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According to the Chamley-Judd result, capital should not be taxed in the long run.
In this paper, we overturn this conclusion, showing that it does not follow from the
very models used to derive it. For the model in Judd (1985), we prove that the long
run tax on capital is positive and significant, whenever the intertemporal elasticity of
substitution is below one. For higher elasticities, the tax converges to zero but may
do so at a slow rate, after centuries of high tax rates. The model in Chamley (1986)
imposes an upper bound on capital taxes. We provide conditions under which these
constraints bind forever, implying positive long run taxes. When this is not the case,
the long-run tax may be zero. However, if preferences are recursive and discounting is
locally non-constant (e.g., not additively separable over time), a zero long-run capital
tax limit must be accompanied by zero private wealth (zero tax base) or by zero labor
taxes (first best). Finally, we explain why the equivalence of a positive capital tax with
ever increasing consumption taxes does not provide a firm rationale against capital
taxation.
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1 Introduction

One of the most startling results in optimal tax theory is the famous finding by Chamley
(1986) and Judd (1985). Although working in somewhat different settings, their conclu-

∗This paper benefited from detailed comments by Fernando Alvarez, Peter Diamond, Mikhail Golosov
and Stefanie Stantcheva and was very fortunate to count on research assistance from Greg Howard, Lucas
Manuelli and Andrés Sarto. All remaining errors are our own. This paper supersedes “A Reappraisal of
Chamley-Judd Zero Capital Taxation Results” presented by Werning at the Society of Economic Dynamics’
2014 meetings in Toronto.
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sions were strikingly similar: capital should go untaxed in any steady state. This im-
plication, dubbed the Chamley-Judd result, is commonly interpreted as applying in the
long run, taking convergence to a steady state for granted.1 The takeaway is that taxes on
capital should be zero, at least eventually.

Economic reasoning sometimes holds its surprises. The Chamley-Judd result was not
anticipated by economists’ intuitions, despite a large body of work at the time on the
incidence of capital taxation and on optimal tax theory more generally. It represented
a major watershed from a theoretical standpoint. One may even say that the result re-
mains downright puzzling, as witnessed by the fact that economists have continued to
take turns putting forth various intuitions to interpret it, none definitive nor universally
accepted.

Theoretical wonder aside, a crucial issue is the result’s applicability. Many have ques-
tioned the model’s assumptions, especially that of infinitely-lived agents (e.g. Banks and
Diamond, 2010). Still others have set up alternative models, searching for different con-
clusions. These efforts notwithstanding, opponents and proponents alike acknowledge
Chamley-Judd as one of the most important benchmarks in the optimal tax literature.

Here we question the Chamley-Judd results directly on their own ground and argue
that, even within the logic of these models, a zero long-run tax result does not follow.
For both the models in Chamley (1986) and Judd (1985), we provide results showing
a positive long-run tax when the intertemporal elasticity of substitution is less than or
equal to one. We conclude that these models do not actually provide a coherent argument
against capital taxation, indeed, quite the contrary. We discuss what went wrong with the
original results, their interpretations and proofs.

Before summarizing our results in greater detail, it is useful to briefly recall the se-
tups in Chamley (1986) and Judd (1985). Start with the similarities. Both papers assume
infinitely-lived agents and take as given an initial stock of capital. Taxes are basically
restricted to proportional taxes on capital and labor—lump-sum taxes are either ruled
out or severely limited. To prevent expropriatory capital levies, the tax rate on capital
is constrained by an upper bound.2 Turning to differences, Chamley (1986) focused on

1To quote from a few examples, Judd (2002): “[...] setting τk equal to zero in the long run [...] vari-
ous results arguing for zero long-run taxation of capital; see Judd (1985, 1999) for formal statements and
analyses.” Atkeson et al. (1999): “By formally describing and extending Chamley’s (1986) result [...] This
approach has produced a substantive lesson for policymakers: In the long run, in a broad class of envi-
ronments, the optimal tax on capital income is zero.” Phelan and Stacchetti (2001): “A celebrated result of
Chamley (1986) and Judd (1985) states that with full commitment, the optimal capital tax rate converges
to zero in the steady state.” Saez (2013): “The influential studies by Chamley (1986) and Judd (1985) show
that, in the long-run, optimal linear capital income tax should be zero.”

2Consumption taxes (Coleman II, 2000) and dividend taxes with capital expenditure (investment) de-
ductions (Abel, 2007) can mimic initial wealth expropriation. Both are disallowed.
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a representative agent and assumed perfect financial markets, with unconstrained gov-
ernment debt. Judd (1985) emphasizes heterogeneity and redistribution in a two-class
economy, with workers and capitalists. In addition, the model features financial market
imperfections: workers do not save and the government balances its budget, i.e. debt
is restricted to zero. As emphasized by Judd (1985), it is most remarkable that a zero
long-run tax result obtains despite the restriction to budget balance.3 Although extreme,
imperfections of this kind may capture relevant aspects of reality, such as the limited par-
ticipation in financial markets, the skewed distributions of wealth and a host of difficulties
governments may face managing their debts or assets.4

We begin with the model in Judd (1985) and focus on situations where desired redis-
tribution runs from capitalists to workers. Working with an isoelastic utility over con-
sumption for capitalists, U(C) = C

1−σ

1−σ , we establish that when the intertemporal elasticity
of substitution (IES) is below one, σ > 1, taxes rise and converge towards a positive limit
tax, instead of declining towards zero. This limit tax is significant, driving capital to its
lowest feasible level. Indeed, with zero government spending the lowest feasible capital
stock is zero and the limit tax rate on wealth goes to 100%. The long-run tax is not only
not zero, it is far from that.

The economic intuition we provide for this result is based on the anticipatory savings
effects of future tax rates. When the IES is less than one, any anticipated increase in
taxes leads to higher savings today, since the substitution effect is relatively small and
dominated by the income effect. When the day comes, higher tax rates do eventually
lower capital, but if the tax increase is sufficiently far off in the future, then the increased
savings generate a higher capital stock over a lengthy transition. This is desirable, since
it increases wages and tax revenue. To exploit such anticipatory effects, the optimum
involves an increasing path for capital tax rates. This explains why we find positive tax
rates that rise over time and converge to a positive value, rather than falling towards zero.

When the IES is above one, σ < 1, we verify numerically that the solution converges
to the zero-tax steady state.5 This also relies on anticipatory savings effects, working in
reverse. However, we show that this convergence may be very slow, potentially taking

3Because of the presence of financial restrictions and imperfections, the model in Judd (1985) does not fit
the standard Arrow-Debreu framework, nor the optimal tax theory developed around it such as Diamond
and Mirrlees (1971).

4Another issue may arise on the other end. Without constraints on debt, capitalists may become highly
indebted or not own the capital they manage. The idea that investment requires “skin in the game” is
popular in the finance literature and macroeconomic models with financial frictions (see Brunnermeier et
al., 2012; Gertler and Kiyotaki, 2010, for surveys).

