is very 

close to being singular. The strength of identifi cation may be measured using the result that the as-

ymptotic covariance matrix of an effi cient estimator is equal to the inverse of the information matrix 

divided by the sample size. Thus, the asymptotic variances of the estimators of the ARMA parameters 

1
φ  and 2

φ  are: 

2 2 2 2
1 2 1 1 2 2

1 22 2
1 2 1 2

(1 ) (1 ) (1 ) (1 )ˆ ˆvar( ) = ,   var ( ) =
( ) ( )T T

φ φ φ φ φ φ
φ φ

φ φ φ φ

− − − −

− −
(2.5)

The formulas in (2.5) reveal that the asymptotic variances are large when 1 2
φ φ≈ . This suggests that 

the estimates of the autoregressive and moving average parameters will be very imprecise when 

their true values are similar. Therefore, 1
φ  and 2

φ  are weakly identifi ed.

Note that both variances in (2.5) depend on the values of 1
φ   and 2

φ  . Thus, for a given sample size 

T , the strength of identifi cation of either parameter is determined by the true values of both param-

eters. This can be seen very clearly in Chart 3 which shows how the asymptotic variances vary 

across different regions in the parameter space.

To gain some intuition about the relationship between the parameter values and the strength of iden-

tifi cation, consider the following decomposition of the information matrix (2.4)
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2 2
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1 2 2 2
1 2

2 2
2 21 2

1 1(1 )(1 )0 01
1 11

( , ) =
1 1(1 )(1 )0 01

1 11

φ φ
φ φφ φ

φ φ
φ φ

φ φφ φ

⎡ ⎤⎡ ⎤ ⎡ ⎤− −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− −−⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− −−⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

I (2.6)

Note that the fi rst and the last terms on the right hand side are the same diagonal matrix with ele-

ments equal to the square roots of the diagonal elements of 
1 2

( , )φ φI . This matrix tells us how much 

information there is in the sample about each parameter if the other parameter was known. For in-

stance, 2
1

(1 ) /Tφ−  is the asymptotic variance of an effi cient estimator of 1
φ  if 2
φ  was known. There-

fore, the closer is 1
| |φ  to 1, the more information there is about 1

φ , for a given value of 2
φ . Simi-

larly, the closer is 2
| |φ  to 1, the more information there is about 2

φ , for a given value of 1
φ .

Next, consider the matrix in the middle. It is a correlation matrix which tells us how similar is the effect 

on the distribution of t
x  of a small change in one parameter, say 1

φ , to that of a small change in the 

other parameter 2
φ . Note that 

1 2
( , )φ φI  is singular only when the correlation matrix in (2.6) is singu-

lar, which occurs if and only if the off-diagonal element, 
2 2
1 2

1 2

(1 )(1 )

1

φ φ

φ φ

− −

−
 is equal to -1. In this case a 

small change, say increase in 1
φ , is exactly the same as a small decrease in the other parameter. 

When the correlation is close to, but different from 1 in absolute value, the effect of changing one 

parameter is almost the same as, though different from, that of changing the other one. Therefore, 

the middle term in (2.6) accounts for the loss of information about either parameter due to the uncer-

tainty regarding the true value of the other parameter.

The information matrix approach to identifi cation is possible only when the distribution of the data is 

known. What if we can not or do not want to assume that t
ε  in (2.1) normally distributed?  A reason-

able approach in this case is to base the identifi cation analysis on the ACF of t
x . As we already saw, 

it is straightforward to establish the non-identifi ability of the autoregressive and moving average pa-

Chart 3

ASYMPTOTIC VARIANCES OF THE PARAMETERS 
OF  AN ARMA(1,1) PROCESS

Source: Author’s calculations.
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rameters at 1 2
=φ φ   using the theoretical ACF of the ARMA(1,1) process. More formally, we may 

proceed as follows: let 0 1 1
= [ , ,..., ]'

k
γ γ γ γ −  be the vector of the fi rst k -autocovariances of t

x . Then θ is 

identifi ed at θ0 if the ( 3)k× -dimensional matrix /γ∂ ∂ θ has rank equal to 3 when evaluated at θ0. The 

intuition behind this condition is very simple: the matrix has full column rank (equal to the dimension 

of θ) if and only if the vectors 1 2
/ , / , /γ φ γ φ γ σ∂ ∂ ∂ ∂ ∂ ∂  are linearly independent. For this to hold it must 

be impossible to match the effect on the moments of changing one parameter by changing the other 

two parameters. That is, each parameter plays a distinct role in determining the properties of the 

model, which is what identifi cation requires.

