# MYTHS AND FACTS REGARDING THE PORTUGUESE LABOUR MARKET THE TRAGIC FATE OF COLLEGE GRADUATES\*

Pedro Portugal\*\*

*"As with all things that seem to be right and gain common currency, this is simply wrong; if it weren't, they wouldn't have become common currency."* 

Notas para a Recordação do meu Mestre Caeiro Álvaro de Campos

## 1. INTRODUCTION

There seems to be a general perception in Portugal that those with higher educational qualifications find it much more difficult to enter a profession. This idea is fed periodically by news of unemployment among graduates and is frequently exaggerated by the associations that represent the professions. Whether either generalisation is extrapolated from a neutral standpoint is open to question. Unemployment among graduates is a relatively unusual situation and the phenomenon tends to attract disproportionate attention in the media (in this case it obeys the law that what makes the news is "man bites dog" and not the opposite). It is also in the interest of graduates represented by corporate organisations to cut back on the numbers of new graduates in order to protect their salary levels.

This article will attempt to show that investment in higher education, counter to the idea spread about by what seems to be common sense, offers an exceptional rate of return in the Portuguese labour market. The aim is to make an accurate assessment of the conditions which govern the decision faced by thousands of families whether to make an investment in human capital by financing (or not) the opportunity to obtain a higher education qualification.

## 2. HOW MUCH IS A DEGREE WORTH?

It is very simple to present the basic arithmetic of investment in a higher education course. Once secondary education is over, the youngster (and his or her family) will have to balance the cost of doing a higher education course with the hopedfor benefit that will ensue. Put in other words, the young student will have to compare two distinct professional careers: one that can be started with the existing academic training and one that will be ensured by getting a degree.

In money terms, the decisive element in the cost of this investment corresponds to the total salary which will be foregone during the period of training. In addition, there will be the costs (books and other materials), fees and fares for transport

<sup>\*</sup> The views expressed are those of the author and not necessarily those of the Banco de Portugal. I would like to thank Mário Centeno, José António Machado, Pedro Martins and Maximiano Pinheiro for their comments and suggestions. This text was also enriched from a discussion with students on the Labour Economics course which is part of the degree course in Economics at the Economics Faculty of the Universidade Nova in Lisbon. Thanks are also due to Lucena Vieira for his excellent IT support.

<sup>\*\*</sup> Economic Research Department

|          | 1 1                |     | -1 |
|----------|--------------------|-----|----|
| <b>a</b> | h                  |     |    |
| ւս       | $\boldsymbol{\nu}$ | LC. | 1  |
|          |                    |     |    |

# NET WAGES PER AGE GROUP AND LEVEL OF SCHOOLING

|       | Primary<br>(4 years) | Up to man-<br>datory<br>minimum<br>schooling<br>(9 years) | Secondary<br>completed<br>(12 years) | College<br>degree<br>(16-18 years) |
|-------|----------------------|-----------------------------------------------------------|--------------------------------------|------------------------------------|
| 15-19 | 368                  | 389                                                       | 406                                  |                                    |
| 20-29 | 462                  | 484                                                       | 554                                  | 893                                |
| 30-39 | 476                  | 645                                                       | 778                                  | 1187                               |
| 40-49 | 511                  | 732                                                       | 902                                  | 1684                               |
| 50-59 | 563                  | 809                                                       | 1100                                 | 1915                               |
| 60-69 | 543                  | 917                                                       | 967                                  | 1450                               |

Source: "Employment Survey 2003", 2nd quarter. Net wages in euros.

when this is justified by the need to get an academic qualification.

The desired return in financial terms corresponds to the accumulation of earned income provided by higher education over the normal span of a professional working life.

This study is based on a simulation of the conditions underlying a decision made by someone finishing secondary education in the summer of 2003 and thinking of going on to further education. Material for this work was used from the information contained in the individual records of the household employment survey made during the second quarter of 2003.

Table 1 summarises the information from the sample relating to the average value of net salaries per age group and level of schooling for workers in salaried employment interviewed by the National Statistics Institute (around 10,000 workers). This Table illustrates clearly the normal pattern of wage growth over the working life cycle. Economists who specialise in the labour market associate this with the investment in human capital in the workplace (professional experience), along with the return on investment in formal education<sup>(1)</sup>.