5We complement these numerical results by proving a local convergence result around the zero-tax
steady state when σ < 1.
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centuries for wealth taxes to drop below 1%. Indeed, the speed of convergence is not
bounded away from zero in the neighborhood of a unitary IES, σ = 1. Thus, even for
those cases where the long-run tax on capital is zero, this property provides a misleading
summary of the model’s tax prescriptions.

We confirm our intuition based on anticipatory effects by generalizing our results for
the Judd (1985) economy to a setting with arbitrary savings behavior of capitalists. Within
this more general environment we also derive an inverse elasticity formula for the steady
state tax rate, closely related to one in Piketty and Saez (2013). However, our deriva-
tion stresses that the validity of this formula requires sufficiently fast convergence to an
interior steady state, a condition that we show fails in important cases.

We then turn to the representative agent Ramsey model studied by Chamley (1986).
As is well appreciated, in this setting upper bounds on the capital tax rate are imposed to
prevent expropriatory levels of taxation. We provide two sets of results.

Our first set of results show that in cases where the tax rate does converge to zero,
there are other implications of the model, hitherto unnoticed. These implications under-
mine the usual interpretation against capital taxation. Specifically, if the optimum con-
verges to a steady state where the bounds on tax rates are slack, we show that the tax is
indeed zero. However, for recursive nonadditive utility, we also show that this zero-tax
steady state is necessarily accompanied by either zero private wealth—in which case the
tax base is zero—or a zero tax on labor income—in which case the first best is achieved.
This suggests that zero taxes on capital are attained only after taxes have obliterated pri-
vate wealth or allowed the government to proceed without any distortionary taxation.
Needless to say, these are not the scenarios typically envisioned when interpreting zero
long-run tax results. Away from additive utility, the model simply does not justify a
steady state with a positive tax on labor, a zero tax on capital and positive private wealth.

Our second set of results show that the tax rate may not converge to zero. In particular,
we show that the upper bounds imposed on the tax rate may bind forever, implying a
positive long-run tax on capital. We prove that this is guaranteed if the IES is below
one and debt is high enough. Importantly, the debt level required is below the peak of the
Laffer curve, so this result is not driven by budgetary necessity: the planner chooses to tax
capital indefinitely, but is not compelled to do so. Intuitively, higher debt leads to higher
labor taxes, making capital taxation attractive to ease the labor tax burden. However,
because the tax rate on capital is capped, the only way to expand capital taxation is to
prolong the time spent at the bound. At some point, for high enough debt, indefinite
taxation becomes optimal.

All of these results run counter to what is certainly by now established wisdom, ce-
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mented by a significant followup literature, extending and interpreting long-run zero tax
results. In particular, Judd (1999) presents an argument against positive capital taxation
without requiring convergence to a steady state, using a model close to the one in Cham-
ley (1986). However, as we explain, these arguments fail because they invoke assump-
tions on endogenous multipliers that are violated at the optimum. We also explain why
the intuition offered in that paper, based on the observation that a positive capital tax
is equivalent to a rising tax on consumption, does not provide a valid rationale against
indefinite capital taxation.

To conclude, we present a hybrid model that combines heterogeneity and redistribu-
tion as in Judd (1985), but allows for government debt as in Chamley (1986). Capital
taxation turns out to be especially potent in this setting: whenever the IES is less than
one, the optimal policy sets the tax rate at the upper bound forever. This suggests that
positive long-run capital taxation should be expected for a wide range of models that are
descendants of Chamley (1986) and Judd (1985).

2 Capitalists and Workers

We start with the two-class economy without government debt laid out in Judd (1985).
Time is indefinite and discrete, with periods labeled by t = 0, 1, 2, . . . .6 There are two
types of agents, workers and capitalists. Capitalists save and derive all their income from
the returns to capital. Workers supply one unit of labor inelastically and live hand to
mouth, consuming their entire wage income plus transfers. The government taxes the
returns to capital to pay for transfers targeted to workers.

Preferences. Both capitalists and workers discount the future with a common discount
factor β < 1. Workers have a constant labor endowment n = 1; capitalists do not work.
Consumption by workers will be denoted by lowercase c, consumption by capitalists by
uppercase C. Capitalists have utility

∞

∑
t=0

βt
U(Ct) with U(C) =

C
1−σ

1 − σ

6Judd (1985) formulates the model in continuous time, but this difference is immaterial. As usual, the
continuous-time model can be thought of as a limit of the discrete time one as the length of each period
shrinks to zero.
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for σ > 0 and σ �= 1, and U(C) = log C for σ = 1. Here 1/σ denotes the (constant)
intertemporal elasticity of substitution (IES). Workers have utility

∞

∑
t=0

βt
u(ct)

where u is increasing, concave, continuously differentiable and limc→0 u
�(c) = ∞.

Technology. Output is obtained from capital and labor using a neoclassical constant
returns production function F(kt, nt) satisfying standard conditions.7 Capital depreciates
at rate δ > 0. In equilibrium nt = 1, so define f (k) = F(k, 1). The government consumes a
constant flow of goods g ≥ 0. We normalize both populations to unity and abstract from
technological progress and population growth. The resource constraint in period t is then

ct + Ct + g + kt+1 ≤ f (kt) + (1 − δ)kt.

There is some given positive level of initial capital, k0 > 0.

Markets and Taxes. Markets are perfectly competitive, with labor being paid wage
w
∗
t
= FL(kt, nt) and the before-tax return on capital being given by

R
∗
t = f

�(kt) + 1 − δ.

The after-tax return equals Rt and can be parameterized as either

Rt = (1 − τt)(R
∗
t − 1) + 1 or Rt = (1 − Tt)R

∗
t ,

where τt is the tax rate on the net return to wealth and Tt the tax rate on the gross return
to wealth, or wealth tax for short. Whether we consider a tax on net returns or on gross
returns is irrelevant and a matter of convention. We say that capital is taxed whenever
Rt < R

∗
t

and subsidized whenever Rt > R
∗
t
.

7We assume that F is increasing and strictly concave in each argument, continuously differentiable, and
satisfying the standard Inada conditions Fk(k, L) → ∞ as k → 0 and Fk(k, L) → 0 as k → ∞. Moreover
assume that capital is essential for production, that is, F(0, n) = 0 for all n.
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Capitalist and Worker Behavior. Capitalists solve

max
{Ct,at+1}

∞

∑
t=0

βt
U(Ct) s.t. Ct + at+1 = Rtat and at+1 ≥ 0,

for some given initial wealth a0. The associated Euler equation and transversality condi-
tions,

U
�(Ct) = βRt+1U

�(Ct+1) and βt
U

�(Ct)at+1 → 0,

are necessary and sufficient for optimality.
Workers live hand to mouth, their consumption equals their disposable income

ct = w
∗
t + Tt = f (kt)− f

�(kt)kt + Tt,

which uses the fact that Fn = F − Fkk. Here Tt ∈ R represent government lump-sum
transfers (when positive) or taxes (when negative) to workers.8

Government Budget Constraint. As in Judd (1985), the government cannot issue
bonds and runs a balanced budget. This implies that total wealth equals the capital stock
at = kt and that the government budget constraint is

g + Tt = (R
∗
t − Rt) kt.