Weak identifi cation, on the other hand, means that the effect of changing one parameter on the mo-

ments of t
x  can be approximated very closely by that of changing other parameters. This results in 

derivatives which are almost linearly dependent; for instance, having collinearity between 1
/γ φ∂ ∂  

and 2
/γ φ∂ ∂  of nearly one (in absolute value) means that the effect of changing 1

φ  on γ is very 

similar to that of changing 2
φ  .

Table 1 illustrates the moments-based approach to identifi cation in the ARMA(1,1) model. Columns 2 

to 4 show the values of the derivatives of the fi rst 10 autocovariances when the true values of the 

parameters are 1 2
= = 0, = 1φ φ σ . As we can see, the derivatives with respect to 1

φ  and 2
φ  are 

perfectly negatively correlated. Thus the rank of /γ∂ ∂ θ is only 2 and the 1
φ  and 2

φ  are not identi-

fi ed. Columns 5 to 7 similarly show the derivatives of γ evaluated at 1 2
= .7, = .8, = 1φ φ σ . The 

degree of collinearity between 1
/γ φ∂ ∂  and 

2
/γ φ∂ ∂  is .98− , which is high but less than -1. Thus, 1

φ  

and 2
φ  are still identifi ed though weakly.

 Table 1

DERIVATIVE OF THE ACF OF A NARMA PROCESS

( )iγ
1 2
= 0, = 0, = 1φ φ σ

1 2
= .7, = .8, = 1φ φ σ

1
/γ φ∂ ∂

2
/γ φ∂ ∂ /γ σ∂ ∂ 1

/γ φ∂ ∂
2

/γ φ∂ ∂ /γ σ∂ ∂

0  0.00  -0.00  4.00  -1.35  1.57  4.08
1  4.00 -4.00  0.00  3.13 -2.90  -0.35
2  1.60  -1.60  0.00  1.85 -2.03  -0.24
3  0.64  -0.64  0.00  1.05 -1.42  -0.17
4  0.26  -0.26  0.00  0.57 -1.00 -0.12
5  0.10  -0.10  0.00  0.28 -0.70  -0.08
6  0.04  -0.04  0.00 0.11 -0.49  -0.06
7  0.02  -0.02  0.00  0.02 -0.34  -0.04
8  0.01  -0.01  0.00 -0.03  -0.24  -0.03
9  0.00  -0.00  0.00  -0.05  -0.17  -0.02

10  0.00  -0.00  0.00  -0.05  -0.12 -0.01

Source: Author’s calculations.
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3. DSGE MODELS

In this section I discuss parameter identifi cation in DSGE models. I will start with a brief outline of the 

general setup and then turn to analysis of two prototypical DSGE models.

3.1. Generalities

A DSGE model is summarized by a system of non-linear equations. Currently, most studies involving 

either simulation or estimation of DSGE models use linear approximations of the original models. 

That is, the model is fi rst expressed in terms of stationary variables, and then linearized around the 

steady-state values of these variables. Once linearized, most DSGE models can be written in the 

following form: 

0 1 1 2 1 3
( ) = ( ) ( ) ( )

t t t t t
z E z z uθ θ θ θ+ −Γ Γ + Γ + Γ (3.1)

where t
z  is a m −dimensional vector of endogenous and exogenous state variables, and the st ruc-

tural shocks t
u  are independent and identically distributed n -dimensional random vectors with 

= 0, ='
t t t n

Eu Eu u I . The elements of the matrices 0 1 2
,  , Γ Γ Γ  and 3

Γ  are functions of a k − di-

mensional vector of deep parameters θ, where kΘ ⊂ � is a point in k⊂ . The parameter space Θ  is 

defi ned as the set of all theoretically admissible values of θ.

There are several algorithms for solving linear rational expectations models (see for instance Blan-

chard and Kahn (1980), Anderson and Moore (1985), Klein (2000), Christiano (2002), Sims (2002)). 

Depending on the value of θ, there may exist zero, one, or many stable solutions. Assuming that a 

unique solution exists, it can be cast in the following form 

1
= ( ) ( )

t t t
z A z B uθ θ− + (3.2)

where the ( )m m× matrix A and the ( )m n×  matrix B are unique for each value of θ .