It would be useful to hold on to this idea, i.e. that there would seem to be a significant boost to salary if you are a graduate, compared with workers who have only completed their secondary education. The contrast between the earnings of these two classes of worker will be the basis for the calculation of the costs of and the benefits to be gained from getting a degree. It is implicit that graduates if they didn't have a degree would be earning the salaries of workers with only their secondary education and *vice versa*. But it is postulated that the current age profile for salaries can be extrapolated for the future pattern of earnings.

Chart 1 shows the salary profile of the two groups of workers over an active working life cycle that runs from age 20 to age 60. Taken that workers receive 14 salary payments per year and that a graduate course lasts 4 years, the salary loss over that period will be € 26,625. Over and against this, the accumulated value (between age 24 and age 60) deriving from the extra salary they receive (salary differential) is around € 330,300. What matters also to the worker, of course, is whether this income is received in the present or in the future. Calculating the net value of the investment means that we have to find a discount rate for this. For a real discount rate of 2 per cent, the up-dated value of the cost (C) and the benefit (B) from getting a degree can be calculated as follows:

In a regression equation where there is control over the observed characteristics of workers, it is estimated that a graduate receives on average a salary 80.2% higher than a worker with only secondary education.

$$C = \sum_{age=20}^{23} \frac{W_{age}^{S}}{(1+0.02)^{age-20}}$$
$$B = \sum_{age=24}^{60} \frac{\left(W_{age}^{L} - W_{age}^{S}\right)}{(1+0.02)^{age-20}}$$

where  $W^{S}$  is the net salary of a worker with secondary education and  $W^{L}$  is the net salary of a graduate.

We can thus obtain a present-day value for an investment cost of  $\notin$  25,823 and this is a return of  $\notin$  201,286, with a net benefit of  $\notin$  175,462. Another way of expressing this result is to state that the investment in a degree guarantees a real rate of return of 15%, which is truly exceptional.

## 3. COULD THIS VALUE BE EXAGGERATED?

There are a number of reasons for thinking that a simple arithmetic exercise could exaggerate the monetary value of a degree out of all proportion. For a start, we have left out of the equation the expenditure related to academic materials and fees. These expenses are a cost, but they are in fact only a small fraction of the investment cost and an even less significant slice of the benefit stemming from the investment. Moreover, no account was made of the accommodation expenses run up by the families of students in higher education. These costs should only be included, however, if workers with no more than secondary education do not generate such costs, which is far from guaranteed. Costs with food and drink should not, logically, be considered unless they are seen as a benefit, given the circumstances of students in higher education benefiting from the lower prices in canteens subsidised by the state. There are also the psychological effects incurred by getting a degree. These costs, nevertheless, would have to be contrasted with the psychological wear and tear on workers who enter the labour market earlier.

There are in fact three lines of arguments that tend to counter the validity of the exercise. In the first case there is the fact that part of the differential in wages can be attributed to the individual's inherent skills (or those acquired outside of the school environment) and these are associated with a higher academic attainment (ease in learning, self-discipline, motivation etc.). Research based on monitoring siblings and twins (even perfectly alike) who have different schooling have not validated this hypothesis<sup>(2)</sup>.

In the second case, the conjecture is that getting a higher education diploma does not add anything to the productive skills of the students. The education system simply indicates for employers those workers who have greater skills, those that learn more easily and that therefore will be more productive. In this case it will still be worth while from a private viewpoint to invest in acquiring signs ("sheepskin") that will be recognised in the labour market.

In the third case, maybe it is not legitimate to presume that workers with a degree would get the salaries associated with non-graduates, should they have started their working lives earlier. It is not clear, however, what exact bias would be visible since there is not enough comparable information. Would a skilled worker become successful if he or she was a lawyer? Would a surgeon do an administrative assistant's job competently? Maybe workers determine their professional options (if they choose for themselves) as a function of the performance expected in their profession<sup>(3)</sup>. Luckily, those empirical studies that have sought to determine the impact of auto-selection in the choice of profession have concluded that this effect is very slight.