Planning Problem. Using the Euler equation to substitute out Rt, the planning problem
can be written as9

max
{ct,Ct,kt+1}

∞

∑
t=0

βt(u(ct) + γU(Ct)), (1a)

subject to

ct + Ct + g + kt+1 = f (kt) + (1 − δ)kt, (1b)

βU
�(Ct)(Ct + kt+1) = U

�(Ct−1)kt, (1c)

βt
U

�(Ct)kt+1 → 0. (1d)

8Equivalently, one can set up the model without lump-sum transfers/taxes to workers, but allowing for
a proportional tax or subsidy on labor income. Such a tax perfectly targets workers without creating any
distortions, since labor supply is perfectly inelastic in the model.

9Judd (1985) includes upper bounds on the taxation of capital, which we have omitted because they
do not play any important role. As we shall see, positive long run taxation is possible even without these
constraints; adding them would only reinforce this conclusion. Upper bounds on taxation play a more
crucial role in Chamley (1986).
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The government maximizes a weighted sum of utilities with weight γ on capitalists. By
varying γ one can trace out points on the constrained Pareto frontier and characterize
their associated policies. We often focus on the case with no weight on capitalists, γ = 0,
to ensure that desired redistribution runs from capitalists towards workers. Equation (1b)
is the resource constraint. Equation (1c) combines the capitalists’ first-order condition and
budget constraint and (1d) imposes the transversality condition; together conditions (1c)
and (1d) ensure the optimality of the capitalists’ saving decision.

The necessary first-order conditions are

µ0 = 0, (2a)

λt = u
�(ct), (2b)

µt+1 = µt

�
σ − 1
σκt+1

+ 1
�
+

1
βσκt+1υt

(1 − γυt) , (2c)

u
�(ct+1)
u�(ct)

( f
�(kt+1) + 1 − δ) =

1
β
+ υt(µt+1 − µt), (2d)

where κt ≡ kt/Ct−1, υt ≡ U
�(Ct)/u

�(ct) and the multipliers on constraints (1b) and (1c)
are βtλt and βtµt, respectively.

2.1 Previous Steady State Results

Judd (1985, pg. 72, Theorem 2) provided a zero-tax result, which we adjust in the follow-
ing statement to stress the need for the steady state to be interior and for multipliers to
converge.

Theorem 1 (Judd, 1985). Suppose quantities and multipliers converge to an interior steady state,

i.e. ct, Ct, kt+1 converge to positive values, and µt converges. Then the tax on capital is zero in the

limit: Tt = 1 − Rt/R
∗
t
→ 0.

The proof is immediate: from equation (2d) we obtain R
∗
t
→ 1/β, while the capital-

ists’ Euler equation requires that Rt → 1/β. The simplicity of the argument follows from
strong assumptions placed on endogenous outcomes. This raises obvious concerns. By
adopting assumptions that are close relatives of the conclusions, one may wonder if any-
thing of use has been shown, rather than assumed. We elaborate on a similar point in
Section 3.3.

In our rendering of Theorem 1, the requirement that the steady state be interior is
important: otherwise, if ct → 0 one cannot guarantee that u

�(ct+1)/u
�(ct) → 1 in equation

(2d). Likewise, even if the allocation converges to an interior steady state but µt does not
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converge, then υt(µt+1 − µt) may not vanish in equation (2d). Thus, the two situations
that prevent the theorem’s application are: (i) non-convergence to an interior steady state;
or (ii) non-convergence of µt+1 − µt to zero. In general, one expects that (i) implies (ii).
The literature has provided an example of (ii) where the allocation does converge to an
interior steady state.

Theorem 2. (Lansing, 1999; Reinhorn, 2002 and 2013) Assume σ = 1. Suppose the allocation

converges to an interior steady state, so that ct, Ct and kt+1 converge to strictly positive values.

Then,

Tt →
1 − β

1 + γυβ/(1 − γυ)
,

where υ = lim υt and the multiplier µt in the system of first-order conditions (2c) does not con-

verge. This implies a positive long-run tax on capital if redistribution towards workers is desirable,

1 − γυ > 0.

The result follows easily by combining (2c) and (2d) for the case with σ = 1 and
comparing it to the capitalist’s Euler equation, which requires Rt = 1

β at a steady state.
Lansing (1999) first presented the logarithmic case as a counterexample to Judd (1985).
Reinhorn (2002 and 2013) correctly clarified that in the logarithmic case the Lagrange
multipliers explode, explaining the difference in results.10

Lansing (1999) depicts the result for σ = 1 as a knife-edged case: “the standard
approach to solving the dynamic optimal tax problem yields the wrong answer in this
(knife-edge) case [...]” (from the Abstract, page 423) and “The counterexample turns out
to be a knife-edge result. Any small change in the capitalists’ intertemporal elasticity of
substitution away from one (the log case) will create anticipation effects [...] As capitalists’
intertemporal elasticity of substitution in consumption crosses one, the trajectory of the
optimal capital tax in this model undergoes an abrupt change.” (page 427) This suggest
that whenever σ �= 1 the long-run tax on capital is zero. We shall show that this is not the
case.

2.2 Main Result: Positive Long-Run Taxation

Logarithmic Utility. Before studying σ > 1, our main case of interest, it is useful to
review the special case with logarithmic utility, σ = 1. We assume γ = 0 to guarantee

10Lansing (1999) suggests a technical difficulty with the argument in Judd (1985) that is specific to σ = 1.
Indeed, at σ = 1 one degree of freedom is lost in the planning problem, since Ct−1 must be proportional
to kt. However, since equations (2) can still satisfied by the optimal allocation for some sequence of mul-
tipliers, we believe the issue can be framed exactly as Reinhorn (2002 and 2013) did, emphasizing the non
convergence of multipliers.
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that desired redistribution runs from capitalists to workers.
When U(C) = log C capitalists save at a constant rate s > 0,

Ct = (1 − s)Rtkt and kt+1 = sRtkt.