The model in (3.2) cannot be taken  to the data directly since some of the variables in t
z  are not ob-

served. Instead, the solution of the model is expressed in a state space form, with a transition equa-

tion given by (7), and a measurement equation 

= ( ) ( )
t t

x s C zθ θ+ (3.3)

where t
x  is a l -dimensional vector of observed state variables, s  is a l -dimensional vector, and C

is a l m× matrix .

The log-likelihood function of the data 1
= [ ,..., ]

T
X x x  may be computed using the Kalman fi lter if the 

structural shocks t
u  are (assumed to be) jointly normally distributed. In this case the expected infor-

mation matrix may be derived analytically as discussed in Iskrev (2008).
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3.2. Identifi cation in the RBC model

The fi rst model I consider is a version of the one-sector stochastic growth model of Hansen (1985) 

with investment-specifi c technology shock. Below I outline the main features of the model. 

3.2.1 The model

The representative household preferences are characterized by the lifetime utility function:

( )0
=0

ln( )t
t t

t

E c nβ φ
∞

−∑ (3.4)

where t
c  is consumption in period t and t

n  is the total labor supplied by the household.

Aggregate output is produced using capital t
k  and labor using the following production function:

(3.5)1= exp( )
t t t t

y z k nα α−

where t
z  is total factor productivity and follows an AR(1) process:

2
1

= ,    (0, )z z
t z t t t z

z zρ ε ε σ− + ∼ (3.6)

The law of motion for aggregate capital is: 

1
= (1 ) exp( )

t t t t
k k u iδ+ − + (3.7)

where tu  is investment-specifi c technology and follows an AR(1) process:

2
1

= ,    (0, )u u
t u t t t u

u uρ ε ε σ− + ∼ (3.8)

The resource constraint of the economy is: 

=
t t t

c i y+ (3.9)

3.2.2 Identifi cation analysis

The model is log-linearized around the deterministic steady state of the variables, and the system is 

expressed as in (3.2). There are four potentially observable variables: output, consumption, hours 

worked and investment. Since there are only two structural shocks, we can use at most two variables 

to estimate the model with maximum likelihood; those may be any two of the for variables, or some 

linear combinations of them. The model has 8 deep parameters, which are collected in the vector 

θ = [ , , , , , , , ]
z u z u

α β δ φ ρ ρ σ σ .

Let us fi rst consider the case of using only one variable. This is an useful exercise as it tells us which 

variable is most informative for which of the (identifi able) parameters In this case in the measurement 

equation (3.3) t
x  and s  are scalars, and C is a row vector with 1 in the position of the observed 
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variable, and zeros elsewhere.

The identifi ability of θ may be established using either the information matrix or the moment-based 

approach. Both show that 2 of the 8 parameters are not identifi ed; these are β and δ , which, when 

there is only one observable variable, and irrespectively which one it is, cannot be identifi ed sepa-

rately. This is easy to see from the fact that the derivatives of the moments with respect to β and δ

are collinear. However, if either β or δ  is known, the remaining 7 parameters are identifi ed. Table 2 

shows the relative asymptotic standard deviations, defi ned as 
ˆ( )

| |
i

i

std θ

θ
, with each observable assuming 

that either β or δ are known. Note that there are substantial differences in the precision with which 

the parameters may be estimated depending on which variable is used and also on whether β or δ

is known. For instance, output (y) is most informative for α if β is known and δ is estimated, but 

hours worked (n) is most informative when β is estimated and δ is known.

The reason why the relative standard deviations are reported is that they provide a measure of the 

identifi cation strength which is independent of the value of the parameter. This permits us to deter-

mine which parameters are relatively better and which are relatively worse identifi ed.  

The results in Table 2 suggest that although it is possible to estimate most parameters with only one 

observable, the estimates are likely to be very imprecise. With two observed variables there is much 

more information about the parameters, and thus the estimation uncertainty, captured by the asymp-

totic standard deviation, is greatly reduced. This can be seen in Table 3, which reports the relative 

asymptotic standard deviations with each pair of observables. From the table we can see that all 

parameters are identifi ed; generally, the best identifi ed parameters are β , z
ρ  and u

ρ , while the 

worst identifi ed are φ , z
σ  and u

σ .  