## 4. IS THE VALUE TOO LOW?

It is also possible to postulate that the estimate of monetary benefits from getting a degree is too low. In the first place, we have only considered the income difference up to age 60. Graduates, however, are likely to benefit from earnings above those of workers with secondary education beyond the age of 60 (both in terms of income and pension)<sup>(4)</sup>. In the second place, the calculations

<sup>(2)</sup> An identical conclusion has been reached on the basis of study of the changes exogenous to levels of schooling (for example, in compulsory schooling) and also from estimates using instrumental variables (Card, 1999).

<sup>(3)</sup> It might even be that the earnings profile of graduates reflects in part the greater investment in human capital over the span of a professional career. There is, in fact, some empirical evidence to support the notion of a greater mesh between schooling and in-company professional training. This possibility change the view of what makes up the investment in human capital but it does not run counter to the overall idea of benefit to be gained from an investment in academic training.

did not include other forms of income, only salary. It is also likely that graduates will keep a greater income differential through other ways of being paid. In the third place, we must bear in mind that the comparison was only made with between salaried workers. The self-employed did not come into the frame, through lack of information about their income. It could well be that graduates who are self-employed earn more than those who are salaried.

Looking at the possibility of there being an under-estimate or an over-estimate of the return on the investment in higher education, it seems clear that the figure put forward is closer to the lower end of the variation interval than the higher.

## **5. OTHER ADVANTAGES**

Other advantages from getting a degree could be mentioned here. The workplace for graduates is usually more pleasant and amenable and graduates are less likely to be subject to changes in work-flow stemming from production technology. Apart from this, they can be more flexible in terms of their working day.

Better academic training also increases the productivity associated with the household. In particular, there is the effect of human capital quality on the investment in children. There is no shortage of information on the importance of knowledge transfer between generations in the accumulation of human capital.

Graduates are also favoured by more job security. This observation is clear from looking at Table 2, which shows that it is unlikely to find a graduate out of work.

It is in fact 1.74 times more frequent to see a worker with secondary schooling out of work than a worker with further education. When the comparison is made with young people who go out to work at the minimum school leaving age, they are three times as likely to be out of the labour force [at some time in their working life] as the graduate.

In terms of fixed-term contracts and part-time work, the differences between graduates and those who only have secondary education are not significant. For both groups, the incidence is clearly

## Table 2

## **EMPLOYMENT STABILITY**

Table of relative risks

|                                            | Primary<br>(4 years) | Up to<br>manda-<br>tory<br>minimum<br>schooling<br>(9 years) | Secondary<br>completed<br>(12 years) | College<br>degree<br>(16-18<br>years) |
|--------------------------------------------|----------------------|--------------------------------------------------------------|--------------------------------------|---------------------------------------|
| Unemployment Fixed-term contract Part-time | 3.02                 | 3.00                                                         | 1.74                                 | 1.00                                  |
|                                            | 2.24                 | 1.43                                                         | 0.98                                 | 1.00                                  |
|                                            | 3.76                 | 1.30                                                         | 1.05                                 | 1.00                                  |

Source: "Employment Survey 2003", 2nd quarter.

Note: Values were obtained on the basis of a logit regression which also includes binary variables for age, nationality, professional training and gender. A total of 15470 variations was used.

lower than for those workers with even fewer academic qualifications.

Once formal education is considered as an investment in human capital, it is not surprising that there are considerably more offers of work for graduates than for non-graduates. Being inactive is clearly less frequent among graduates and it is much more common to find a graduate with a second income (see Table 3). There is a high level of graduates in public administration and this helps to explain the lower job rotation and the fewer number of hours worked among those with further education (Table 4).

# 6. HIGHER EDUCATION COURSE ARE NOT HOMOGENEOUS

The Portuguese education system offers a wide range of training at higher education level. The labour market, of course, does not give equal value to different educational areas. Table 5 shows the average (gross) earnings of 100,000 workers, divided according to type of further education, based on the individual records of the October 1999 Staffing Levels.

The technology areas account for 7 out of the 10 best paid groups, and graduates from these groups get a better reception in the private sector. They outperform the courses in humanities and

<sup>(4)</sup> There is also the point that graduates can expect to live longer.