Although s = β with logarithmic preferences, nothing we will derive depends on this
fact, so we can interpret s as a free parameter that is potentially divorced from β.11

The planning problem becomes

max
{ct,kt+1}

∞

∑
t=0

βt
u(ct) s.t. ct +

1
s

kt+1 + g = f (kt) + (1 − δ)kt,

with k0 given. This amounts to an optimal neoclassical growth problem, where the price
of capital equals 1

s
> 1 instead of the actual unit cost. The difference arises from the

fact that capitalists consume a fraction 1 − s. The government and workers must save
indirectly through capitalists, entrusting them with resources today by holding back on
current taxation, so as to extract more tomorrow. From their perspective, technology
appears less productive because capitalists feed off a fraction of the investment. Lower
saving rates s increase this inefficiency.12

Since the planning problem is equivalent to a standard optimal growth problem, we
know that there exists a unique interior steady state and that it is globally stable. The
modified golden rule at this steady state is βsR

∗ = 1. A steady state also requires sRk = k,
or simply sR = 1. Putting these conditions together gives R/R

∗ = β < 1.

Proposition 1. Suppose γ = 0 and that capitalists have logarithmic utility, U(C) = log C.

Then the solution to the planning problem converges monotonically to a unique steady state with

a positive tax on capital given by T = 1 − β.

This proposition echoes the result in Lansing (1999), as summarized by Theorem 2,
but also establishes the convergence to the steady state. Interestingly, the long-run tax
rate depends only on β, not on the savings rate s or other parameters.

Although Lansing (1999) and the subsequent literature interpreted this result as a
knife-edged counterexample, we will argue that this is not the case, that positive long

11This could capture different discount factors between capitalists and workers or an ad hoc behavioral
assumption of constant savings, as in the standard Solow growth model. We pursue this line of thought in
Section 2.3 below.

12This kind of wedge in rates of return is similar to that found in countless models where there are
financial frictions between “experts” able to produce capital investments and “savers”. Often, these models
are set up with a moral hazard problem, whereby some fraction of the investment returns must be kept by
experts, as “skin in the game” to ensure good behavior.

10



run taxes are not special to logarithmic utility. One way to proceed would be to exploit
continuity of the planning problem with respect to σ to establish that for any fixed time
t, the tax rate Tt(σ) converges as σ → 1 to the tax rate obtained in the logarithmic case
(which we know is positive for large t). While this is enough to dispel the notion that the
logarithmic utility case is irrelevant for σ �= 1, it has its limitations. As we shall see, the
convergence is not uniform and one cannot invert the order of limits: limt→∞ limσ→1 Tt(σ)

does not equal limσ→1 limt→∞ Tt(σ). Therefore, arguing by continuity does not help char-
acterize the long run tax rate limt→∞ Tt(σ) as a function of σ. We proceed by tackling the
problem with σ �= 1 directly.

Positive Long-Run Taxation: IES < 1. We now consider the case with σ > 1 so that
the intertemporal elasticity of substitution 1

σ is below unity. We continue to focus on the
situation where no weight is placed on capitalists, γ = 0. Section 2.4 shows that the same
results apply for other value of γ, as long as redistribution from capitalists to workers is
desired.

Towards a contradiction, suppose the allocation were to converge to an interior steady
state kt → k, Ct → C, ct → c with k, C, c > 0. This implies that κt and υt also converge to
positive values, κ and υ. Combining equations (2c) and (2d) and taking the limit for the
allocation, we obtain

f
�(k) + 1 − δ =

1
β
+ υ(µt − µt−1) =

1
β
+ µt

σ − 1
σκ

υ +
1

βσκ
.

Since σ > 1, this means that µt must converge to

µ = − 1
(σ − 1)βυ

< 0. (3)

Now consider whether µt → µ < 0 is possible. From the first-order condition (2a) we
have µ0 = 0. Also, from equation (2c), whenever µt ≥ 0 then µt+1 ≥ 0. It follows that
µt ≥ 0 for all t = 0, 1, . . . , a contradiction to µt → µ < 0. This proves that the solution
cannot converge to any interior steady state, including the zero-tax steady state.

Proposition 2. If σ > 1 and γ = 0 then for any initial k0 the solution to the planning problem

does not converge to the zero-tax steady state, or any other interior steady state.

It follows that if the optimal allocation converges, then either kt → 0, Ct → 0 or ct → 0.
With positive spending g > 0, kt → 0 is not feasible; this also rules out Ct → 0, since
capitalists cannot be starved while owning positive wealth.
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Thus, provided the solution converges, ct → 0. This in turn implies that either kt → kg

or kt → k
g where kg < k

g are the two solutions to 1
β k + g = f (k) + (1 − δ)k, using the

fact that (1c) implies C = 1−β
β k at any steady state.13 We next show that the solution does

indeed converge, and that it does so towards the lowest sustainable value of capital, kg,
so that the long-run tax on capital is strictly positive. The proof uses the fact that µt → ∞
and ct → 0, as argued above, but requires many other steps detailed in the appendix.

Proposition 3. If σ > 1 and γ = 0 then for any initial k0 the solution to the planning problem

converges to ct → 0, kt → kg, Ct → 1−β
β kg, with a positive limit tax on wealth: Tt = 1 − Rt

R∗
t

→
T g > 0. The limit tax T g

is decreasing in spending g, with T g → 1 as g → 0.

The zero-tax conclusion in Judd (1985) is invalidated here because the allocation does
not converge to an interior steady state and multipliers do not converge. According to
our result, the tax rate not only does not converge to zero, it reaches a sizable level. Per-
haps counterintuitively, the long-run tax on capital, T g, is inversely related to the level
of government spending, since kg is increasing with spending g. This underscores that
long-run capital taxation is not driven by budgetary necessity.

As the proposition shows, optimal taxes may reach very high levels. Up to this point,
we have placed no limits on tax rates. It may be of interest to consider a situation where
the planner is further constrained by an upper bound on the tax rate for net returns (τ)
or gross wealth (T ), perhaps due to evasion or political economy considerations. If these
bounds are sufficiently tight to be binding, it is natural to conjecture that the optimum
converges to these bounds, and to an interior steady state allocation with a positive limit
for worker consumption, limt→∞ ct > 0.

Solution for IES near 1. Figure 1 displays the time path for the capital stock and the tax
rate on wealth, Tt = 1 − Rt/R

∗
t
, for a range of σ that straddles the logarithmic σ = 1 case.

We set β = 0.95, δ = 0.1, f (k) = k
α with α = 0.3 and u(c) = U(c). Spending g is chosen

so that g

f (k) = 20% at the zero-tax steady state. The initial value of capital, k0, is set at the
zero-tax steady state. Our numerical method is based on a recursive formulation of the
problem described in the appendix.

To clarify the magnitudes of the tax on wealth, Tt, consider an example: If R
∗ = 1.04

so that the before-tax net return is 4%, then a tax on wealth of 1% represents a 25% tax on
the net return; a wealth tax of 4% represents a tax rate of 100% on net returns, and so on.