To determine the causes for why some parameters are better and other worse identifi ed, we can use 

a decomposition of the information matrix analogous to that in equation (2.6). Using it, we can ex-

press the relative standard deviation for a given parameter as a product of two terms: a sensitivity 

component, which is large for parameters which do not play an important role in the model, and a 

collinearity component, which is large for parameters whose role in the model is easy to approximate 

with other parameters. This decomposition is shown in Table 4. We can see that the reason why β  

Table 2

IDENTIFCATION STRENGTH IN THE RBC MODEL WITH ONE OBSERVABLE

Par. true c y i n c y i n

α 0.670  187  35  135  62  197  97 11797  30

φ 0.025  981  3103  656  268  fi xed  fi xed  fi xed  fi xed

δ  0.980  fi xed  fi xed  fi xed  fi xed  26  98 1667  6.1

β 2.000  287  652  918  8.4  289 1246  58  47
0.950  5.6  20  37  29  5.6  20  37  29
0.970  8.6  17  32  20  8.6  17  32  20
1.000  241  103  545  952  250  257  7497  1097
1.000 306  1843  2401  1051  289  2102  927  929

Source: Author’s calculations.
Note: Each column of the table shows the relative asymptotic standard deviations of θ when there is only one observed variable (shown in the fi rst row)and 
either β  or δ  is assumed known. The results are obtained using the expected information matrix and T=100.

z
ρ

u
ρ

z
σ

u
σ
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is so well identifi ed is that its sensitivity component is very low; this implies that β  is a very important 

determinant of the empirical properties of the model variables. On the other extreme is φ , which has 

very large sensitivity component, and because of that is the worst identifi ed parameter. Strong col-

linearity explains the different strength of identifi cation of z
σ  and u

σ  which have the same sensitivity 

components. Other parameters with strong collinearity are α , δ  and u
ρ . As was already discussed 

in Section 2, strong collinearity implies that two or more parameters play similar role in the model. It 

is interesting to know what these parameters are. A simple way to fi nd out is to compute coeffi cients 

of pairwise collinearity, which measure how similar the effects of two parameters are. This is done in 

Table 5 and we can see that there is a strong negative collinearity between u
σ  and u

ρ  on one hand 

and between β and δ , on the other. Thus, having higher volatility of the investment specifi c shock is 

similar to having lower persistence of the same shock, and having more patient consumers is similar 

to having lower depreciation rate. Furthermore, we can also see that when the included observables 

Table 3

IDENTIFCATION STRENGTH IN THE RBC MODEL WITH TWO OBSERVABLES

 Par. true (c,y) (c,i) (c,n) (y,i) (y,n) (i,n)

α 0.670  0.325  0.274  0.321  0.285  0.307  0.288

δ 0.025  1.027  0.454  1.125  0.454  1.119  0.453

β 0.980  0.024  0.025  0.025  0.018  0.025 0.021

φ 2.000  3.005  1.958  1.178  1.420  1.164  0.726

z
ρ 0.950  0.033  0.059  0.033  0.050  0.033  0.043

u
ρ 0.970  0.052  0.051  0.051 0.051  0.050  0.052

z
σ 1.000  0.299 0.381  0.295  0.264  0.283  0.346

u
σ 1.000  0.604  0.606  0.590  0.679  0.582  0.717

Source: Author’s calculations.
Note: Each column of the table shows the relative asymptotic standard deviations of θ when there are only two observed variables (shown in the fi rst row)
The results are obtained using the expected information matrix and T=100 .

Table 4

SENSITIVITY AND COLLINEARITY IN THE RBC MODEL WITH TWO OBSERVABLES

Par. (c,y) (c,i) (c,n) (y,i) (y,n) (i,n)

sens. col. sens. col. sens. col. sens. col. sens. col. sens. col.

α 0.056  5.8  0.028  9.7  0.057  5.7  0.014  19.8  0.057  5.4  0.003  93.2

δ  0.191  5.4  0.087  5.2  0.191  5.9  0.045  10.0  0.192  5.8  0.015  30.0

β  0.005  4.8  0.005  5.0  0.005  5.0  0.001  13.6  0.005  5.0  0.000  73.4

φ  2.374  1.3  1.799  1.1  1.127  1.0  1.195  1.2  1.100  1.1  0.647  1.1

z
ρ  0.014  2.4  0.014  4.2  0.014  2.4  0.014  3.6  0.014  2.4  0.014  3.1

u
ρ  0.008  6.5  0.008  6.5  0.008  6.4  0.008  6.5  0.008  6.4  0.008  6.5

z
σ  0.071  4.2  0.071  5.4  0.071  4.2  0.071  3.7  0.071  4.0  0.071  4.9

u
σ  0.071  8.5  0.071  8.5  0.071  8.3  0.071  9.6  0.071  8.2  0.071  10.1

Source: Author’s calculations.
Note: Each column of the table shows the sensitivity and collinearity components of the relative asymptotic standard deviations of θ when there are two 
observed variables (shown in the fi rst row).The results are obtained using the expected information matrix and T=100 .
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are output and investment, α  is strongly collinear with both β and δ . This means that the effect of 

these parameters on the moments and cross moments of output and investment are diffi cult to dis-

tinguish.  