# Table 3

# LABOUR SUPPLY

#### Table of relative risks

|                       | Primary<br>(4 years) | Up to<br>manda-<br>tory<br>mini-<br>mum<br>schooliną<br>(9 years) | Second-<br>ary com-<br>pleted<br>(12 years) | College<br>degree<br>(16-18<br>years) |
|-----------------------|----------------------|-------------------------------------------------------------------|---------------------------------------------|---------------------------------------|
| Inactivity            | 5.71                 | 4.07                                                              | 3.67                                        | 1.00                                  |
| Second job            | 0.66                 | 0.30                                                              | 0.32                                        | 1.00                                  |
| Public Administration | 0.07                 | 0.16                                                              | 0.21                                        | 1.00                                  |

Source: "Employment Survey 2003", 2nd quarter.

social sciences (with the exception of economics and the law)<sup>(5)</sup>.

It is important, however, to underline the fact that this list does not cover workers in public administration. This area takes in a significant number of graduates, amounting to nearly 50%.

There is also no distinction which can be drawn between along the lines of state and private education establishments. There is, however, a well-known link between the growth of graduates from private institutions and an increase in the variation in earnings.

In 2001, INOFOR (The Institute for Training Innovation) carried out a survey of the graduate employment situation for 1994/95, five years after they graduated. The information fits well with what comes from the Staffing Levels (see Table 6). Above all, there is confirmation of a significantly larger salary for those in technology (especially those with a degree in Computer Studies). When assessing salaries, it is interesting to note that there is an increase according to the final grades awarded (almost 3.8% for each additional point). This indicates a greater investment in human capital (or a clear indication that employers see greater potential productivity) and there is a beneficial ef-

#### Table 4

# JOB TURNOVER AND HOURS OF WORK

|                                          | Primary<br>(4 years) | Up to<br>manda-<br>tory<br>mini-<br>mum<br>schooling<br>(9 years) | Second-<br>ary com-<br>pleted<br>(12 years) | College<br>degree<br>(16-18<br>years) |
|------------------------------------------|----------------------|-------------------------------------------------------------------|---------------------------------------------|---------------------------------------|
|                                          |                      |                                                                   |                                             |                                       |
| Jobs                                     | 3.17                 | 2.85                                                              | 2.64                                        | 2.35                                  |
| Hours worked<br>(weekly)                 | 40.17                | 40.38                                                             | 39.53                                       | 37.19                                 |
| Hours spent in<br>second job<br>(weekly) | 13.70                | 13.80                                                             | 15.70                                       | 10.60                                 |

Source: "Employment Survey 2003", 2nd quarter. Net wages in euros.

fect stemming from the academic level of the parents on the salaries of their children, suggesting the transmission of human capital through the generations<sup>(6)</sup>.

# 7. THE COLLEGE WAGE PREMIUM IN AN INTERNATIONAL CONTEXT

Technological changes over the past 20 years have led to an increasing demand for skilled workers. This caught the Portuguese labour market by surprise and there has been a shortage of available skilled manpower. It was probably this shortage that led to a significant increase in the extra income for workers with a higher education course up to the mid-90s (Cardoso, 1998 and Machado and Mata, 2001). There would seem to have been a persistently wide gap during that period between workers with and without a degree.

A number of studies have established comparisons between salary differentials at international level. They are not substantially different from the conclusion that the Portuguese market unusually

Note: Values were obtained on the basis of a logit regression which also includes binary variables for age, nationality, professional training and gender. A total of 15470 variations was used.

<sup>(5)</sup> Looking only at young workers does not invalidate the findings presented in the list.

<sup>(6)</sup> There is a penalty attached to course supplied by Polytechnics over Universities (almost 23% in salary terms), though this may be partially explained by the fact that Polytechnic courses tend to be shorter.

<sup>(7)</sup> See OECD, 2003 and Martins and Pereira, 2003.