A few things stand out in Figure 1. First, the results confirm what we showed theoret-
ically in Proposition 3, that for σ > 1 capital converges to kg = 0.0126. In the figure this

13Here we assume that government spending g is feasible, that is, g < maxk{ f (k) + (1 − δ)k − 1
β k}.
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Figure 1: Optimal time paths over 300 years for capital kt (left panel) and wealth taxes Tt

(right panel) for various values of σ.

convergence is monotone14, taking around 200 years for σ = 1.25. The asymptotic tax
rate is very high, approximately T g = 1 − R/R

∗ = 85%, lying outside the figure’s range
since the after-tax return equals R = 1/β in the long run, this implies that the before-tax
return R

∗ = f
�(kg) + 1 − δ is exorbitant.

Second, for σ < 1, the path for capital is non-monotonic15 and eventually converges
to the zero-tax steady state. However, the convergence is relatively slow, especially for
values of σ near 1. This makes sense, since, by continuity, for any period t, the solution
should converge to that of the logarithmic utility case as σ → 1, with positive taxation as
described in Proposition 1. By implication, for σ < 1 the rate of convergence to the zero-
tax steady state must be zero as σ ↑ 1. To further punctuate this point, Figure 2 shows the
number of years it takes for the tax on wealth to drop below 1% as a function of σ ∈ (1

2 , 1).
As σ rises, it takes longer and longer and as σ ↑ 1 it takes an eternity.

The logarithmic case leaves other imprints on the solutions for σ �= 1. Returning to
Figure 1, for both σ < 1 and σ > 1 we see that over the first 20-30 years, the path ap-
proaches the steady state of the logarithmic utility case, associated with a tax rate around
T = 1 − β = 5%. The speed at which this takes place is relatively quick, which is ex-
plained by the fact that for σ = 1 it is driven by the standard rate of convergence in the
neoclassical growth model. The solution path then transitions much more slowly either
upwards or downwards, depending on whether σ > 1 or σ < 1.

Intuition: Anticipatory Effects of Future Taxes on Current Savings. Why does the op-
timal tax eventually rise for σ > 1 and fall for σ < 1? Why are the dynamics relatively

14This depends on the level of initial capital. For lower levels of capital the path first rises then falls.
15This is possible because the state variable has two dimensions, (kt, Ct−1). At the optimum, for the same

capital k, consumption C is initially higher on the way down than it is on the way up.
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Figure 2: Time elapsed (in years) until wealth tax rate Tt falls below 1% for σ ∈ (1
2 , 1).

slow for σ near 1?
To address these normative questions it helps to back up and review the following

positive exercise. Start from a constant tax on wealth and imagine an unexpected an-
nouncement of higher future taxes on capital. How do capitalists react today? There are
substitution and income effects pulling in opposite directions. When σ > 1 the substitu-
tion effect is muted, compared to the income effect, and capitalists lower their consump-
tion to match the drop in future consumption. As a result, capital rises in the short run,
even if it may fall in the far future.16 When σ < 1 the substitution effect is stronger and
capitalists increase current consumption. In the logarithmic case, σ = 1, the two effects
cancel out, so that current consumption and savings are unaffected.

Returning to the normative questions, lowering capitalists’ consumption and increas-
ing capital is desirable for workers. When σ < 1, this can be accomplished by promising
lower tax rates in the future. This explains why a declining path for taxes is optimal.
In contrast, when σ > 1, the same is accomplished by promising higher tax rates in the
future; explaining the increasing path for taxes. These incentives are absent in the loga-
rithmic case, when σ = 1, explaining why the tax rate converges to a constant.

When σ < 1 the rate of convergence to the zero-tax steady state is also driven by these
anticipatory effects. With σ near 1, the potency of these effects is small, explaining why
the rate of convergence is low and indeed becomes vanishingly small as σ ↑ 1.

In contrast to previous intuitions offered for zero long-run tax results, the intuition we
provide for our results—zero and nonzero long-run taxes alike, depending on σ—is not

16It is important to note that σ > 1 does not imply that the supply for savings “bends backward”. Indeed,
as a positive exercise, if taxes are raised permanently within the model, then capital falls over time to a
lower steady state for any value of σ, including σ > 1. Higher values of σ imply a less elastic response over
any finite time horizon, and thus a slower convergence to the lower capital stock. The case with σ > 1 is
widely considered more plausible empirically.
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about the desired level for the tax. Instead, we provide a rationale for the desired slope

in the path for the tax: an upward path when σ > 1 and a downward path when σ < 1.
The conclusions for the optimal long-run tax then follow from these desired slopes, rather
than the other way around.

2.3 General Savings Functions and Inverse Elasticity Formula

The intuition suggests that the essential ingredient for positive long run capital taxation
in the model of Judd (1985) is that capitalists’ savings decrease in future interest rates. To
make this point even more transparently, we now modify the model and assume capital-
ists behave according to a general “ad-hoc” savings rule,

kt+1 = S(Rtkt; Rt+1, Rt+2, . . . ),

where S(It; Rt+1, Rt+2, . . . ) ∈ [0, It] is a continuously differentiable function taking as ar-
guments current wealth It = Rtkt and future interest rates {Rt+1, Rt+2, . . .}. We assume
that savings increase with income, SI > 0. This savings function encompasses the case
where capitalists maximize an additively separable utility function, as in Judd (1985), but
is more general. For example, the savings function can be derived from the maximiza-
tion of a recursive utility function, or even represent behavior that cannot be captured by
optimization, such as hyperbolic discounting or self-control and temptation.

Again, we focus on the case γ = 0. The planning problem is then

max
{ct,Rt,kt+1}

∞

∑
t=0

βt
u(ct),

subject to

ct + Rtkt + g = f (kt) + (1 − δ)kt,

kt+1 = S(Rtkt; Rt+1, Rt+2, . . . ),

with k0 given.
We can show that, consistent with the intuition spelled out above, long-run capital

taxes are positive whenever savings decrease in future interest rates.

Proposition 4. Suppose γ = 0 and assume the savings function is decreasing in future rates,

so that SRt
(I; R1, R2, . . . ) ≤ 0 for all t = 1, 2, . . . and all arguments {I, R1, R2, . . .}. If the

optimum converges to an interior steady state in c, k, and R, and at the steady state βRSI �= 1,

15



then the limit tax rate is positive and βRSI < 1.

This generalizes Proposition 2, since the case with iso-elastic utility and IES less than
one is a special case satisfying the hypothesis of the proposition. Once again, the intu-
ition here is that the planner exploits anticipatory effects by raising tax rates over time to
increase present savings.

The result requires βRSI < 1 at the steady state, which is satisfied when savings are
linear in income, since then SI R = 1 at a steady state. Note that savings are linear in
income in the isoelastic utility case. More generally, RSI < 1 is natural, as it ensures local
stability for capital given a fixed steady-state return, i.e. the dynamics implied by the
recursion kt+1 = S(Rkt, R, R, · · · ) for fixed R.