3.3. Identifi cation in the New Keynesian model

In this section I consider a small-scale New Keynesian model studied in An and Schorfheide (2007). 

A brief description of the model follows. 

3.3.1 The model

The representative household maximizes lifetime utility function 

(3.10)

1

=0

( / 1)
[ ( )],

1
s t s t s

t t s
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τ
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τ

−∞
+ +

+

−
−

−∑

subject to a budget constraint: 

(3.11)
1 1

= ,
t t t t t t t t t t t t t

PC B T PW N R B PD PSC− −+ + + + +

where t s
C +  is consumption, ( )

t s
N j+  is hours worked, t

P  is the price of the fi nal good, t
W  is the real 

wage, t
R  is the interest on the governme nt bonds t

B , t
D  is the residual real profi t, t

T  is lump-sum 

taxes and t
SC  is net cash fl ow from trading state-contingent securities. t

A  is stock of habit given by 

the level of technology in the intermediate good sector, and evolves according to 

2
1

ln = ln ln ,     ln = ln ,    (0, )z z
t t t z t t t z

A z z zγ ρ ε ε σ−Δ + + ∼ �

There is a perfectly competitive sector producing a single fi nal good from intermediate inputs ( )
t

Y j  

using the technology 

Table 5
STRONGEST PAIRWISE COLLINEARITY IN THE RBC MODEL WITH TWO OBSERVABLES 

Par. (c,y) (c,i) (c,n) (y,i) (y,n) (i,n)

pcol par. pcol par. pcol par. pcol par. pcol par. pcol par. 

α . 0.70 z
σ

 -0.95 β  0.71 z
σ

 -0.98 δ  0.71 z
σ

 -0.999 β  

δ  -0.97 β -0.74 α  -0.98 β  -0.98 α  -0.98 β  -0.997 α  

β  -0.97 δ  -0.95 α  -0.98 δ  -0.96 α  -0.98 δ  -0.999 α  

φ  0.12 α  0.04 α  -0.04 α  0.04 α  -0.06 α  -0.004 α  

z
ρ  -0.56 β  -0.65 α  -0.56 β  -0.49 α  -0.56 β  -0.12 β  

u
ρ  -0.97 u

σ
 -0.97 u

σ
 -0.97 u

σ
 -0.97 u

σ
 -0.97 u

σ
 -0.97 u

σ
 

z
σ

 0.70 α  0.72 α  0.71 α  0.45 α  0.71 α  -0.71 δ  

u
σ

 -0.97 u
ρ

 -0.97 u
ρ

 -0.97 u
ρ

 -0.97 u
ρ

 -0.97 u
ρ

 -0.97 u
ρ

 

Source: Author’s calculations.
Note: The table shows which parameters are most strongly related to each deep parameter as well as the value of the pairwise collinearity (pcol) coeffi cients.
The results are obtained using the expected information matrix and T=100. 
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11
1 1

0
= ( ( ) )

t t
Y Y j djν ν− −∫ (3.12)

The fi nal goods fi rm maximize profi ts given by 

1

0
( ) ( ) ,

t t t t
PY P i Y i di−∫ (3.13)

where ( )
t

P i  is the price of intermediate good ( )
t

Y i .

Intermediate goods are produced in a monopolistically competitive sector. Each varie ty i is produced 

by a single fi rm using the following production technology: 

( ) = ( )
t t t

Y i AN i (3.14)

The intermediate goods fi rm j maximizes the present value of its future profi ts 

(3.15)|
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where |t s t
Q +  is the time t value to the consumers of a unit of the fi nal good in period t s+ ; 

2

1

( )
( ) = ( ) ( )

2 ( )
t

t t
t

P j
AC j Y j

P j

φ
π

−

−  is the cost of a djusting prices and π is the steady state rate of infl ation.

The central bank sets the nominal interest rate according to the following rule 

(3.16)
11 1 2

* * * * *
1

= exp( )( ) [( ) ( ) ] ,rt t t tr
t

t

R R Y

Yr r

ρ ψ ψ ρπ
ε

γπ π π
−−

−

where *r  is the steady state real interest rate, t
π  is the gross infl ation rate, *π  is the infl ation target 

rate, and 2(0, )∼rt rε σ�  is a monetary policy shock.