## Table 5

# AVERAGE EARNINGS BY TYPE OF DEGREE

| Subject                                                                                                                                                          | Numbers      | Income average<br>(escudos | Numbers               | Income average<br>(escudos |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|-----------------------|----------------------------|
|                                                                                                                                                                  | Total sample |                            | Under 35 years of age |                            |
| Engineering (energy); power systems; energy; production                                                                                                          |              |                            |                       |                            |
| technology and energy                                                                                                                                            | 4 042        | 529 386                    | 1 515                 | 395 265                    |
| aeronautics; aerospace                                                                                                                                           | 1 913        | 518 926                    | 982                   | 411 980                    |
| Dentistry/medicine                                                                                                                                               | 1 108        | 505 903                    | 172                   | 404 481                    |
| Mechanical engineering; electro-mechanics;                                                                                                                       | 4.007        | 472 142                    | 1 6 4 0               | 224 240                    |
| Chemical engineering; physics; applied physics<br>(technology); biotechnology; biophysics;<br>polymer biology; engineering for ceramics and                      | 4 007        | 473 143                    | 1 049                 | 334 340                    |
| civil engineering; project engineering and project management;                                                                                                   | 2 234        | 452 786                    | 1 082                 | 326 073                    |
| geological engineering; water resources engineering;                                                                                                             | 5 252        | 446 707                    | 2 427                 | 212 072                    |
| Economics finance economics for business and applied                                                                                                             | 5 552        | 440 707                    | 2 437                 | 512 075                    |
| mathematics for economics and management                                                                                                                         | 10 426       | 437 734                    | 5 833                 | 319 210                    |
| Mine engineering; metallurgy and metalo-mechanics                                                                                                                | 351          | 429 751                    | 176                   | 295 959                    |
| Law                                                                                                                                                              | 3 893        | 412 929                    | 1 753                 | 279 046                    |
| Computer technology; systems engineering and IT;<br>automation and control; computation;                                                                         |              |                            |                       |                            |
| Information systems                                                                                                                                              | 2 070        | 401 481                    | 1734                  | 377 069                    |
| Physics; chemistry; physical chemistry; industrial chemistry;<br>Physics and technology: biochemistry                                                            | 511          | 386 108                    | 287                   | 284 562                    |
| Mathematics and statistics                                                                                                                                       | 1 479        | 383 381                    | 1 067                 | 342 136                    |
| Psychology                                                                                                                                                       | 1 288        | 380 930                    | 725                   | 253 941                    |
| Accountancy, company organisation and management                                                                                                                 | 13 760       | 366 704                    | 9 790                 | 299 806                    |
| Pharmaceutical science                                                                                                                                           | 1 963        | 366 248                    | 1 111                 | 321 282                    |
| Production engineering and industrial maintenance: industrial                                                                                                    | 1,000        | 000 110                    |                       |                            |
| management and engineering                                                                                                                                       | 533          | 354 861                    | 383                   | 301 863                    |
| Veterinary science                                                                                                                                               | 199          | 354 598                    | 89                    | 296 689                    |
| Biology                                                                                                                                                          | 402          | 344 172                    | 245                   | 288 692                    |
| Agricultural engineering for food production;<br>agrarian science; nutrition; engineering for foodstuff;<br>horticultural engineering; oenology; animal studies; |              |                            |                       |                            |
| zoology                                                                                                                                                          | 1 374        | 340 873                    | 749                   | 264 615                    |
| History and philosophy                                                                                                                                           | 1 508        | 339 361                    | 542                   | 256 097                    |
| IT of management; technologies for management                                                                                                                    | 1 402        | 338 912                    | 1 237                 | 324 427                    |
| Management of agricultural enterprises; agro-industrial                                                                                                          | -0           | 224 500                    | 14                    |                            |
| engineering                                                                                                                                                      | 59           | 334 508                    | 41                    | 317 077                    |
| Art (,painting, ,sculpture, drawing)                                                                                                                             | 98           | 325 887                    | 52                    | 231 600                    |
| Forestry; forest production; tree science                                                                                                                        | 46           | 325 600                    | 29                    | 234 662                    |
| Architecture and town planning                                                                                                                                   | 785          | 324 861                    | 395                   | 235 888                    |
| Other non-specific degrees                                                                                                                                       | 29 023       | 323 956                    | 18 845                | 258 554                    |
| Others (paper; ;textiles; garments; geographical engineering)                                                                                                    | 386          | 323 676                    | 263                   | 284 019                    |
| Bublic administration: human resource management:                                                                                                                | 216          | 319 440                    | 129                   | 264 378                    |
| management of works of art                                                                                                                                       | 552          | 312 200                    | 408                   | 273 377                    |
| Dramatic arts (dancing, singing, theatre, cinema, photography,                                                                                                   | 05           | 211 279                    | 47                    | 226 406                    |
| Modern languages and literature/classical languages<br>and literature and Portuguese culture; translation<br>and interpreting; translation techniques            | 85           | 511 278                    | 47                    | 250 400                    |
| and comparative culture; comparative literature;                                                                                                                 | 2 112        | 310 398                    | 1 024                 | 233 725                    |
| Sport, physical education/ergonomics                                                                                                                             | 250          | 299 504                    | 160                   | 253 851                    |
| Teaching (languages, science, etc)                                                                                                                               | 451          | 288 920                    | 267                   | 228 908                    |
| Marketing, publicity                                                                                                                                             | 677          | 285 320                    | 601                   | 264 052                    |
| Social communication, information, journalism and media studies                                                                                                  | 1 148        | 284 881                    | 965                   | 260 518                    |
| Social sciences; sociology; anthropology; politics;<br>political science; social service; applied social research                                                |              |                            |                       |                            |
| religion; theology; humanities                                                                                                                                   | 2 230        | 283 631                    | 1 268                 | 229 978                    |
| and tourism; social management and development                                                                                                                   | 258          | 267 633                    | 204                   | 232 762                    |
| Public relation: secretarial and administrative studies                                                                                                          | 658          | 255 912                    | 534                   | 241 313                    |
| International relations; cooperation and European studies                                                                                                        | 879          | 247 548                    | 800                   | 233 904                    |
| Decorative art and design                                                                                                                                        | 260          | 241 196                    | 207                   | 219 949                    |
| Special education and rehabilitation                                                                                                                             | 67           | 180 625                    | 45                    | 162 402                    |