Inverse Elasticity Formula. There is a long tradition relating optimal tax rates to elas-
ticities. In the context of our general savings model, spelled out above, we derive the
following “inverse elasticity rule”

T = 1 − R

R∗ =
1 − βRSI

1 + ∑∞
t=1 β−t+1�S,t

, (4)

where �S,t ≡ Rt

S

∂S

∂Rt
(R0k0; R1, R2, . . .) denotes the elasticity of savings with respect to future

interest rates evaluated at the steady state in c, k, and R. Although the right hand side is
endogenous, equation (4) is often interpreted as a formula for the tax rate. Our inverse
elasticity formula is closely related to a condition derived by Piketty and Saez (2013, see
their Section 3.3, equation 16).17

We wish to make two points about our formula. First, note that the relevant elasticity
in this formula is not related to the response of savings to current, transitory or permanent,
changes in interest rates. Instead, the formula involves a sum of elasticities of savings
with respect to future changes in interest rates. Thus, it involves the anticipatory effects
discussed above. Indeed, the variation behind our formula changes the after-tax interest
rate at a single future date T, and then takes the limit as T → ∞. For any finite T, the
term ∑T

t=1 β−t+1�S,t represents the sum of the anticipatory effects on capitalists’ savings
behavior in periods 0 up to T − 1; while ∑∞

t=1 β−t+1�S,t captures the limit as T → ∞. It
is important to keep in mind that, precisely because it is anticipatory effects that matter,

17Their formula is derived under the special assumptions of additively separable utility, an exogenously
fixed international interest rate and an exogenous wage. None of this is important, however. The two
formulas remain different because of slightly different elasticity definitions; ours is based on partial deriva-
tives of the primitive savings function S with respect to a single interest rate change, while theirs is based on
the implicit total derivative of the capital stock sequence with respect to a permanent change in the interest
rate.
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the relevant elasticities are negative in standard cases, e.g. with additive utility and IES
below one.

Second, the derivation we provide in the appendix requires convergence to an interior
steady state as well as additional conditions (somewhat cumbersome to state) to allow
a change in the order of limits and obtain the simple expression ∑∞

t=1 β−t+1�S,t. These
latter conditions seem especially hard to guarantee ex ante, with assumptions on prim-
itives, since they may involve the endogenous speed of convergence to the presumed
interior steady state.18 As we have shown, in this model one cannot take these proper-
ties for granted, neither the convergence to an interior steady state (Proposition 3) nor
the additional conditions. Indeed, Proposition 4 already supplies counterexamples to the
applicability of the inverse elasticity formula.

Corollary. Suppose γ = 0 and assume the savings function is decreasing in future rates, so that

SRt
(I; R1, R2, . . . ) ≤ 0 for all t = 1, 2, . . . and all arguments {I, R1, R2, . . .}. Then the economy

cannot converge to a point where βRSI �= 1, the denominator in the inverse elasticity formula (4)
is negative, 1 + ∑∞

t=1 β−t+1�S,t < 0, and formula (4) holds.

This result provides conditions under which the formula (4) cannot characterize the
long run tax rate. Whenever the discounted sum of elasticities with respect to future rates,
∑∞

t=1 β−t+1�S,t, is negative and less than −1, the formula implies a negative limit tax rate.
Yet, under the same conditions as in Proposition 4, this is not possible since this result
shows that if convergence takes place, the tax rate is positive.

The case with additive and iso-elastic utility is an extreme example where the sum of
elasticities ∑∞

t=1 β−t+1�S,t diverges. As it turns out, in this case β−t�S,t = −σ−1
σ

1−β
β at a

steady state and the sum of elasticities diverges. It equals +∞ if the IES is greater than
one, or −∞ if the IES is less than one.19 In both cases, formula (4) suggests a zero steady
state tax rate. Piketty and Saez (2013) use this to argue that this explains the Chamley-
Judd result of a zero long-run tax. However, as we have shown, when the IES is less than
one the limit tax rate is not zero. This counterexample to the applicability of the inverse
elasticity formula (4) assumes additive utility and, thus, an infinite sum of elasticities.
However, the problem may also arise for non-additive preferences or with ad hoc saving
functions. Indeed, the conditions for the corollary may be met in cases where the sum of
elasticities is finite, as long as its value is sufficiently negative.

18Unfortunately, one cannot ignore transitions by choice of a suitable initial condition. For example, even
in the additive utility case with σ < 1 and even if we start at the zero capital tax steady state, capital does
not stay at this level forever. Instead, capital first falls and then rises back up at a potentially slow rate.

19Proposition 12 in the appendix shows that a non finite value for the sum of elasticities is a general
feature of recursive preferences.
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It should be noted that our corollary provides sufficient conditions for the formula to
fail, but other counterexamples may exist outside its realm. Suggestive of this is the fact
that when the denominator is positive but small the formula may yield tax rates above
100%, which seems nonsensical, requiring R < 0. More generally, very large tax rates
may be inconsistent with the fact that steady state capital must remain above kg > 0.

To summarize, the inverse elasticity formula (4) fails in important cases, providing
misleading answers for the long run tax rate. This highlights the need for caution in the
application of steady state inverse elasticity rules.

2.4 Redistribution Towards Capitalists

In the present model, a desire to redistribute towards workers, away from capitalists, is
a prerequisite to create a motive for positive wealth taxation. Proposition 3 assumes no
weight on capitalists, γ = 0, to ensure that desired redistribution runs in this direction.
When γ > 0 the same results obtain as long as the desire for redistribution continues to
run from capitalists towards workers. In contrast, when γ is high enough the desired
redistribution flips from workers to capitalists. When this occurs, the optimum naturally
involves negative tax rates, to benefit capitalists.

We verify these points numerically. Figure 3 illustrates the situation by fixing σ = 1.25
and varying the weight γ. Since initial capital is set at the zero-tax steady state, k

∗, the
direction of desired redistribution flips exactly at γ∗ = u

�(c∗)/U
�(C∗). At this value of

γ, the planner is indifferent between redistributing towards workers or capitalists at the
zero-tax steady state (k∗, c

∗, C
∗).20 When σ > 1 and γ > γ∗ the solution converges to

the highest sustainable capital k
g, the highest solution to 1

β k + g = f (k) + (1 − δ)k, rather
than kg, the lowest solution to the same equation.

A deeper understanding of the dynamics can be grasped by noting that the planning
problem is recursive in the state variable (kt, Ct−1). It is then possible to study the dy-
namics for this state variable locally, around the zero tax steady state, by linearizing the
first-order conditions (2). We do so for a continuous-time version of the model, to ensure
that our results are comparable to Kemp et al. (1993). The details are contained in the
appendix. We obtain the following characterization.