The government collects lump-sum taxes in order to fi n ance its consumption so as to respect the 

following budget constraint 

1 1
= ,

t t t t t t
PG B R T B− −+ + (3.17)

where =
t t t

G Yζ  is government consumption in terms of fi nal good, and = 1 1/
t t

gζ −  where t
g  is 

random variable evolving according to 

2
1

ln = (1 )ln ln ,    (0, )g g
t g g t t t g

g g gρ ρ ε ε σ−− + + ∼ �

3.3.2 Identifi cation analysis

Again, the model is log-linearized around the determini stic steady state of the variables, and the 

system may be expressed as in (3.2). There are four potentially observable variables: output, con-

sumption, infl ation and the nominal interest rate. Since there are only three structural shocks, we can 

use at most three variables to estimate the model with maximum likelihood. The model has 14 deep 
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parameters, which are collected in the vector θ * *
1 2

= [ , , , , , , , , , , , , ,  ]
r g z r g z

rτ ν φ ψ ψ ρ ρ ρ π γ σ σ σ . 

Let us fi rst consider identifi cation with only two observed variables. Two of the 14 parameters, φ and 

ν , are not identifi ed with any pair of observables. Examining the derivatives of the moments shows 

that this is due to the perfect collinearity of the derivatives with respect to these two parameters. 

Therefore, if either one of the two parameters is fi xed, the other one would be identifi ed along with the 

other 12 parameters. An exception to this conclusion is the case when only output and consumption 

are observed. Then we have to fi x three more parameters, in addition to ν  or φ . For example, if we 

fi x ν , 2
ψ , *π  and r

σ , we could identify the remaining 10 parameters.

The reason why the (output,consumption) pair is less informative is that the behavior of the two vari-

ables in the model is very similar. Therefore, consumption adds very little information to that already 

contained in output. This can be seen in Table 6, which shows the asymptotic standard deviations for 

each pair of observables assuming that some of the elements of θ are known. The estimation uncer-

tainty of most parameters is much larger, compared to the other pais of observables, even though 

more parameters are assumed known. Note that, as in the RBC model, there is a substantial differ-

ence in the information content of different variables. Also, which pair of variables is best to use for 

estimation depends on the parameters one is most interested in. For instance, the policy response to 

infl ation parameter 1
ψ  is best identifi ed with ( , )rπ  while the policy response to output growth 2

ψ  is 

best identifi ed with ( , )y r .

Next, consider using three out of the four observables to estimate θ. Table 7 reports the asymptotic 

Table 6

PARAMETER IDENTIFCATION IN THE NKM MODEL WITH TWO OBSERVABLES

Par. true ( , )y π ( , )y r ( , )y c ( , )rπ ( , )cπ ( , )r c ( , )y π ( , )y r ( , )y c ( , )rπ ( , )cπ ( , )r c

τ 2.00 3.9 3.3 554 689 2.3 12 3.9 3.3 554 689 2.3 12

ν 0.10 fi xed fi xed fi xed fi xed fi xed fi xed 7.5 786 614 32 2.7 3160

φ 7.50 8.3 873 682 36 3.0 3511 fi xed fi xed fi xed fi xed fi xed fi xed

1
ψ 1.50 20 11 2719 8.9 206 90 20 11 2719 8.9 206 90

2
ψ 1.00 18 14 fi xed 230 193 72.7 18.4 14.5 fi xed 230 193 72

r
ρ 0.96 0.7 0.5 118 21 7.5 4.5 0.7 0.5 118 21 7.5 4.5

g
ρ 0.95 0.95 0.7 0.1 fi xed fi xed 21 0.2 0.7 0.1 fi xed 21.7 0.2

z
ρ 0.65 0.8 0.9 111 34 0.3 0.3 0.8 0.9 111 34 0.3 0.3

*r 0.40 3927 4432 293802 13845 562 17825 3927 4432 293802 13845 562 17825

*π 4.00 0.3 443 fi xed 0.3 0.3 1782 0.3 443 fi xed 0.3 0.3 1782

γ
0.50 0.3 0.3 0.3 2769 0.3 0.3 0.3 0.3 0.3 2769 0.3 0.3

r
σ 0.20 26 1.9 fi xed 493 18 11 26 1.9 fi xed 493 18 11

g
σ 0.80 2.7 2.0 0.1 596 276 80 2.7 2.0 0.1 596 276 80

z
σ 0.45 1.5 1.7 207 139 0.5 0.5 1.5 1.7 207 139 0.5 0.5

Source: Author’s calculations.
Note: Each column of the table shows the relative asymptotic standard deviations of θ when there are two observed variables (shown in the fi rst row)and some 
deep parameters are assumed known. The results are obtained using the expected information matrix and T=100.
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standard deviations for each triplet of observables assuming that either ν  or φ is known. As in Table 