Source: Quadros de Pessoal, 1999. full time dependent workers.

# Table 6

# WAGE DETERMINANTS

| Variables                         | Coefficient | Deviation<br>from the |
|-----------------------------------|-------------|-----------------------|
|                                   |             | norm                  |
| Gender (male=1)                   | 0.166       | 0.009                 |
| Age (in years)                    | 0.010       | 0.001                 |
| Average final mark at graduation  | 0.037       | 0.001                 |
| Father's education (degree=1)     | 0.110       | 0.012                 |
| Education system                  | 01110       | 01012                 |
| University                        | 0.117       | 0.019                 |
| Polytechnic                       | -0.090      | 0.019                 |
| Other                             |             |                       |
| Category of work (part-time=1)    | -0.508      | 0.029                 |
| Type of contract                  |             |                       |
| With tenure                       | 0.130       | 0.032                 |
| Term contract                     | 0.022       | 0.033                 |
| Free-lance                        | -0.032      | 0.044                 |
| Occasional                        | 0.125       | 0.133                 |
| Dublic acetor                     | 0.142       | 0.011                 |
| Region                            | 0.142       | 0.011                 |
| North                             | 0.026       | 0.036                 |
| Contro                            | 0.020       | 0.030                 |
| Lishon and Tagua Vallay           | -0.014      | 0.037                 |
| Alamtaia                          | 0.119       | 0.030                 |
| Alentejo                          | 0.040       | 0.041                 |
| Algarve                           | 0.020       | 0.043                 |
| Azores                            | -0.037      | 0.046                 |
| Course area                       |             |                       |
| Computers                         | 0 187       | 0.062                 |
| Engineering                       | 0.167       | 0.062                 |
| Architecture and construction     | 0.149       | 0.059                 |
| Mathematic and Statistics         | 0.092       | 0.003                 |
| Management                        | 0.092       | 0.001                 |
| Health                            | 0.059       | 0.039                 |
| Metanin and the disc              | 0.031       | 0.003                 |
| Veterinary studies                | 0.046       | 0.092                 |
| Law                               | 0.045       | 0.062                 |
|                                   | 0.039       | 0.076                 |
|                                   | 0.023       | 0.060                 |
| Social sciences.                  | 0.021       | 0.060                 |
| Manufacturing industries          | 0.011       | 0.067                 |
| Physical sciences.                | -0.037      | 0.064                 |
| Humanities                        | -0.077      | 0.060                 |
| Life sciences                     | -0.095      | 0.066                 |
| Agriculture, forestry and fishing | -0.096      | 0.065                 |
| Media and journalism              | -0.102      | 0.072                 |
| Art                               | -0.111      | 0.062                 |
| Personal services                 | -0.172      | 0.062                 |
| mansport                          |             |                       |
| Numbers                           | 80          | 12                    |
| Likelihood log                    | -146        | 01 38                 |
|                                   | -1402       | -1.00                 |