Proposition 5. For a continuous-time version of the model,

20Rather than displaying γ in the legend for Figure 3, we perform a transformation that makes it more
easily interpretable: we report the proportional change in consumption for capitalists that would be desired
at the steady state, e.g. −0.4 represents that the planner’s ideal allocation of the zero-tax output would
feature a 40% reduction in the consumption of capitalists, relative to the steady state value C = 1−β

β k. The
case γ = γ∗ corresponds to 0 in this transformation.
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Figure 3: Optimal time paths over 300 years for capital stock (left panel) and wealth taxes
(right panel) for various redistribution preferences (zero represents no desire for redistri-
bution; see footnote 20).

(a) if σ > 1, the zero-tax steady state is locally saddle-path stable;

(b) if σ < 1 and γ ≤ γ∗
, the zero-tax steady state is locally stable;

(c) if σ < 1 and γ > γ∗
, the zero-tax steady state may be locally stable or unstable and the

dynamics may feature cycles.

The first two points confirm our theoretical and numerical observations. For σ > 1
the solution is saddle-path stable, explaining why it does not converge to the zero-tax
steady state—except for the knife-edged cases where there is no desire for redistribution,
in which case the tax rate is zero throughout. For σ < 1 the solution converges to the
zero tax steady state whenever redistribution towards workers is desirable. This lends
theoretical support to our numerical findings for σ < 1, discussed earlier and illustrated
in Figure 1.

The third point raises a distinct possibility which is not our focus: the system may
become unstable or feature cyclical dynamics. This is consistent with Kemp et al. (1993),
who also studied the linearized system around the zero-tax steady state. They reported
the potential for local instability and cycles, applying the Hopf Bifurcation Theorem.
Proposition 5 clarifies that a necessary condition for this dynamic behavior is σ < 1 and
γ > γ∗. The latter condition is equivalent to a desire to redistribute away from workers
towards capitalists. We have instead focused on low values of γ that ensure that desired
redistribution runs from capitalists to workers. For this reason, our results are completely
distinct to those in Kemp et al. (1993).
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3 Representative Agent Ramsey

In the previous section we worked with the two-class model without government debt
from Judd (1985). Chamley (1986), in contrast, studied a representative agent Ramsey
model with unconstrained government debt; Judd (1999) adopted the same assumptions.
This section presents results for such representative agent frameworks.

We first consider situations where the upper bounds on capital taxation do not bind
in the long run. We then prove that these bounds may, in fact, bind indefinitely.

3.1 First Best or Zero Taxation of Zero Wealth?

In this subsection, we first review the discrete-time model and zero capital tax steady state
result in Chamley (1986) and then present a new result. We show that if the economy set-
tles down to a steady state where the bounds on the capital tax are not binding, then the
tax on capital must be zero. This result holds for general recursive preferences that, unlike
time-additive utility, allow the rate of impatience to vary. Non-additive utility constituted
an important element in Chamley (1986), to ensure that zero-tax results were not driven
by an “infinite long-run elasticity of savings”.21 However, we also show that other im-
plications emerge away from additive utility. In particular, if the economy converges to a
zero-tax steady state there are two possibilities. Either private wealth has been wiped out,
in which case nothing remains to be taxed, or the tax on labor also falls to zero, in which
case capital income and labor income are treated symmetrically. These implications paint
a very different picture, one that is not favorable to the usual interpretation of zero capital
tax results.

Preferences. We write the representative agent’s utility as V(U0, U1, . . .) with per period
utility Ut = U(ct, nt) depending on consumption ct and labor supply nt. Assume that
utility V is increasing in every argument and satisfies a Koopmans (1960) recursion

Vt = W(Ut, Vt+1) (5a)

Vt = V(Ut, Ut+1, . . .) (5b)

Ut = U(ct, nt). (5c)

21At any steady state with additive utility one must have R = 1/β for a fixed parameter β ∈ (0, 1). This
is true regardless of the wealth or consumption level. In this sense, the supply of savings is infinitely elastic
at this rate of interest.
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Here W(U, V
�) is an aggregator function. We assume that both U(c, n) and W(U, V

�) are
twice continuously differentiable, with WU, WV , Uc > 0 and Un < 0. Consumption and
leisure are taken to be normal goods,

Ucc

Uc

− Unc

Un

≤ 0 and
Ucn

Uc

− Unn

Un

≤ 0,

with at least one strict inequality.
Regarding the aggregator function, the additively separable utility case amounts to

the particular linear choice W(U, V
�) = U + βV

� with β ∈ (0, 1). Nonlinear aggregators
allow local discounting to vary with U and V

�, as in Koopmans (1960), Uzawa (1968)
and Lucas and Stokey (1984). Of particular interest is how the discount factor varies
across potential steady states. Define Ū(V) as the solution to V = W(Ū(V), V) and let
β̄(V) ≡ WV(Ū(V), V) denote the steady state discount factor. It will prove useful below
to note that the strict monotonicity of V immediately implies that β̄(V) ∈ (0, 1) at any
steady state with utility V.22

Technology. The economy is subject to the sequence of resource constraints

ct + kt+1 + gt = F(kt, nt) + (1 − δ)kt t = 0, 1, . . . (6)

where F is a concave, differentiable and constant returns to scale production function
taking as inputs labor nt and capital kt, and the parameter δ ∈ [0, 1] is the depreciation
rate of capital. The sequence for government consumption, gt, is given exogenously.

Markets and Taxes. Labor and capital markets are perfectly competitive, yielding before
tax wages and rates of return given by w

∗
t
= Fn(kt, nt) and R

∗
t
= Fk(kt, nt) + 1 − δ.

The agent maximizes utility subject to the sequence of budget constraints

c0 + a1 ≤ w0n0 + R0k0 + R
b

0b0,

ct + at+1 ≤ wtnt + Rtat t = 1, 2, . . . ,

and the No Ponzi condition at+1
R1R2···Rt

→ 0. The agent takes as given the after-tax wage
wt and the after-tax gross rates of return, Rt. Total assets at = kt + bt are composed of
capital kt and government debt bt; with perfect foresight, both must yield the same return

22A positive marginal change dU in the constant per period utility stream increases steady state utility by
some constant dV . By virtue of (5a) this implies dV = WUdU + WVdV , which yields a contradiction unless
WV < 1.
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in equilibrium for all t = 1, 2, . . . , so only total wealth matters for the agent; this is not
true for the initial period, where we allow possibly different returns on capital and debt.
The after-tax wage and return relate to their before-tax counterparts by wt = (1 − τn

t
)w∗

t

and Rt = (1 − τt)(R
∗
t
− 1) + 1 (here it is more convenient to work with a tax rate on net

returns than on gross returns).
Importantly, we allow for a bound on the capital tax rate: τt ≤ τ̄ for some τ̄ > 0.