6, which one of the two parameters is fi xed has no effect on the standard deviation of the other pa-

rameters. Worst identifi ed with all combinations of observables are the response coeffi cients of the 

Taylor rule ( 1
ψ  and 2

ψ ), the price stickiness and inverse elasticity of demand parameters 

(φ and ν ), and the steady state interest rate ( *r ); best identifi ed are the interest rate smoothing 

parameter ( r
ρ ) and the government consumption shock parameter g

ρ .  

Table 8 shows the decompositions of the relative standard deviations into sensitivity and collinearity 

components. Note that most of the worst identifi ed parameters are also the ones with the largest col-

linearity components. Thus, these parameters are poorly identifi ed because their effects on the em-

pirical properties of the observables are easy to mimic with other parameters. An exception is *r , 

which is poorly identifi ed because of the very large sensitivity component. This implies that the value 

of *r  is of little consequence empirically. Note that both *r  and *π  have huge collinearity compo-

nents when π is not among the observables. For example, the value for *π  translates into a multiple 

collinearity coeffi cient of  .999999875 .1 This means that *π  is almost impossible too distinguish from 

other model parameters unless its effect on infl ation is accounted for. Computing the pairwise collin-

earity coeffi cients, reported in Table 9, shows that when infl ation is not among the observables, the 

collinearity between *π  and *r  is .966 . There we also see that the policy response to infl ation 1
ψ  is 

highly collinear with either the price stickiness parameter φ or the interest rate smoothing parameter 

(1) The multiple collinearity coeffi cient measures the degree of collinearity between a given parameter and all other model parameters.

Table 7

PARAMETER IDENTIFCATION IN THE NKM MODEL WITH THREE OBSERVABLES

Par. true ( , , )y rπ ( , , )y cπ ( , , )y r c ( , , )r cπ ( , , )y rπ ( , , )y cπ ( , , )y r c ( , , )r cπ

τ 2.00 0.36 0.56  0.26  0.32  0.36  0.56 0.26 0.32

ν 0.10 fi xed fi xed fi xed fi xed 0.71 1.36 188.38 0.72

φ 7.50 0.79 1.52 209.31 0.80 fi xed fi xed fi xed fi xed

1
ψ 1.50 1.24 1.37 1.06 3.58 1.24 1.37 1.06 3.58

2
ψ 1.00 1.41 1.36 1.18 3.28 1.41 1.36 1.18 3.28

r
ρ 0.96 0.03 0.10 0.03 0.14 0.03 0.10 0.03 0.14

g
ρ 0.95 0.03 0.04 0.04 0.03 0.03 0.04 0.04 0.03

z
ρ 0.65 0.27 0.29 0.27 0.21 0.27 0.29 0.27 0.21

*r 0.40 3.40 323.22 1062.13 3.39 3.40 323.22 1062.13 3.39

*π 4.00 0.31 0.31 106.21 0.31 0.31 0.31 106.21 0.31

γ
0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

r
σ 0.20 0.39 2.32 0.28 0.35 0.39 2.32 0.28 0.35

g
σ 0.80 0.15 0.07 0.07 2.22 0.15 0.07 0.07 2.22

z
σ 0.45 0.30 0.35 0.33 0.17 0.30 0.35 0.33 0.17

Source: Author’s calculations.
Note: Each column of the table shows the relative asymptotic standard deviations of θ when there are two observed variables(shown in the fi rst row) and 
and either ν  or φ  is assumed known. The results are obtained using the expected information matrix and T=100.
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Table 8

SENSITIVITY AND COLLINEARITY IN THE NKM MODEL WITH THREE OBSERVABLES

Par. ( , , )y rπ ( , , )y cπ ( , , )y r c ( , , )r cπ

sens. col. sens. col. sens. col. sens. col.