Not: Grouped regression model (generalized gamma distribution).

The model also includes 17 sector dummies.

high differentials (see Table 7)<sup>(7)</sup>. The figure is in fact the highest in the EU. There is a huge imbalance between skills sought after by employers and those available in the labour market. This is because there is such a big difference between the number of graduates in Portugal and the remain-

## Table 7

### **COLLEGE WAGE PREMIUM**

| Country         | As a percentage |
|-----------------|-----------------|
| Portugal        | 63.1            |
| Luxemburg       | 40.6            |
| Austria         | 31.7            |
| Ireland         | 31.5            |
| Finland         | 26.0            |
| Spain           | 25.4            |
| Belgium         | 24.5            |
| Greece          | 24.5            |
| France          | 24.4            |
| Italy           | 22.9            |
| The Netherlands | 21.7            |
| Germany         | 20.7            |
| United Kingdom  | 20.3            |
| Denmark.        | 19.2            |
|                 |                 |

Source: European panel of households (2000).

These estimates were obtained from the regression equation logarithms for salaries for the countries mentioned.

der of the EU and it will take several decades for this skill shortage to be corrected.

## 8. CONCLUSIONS

An attempt was made in this work to analyse more deeply the private decision-making process that leads to an investment in higher education. The conclusion is that there is an exceptionally high monetary benefit to be expected. An investment of around  $\in$  25,000 can lead to accumulated earning gains of  $\in$  200,000. The estimate of the real rate of return (15%) is clearly greater than any other form of financial investment. Given that it is not possible to use human capital as collateral for the necessary finance, this market is incomplete. This would justify state intervention to create mechanisms allowing for loans to be made available to students on higher education courses.

Investment in education also generates significant social benefits through the positive external effects generated. An economy with a bettertrained workforce is more productive. According to a recent survey carried out by the OECD, the academic qualification deficit in Portugal probably accounts for an annual shortfall amounting to 1.2% of GDP. If there are skilled people at your workplace, the productivity tends to rise (along with your salary) given that there are social benefits to in-company training (Acemoglu and Angrist, 2000; Martins 2003).

All this is not to say that new graduates are not at this point in time facing difficulties in getting work in an economic recession with budget constraints. But this is a temporary phase which does not disprove the structural advantages associated with having a higher education course. The advantages remain even in an unfavourable economic climate. Above all, graduates still have a better chance of getting a suitable job when compared with those young people who detain fewer academic qualifications.

## **BIBLIOGRAPHY**

- Acemoglu, Daron and Joshua Angrist (2000), "How Large are Human Capital Externalities? Evidence from Compulsory Schooling Laws," NBER Macroeconomics Annual.
- Cardoso, Ana Rute (1998), "Earnings Inequality in Portugal: HIGH and Rising?" *Review of Income and Wealth*, Vol. 44.
- Card, David (2000), The Causal Effect of Effect of Education on Earnings, in Handbook of Labor Economics, Vol 3A, edited by O. Asshenfelter D. Card, North-Holland.
- Machado, José and José Mata (2001), "Earning Functions in Portugal 1982-1994: Evidence from Quantile Regressions," *Empirical Economics*, Vol. 26.
- Martins, Pedro (2003), " Firm-Level Social Returns to Education," *mimeo*.
- Martins, Pedro e Pedro. T. Pereira (2003) "Does Education Reduce Wage Inequality: Quantile Regression Evidence from 16 Countries," *Labour Economics*, forthcoming.
- OCDE (2003), OECD Economic Surveys: Portugal, Vol. 2003/2 February.