τ 0.045 8.1 0.043 13.1 0.027 9.7 0.030 10.7

φ 0.022 36.8 0.067 22.6 0.402 520.5 0.038 21.3

1
ψ 0.011 116.4 0.073 18.9 0.029 36.5 0.016 220.6

2
ψ 0.021 66.7 0.295 4.6 0.058 20.4 0.035 93.6

r
ρ 0.001 44.5 0.003 34.3 0.002 15.7 0.001 152.7

g
ρ 0.010 2.9 0.041 1.0 0.026 1.5 0.013 2.4

z
ρ 0.109 2.4 0.100 2.9 0.078 3.5 0.088 2.4

*r 0.431 7.9 21.597 15.0 0.550 1932.4 0.432 7.9

*π 0.010 29.7 0.033 9.3 0.053 2003.3 0.017 18.2

γ
0.082 3.1 0.247 1.0 0.107 2.4 0.082 3.1

r
σ 0.071 5.5 0.070 33.0 0.071 4.0 0.070 5.0

g
σ 0.071 2.1 0.071 1.0 0.071 1.0 0.071 31.4

z
σ 0.071 4.3 0.071 4.9 0.071 4.6 0.071 2.4

Source: Author’s calculations.
Note: Each column of the table shows the sensitivity and collinearity components of the relative asymptotic standard deviations of when there are three 
observed variables (shown in the fi rst row).The results are obtained assuming = .10ν  is known, and using the expected information matrix with T=100.

Table 9

STRONGEST PAIRWISE COLLINEARITY IN THE NKM MODEL WITH THREE OBSERVABLES

Par. ( , , )y rπ ( , , )y cπ ( , , )y r c ( , , )r cπ

pcol. par. pcol. par. pcol. par. pcol. par.

τ -0.76 r
ρ  -0.90 φ -0.95 r

ρ -0.68 r
ρ

φ 0.96
*π 0.99

*π 0.76 r
σ 0.90

*π

1
ψ 0.92 φ  -0.97 r

ρ -0.91 r
ρ -0.89 r

ρ

2
ψ -0.91 1

ψ -0.87
*r -0.89 1

ψ -0.89 1
ψ

r
ρ -0.96 φ 0.99 r

σ -0.95 τ -0.89 1
ψ

g
ρ -0.70 g

σ -0.04 g
σ -0.21 2

ψ -0.90 g
σ

z
ρ -0.29 2

ψ 0.87 z
σ 0.95 z

σ 0.80 z
σ

*r 0.94
γ

0.98 φ 0.97
*π 0.94

γ

*π 0.96 φ 0.99 φ 0.97
*r 0.90 φ

γ
0.94

*r 0.03
*π 0.91

*r 0.94
*r

r
σ 0.11 r

ρ 0.99 r
ρ 0.76 φ 0.35 r

ρ

g
σ -0.70 g

ρ -0.04 g
ρ -0.01 g

ρ -0.90 g
ρ

z
σ 0.42 2

ψ 0.87 z
ρ 0.95 z

ρ 0.80 z
ρ

Source: Author’s calculations.
Note: The table shows which parameters are most strongly related to each deep parameter as well as the value of the pairwise collinearity coeffi cients (pcol).
The results are obtained assuming = .10ν  is known, and using the expected information matrix with T=100. 
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r
ρ , while the response to output 2

ψ  is highly collinear with either 1
ψ  or *r . 

4. CONCLUDING REMARKS

In the recent years DSGE models are increasingly becoming an important tool for quantitative policy 

analysis. This has lead to a considerable research effort aimed to increasing the models’ complexity 

and realism. As the number of number of features represented in the models increases, it becomes 

very diffi cult to understand by reasoning alone their separate contribution to the model performance 

vis-a-vis the reality they are supposed to explain. In this note I have tried to show that studying pa-

rameter identifi cation may provide useful insights regarding the model parameters and the structural 

features they represent. The strength of parameter identifi cation refl ects their importance in deter-

mining the empirical implications of the model. Weak identifi cation arises when some model features 

have little empirical relevance; this may occur either because they are unimportant on their own, or 

because they are redundant given the other features represented in the model. Since DSGE models 

provide a complete characterization of the dynamics of the model variables, parameter identifi cation 

may be treated as a property of the underlying model and studied without a reference to a particular 

data set. I have illustrated this approach to parameter identifi cation using two canonical macroeco-

nomic model - a real business cycle model and a new Keynesian model. One limitation of this analy-

sis is that only a single parameter value was considered. To obtain a complete picture of identifi cation 

as a property of the model, one has to study it across different theoretically plausible parameter 

values. For a more detailed discussion of this and other important aspects of the a priori analysis of 

identifi cation, the reader may consult the papers cited in the introduction.
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