As is well understood, without upper bounds on capital taxation the solution involves
extraordinarily high initial capital taxation, typically complete expropriation, unless the
first best is achieved first. Taxing initial capital mimics the missing lump-sum tax, which
has no distortionary effects. This motivated Chamley (1986) and the subsequent literature
to impose upper bounds on taxation, τt ≤ τ̄. In some cases we follow Chamley (1986) and
assume τ̄ = 1; in this case the constraint amounts to the restriction that Rt ≥ 1.23

Planning problem. The implementability condition for this economy is

∞

∑
t=0

(V ctct + Vntnt) = Vc0

�
R0k0 + R

b

0b0

�
, (7)

whose derivation is standard. In the additive separable utility case Vct = βt
Uct and Vnt =

βt
Unt and expression (7) reduces to the standard implementability condition popularized

by Lucas and Stokey (1983) and Chari et al. (1994). Given R0 and R
b

0, any allocation
satisfying the implementability condition and the resource constraint (7) can be sustained
as a competitive equilibrium for some sequence of prices and taxes.24

To enforce upper bounds on the taxation of capital in periods t = 1, 2, . . . we impose

Vct = Rt+1Vct+1, (8a)

Rt = (1 − τt) (Fkt − δ) + 1, (8b)

τt ≤ τ̄. (8c)

The planning problem maximizes V(U0, U1, . . .) subject to (6), (7) and (8). In addition, we
take R

b

0 as given. The bounds τt ≤ τ̄ may or may not bind forever. In this subsection
we are interested in situations where the bounds do not bind asymptotically, i.e. they

23A typical story for the bounds is tax compliance constraints—capital owners would hide capital or
mask its returns if taxation were too onerous. Another motivation, although outside the present scope of
the representative agent Chamley (1986) model, are political economy constraints on redistribution from
capital owners, a point made by Saez (2013). Finally, another possibility is that bounds on capital taxation
reflect self-imposed institutional constraints introduced to mitigate the time inconsistency problem.

24The argument is identical to that in Lucas and Stokey (1983) and Chari et al. (1994).
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are slack after some date T < ∞. In the next subsection we discuss the possibility of the
bounds binding forever.

Chamley (1986) provided the following result—slightly adjusted here to make explicit
the need for the steady state to be interior, for multipliers to converge and for the bounds
on taxation to be asymptotically slack.

Theorem 3 (Chamley, 1986). Suppose the optimum converges to an interior steady state where

the constraints on capital taxation are asymptotically slack. Let Λ̃t = VctΛt denote the multiplier

on the resource constraint (6) in period t. Suppose further that the multiplier Λt converges to an

interior point Λt → Λ > 0. Then the tax on capital converges to zero
Rt

R∗
t

→ 1.

The proof is straightforward. Consider a sufficiently late period t, so that the bounds
on the capital tax rate are no longer binding. Then the first-order condition for kt+1 in-
cludes only terms from the resource constraint (6) and is simply Λ̃t = Λ̃t+1R

∗
t+1. Equiva-

lently, using that Λ̃t = VctΛt we have

VctΛt = Vct+1Λt+1R
∗
t+1.

On the other hand the representative agent’s Euler equation (8a) is

Vct = Vct+1Rt+1.

The result follows from combining these last two equations.25

The main result of this subsection is stated in the next proposition. Relative to Theo-
rem 3, we make no assumptions on multipliers and prove that the steady-state tax rate is
zero. More importantly, we derive new implications of reaching an interior steady state.

Proposition 6. Suppose the optimal allocation converges to an interior steady state and assume

the bounds on capital tax rates are asymptotically slack. Then the tax on capital is asymptotically

zero. In addition, if the discount factor is locally non-constant at the steady state, so that β̄�(V) �=
0, then either

25Chamley (1986) actually worked with the particular bound τ̄ = 1, implying a constraint on returns
Rt ≥ 1. For τ̄ = 1 it is enough to assume that the multiplier Λt converges in the limit and there is no need
to require the bounds on capital taxation not to bind. The reason is that in this case the constraints imposed
by (8) do not involve kt+1, so the argument above goes through unchanged. This is essentially the form
that Theorem 1 in Chamley (1986) takes, although the assumption of converging multipliers is not stated
explicitly, but imposed within the proof.

In fact, with τ̄ = 1, as long as the multiplier Λt converges, one does not even need to assume the allo-
cation converges to arrive at the zero-tax conclusion. This is essentially the argument used by Judd (1999).
However, the problem is that one cannot guarantee that the multiplier converges. We shall discuss this in
subsection 3.3.
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(a) private wealth converges to zero, at → 0; or

(b) the allocation converges to the first-best, with a zero tax rate on labor.

This result shows that at any interior steady state where the bounds on capital taxes
do not bind, the tax on capital is zero; this much basically echoes Chamley (1986), or
our rendering in Theorem 3. However, as long as the rate of impatience is not locally
constant, so that β̄�(V) �= 0, the proposition also shows that this zero tax result comes
with other implications. There are two possibilities. In the first possibility, the capital
income tax base has been driven to zero—perhaps as a result of heavy taxation along the
transition. In the second possibility, the government has accumulated enough wealth—
perhaps aided by heavy taxation of wealth along the transition—to finance itself without
taxes, so the economy attains the first best. Thus, capital taxes are zero, but the same is
true for labor taxes.

To sum up, if the economy converges to an interior steady state, then either both labor
and capital are treated symmetrically or there remains no wealth to be taxed. Both of these
implications do not sit well with the usual interpretation of the zero capital tax result. To
be sure, in the special (but commonly adopted) case of additive separable utility one can
justify the usual interpretation where private wealth is spared from taxation and labor
bears the entire burden. However, this is no longer possible when the rate of impatience
is not constant. In this sense, the usual interpretation describes a knife edged situation.

3.2 Long Run Capital Taxes Binding at Upper Bound

We now show that the bounds on capital tax rates may bind forever, contradicting a claim
by Chamley (1986). This claim has been echoed throughout the literature, e.g. by Judd
(1999), Atkeson et al. (1999) and others.

For our present purposes, and following Chamley (1986) and Judd (1999), it is con-
venient to work with a continuous-time version of the model and restrict attention to
additively separable preferences,26

ˆ ∞

0
e
−ρt

U(ct, nt)dt. (9a)

U(c, n) = u(c)− v(n) with u(c) =
c

1−σ

1 − σ
, v(n) =

n
1+ζ

1 + ζ
, (9b)

26Continuous time allowed Chamley (1986) to exploit the bang-bang nature of the optimal solution. Since
we focus on cases where this is not the case it is less crucial for our results. However, we prefer to keep the
analyses comparable.
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where σ, ζ > 0. Following Chamley (1986), we adopt an iso-elastic utility function over
consumption; this is important to ensure the bang-bang nature of the solution. For con-
venience, we also assume iso-elastic disutility from labor; this assumption is not crucial.
The resource constraint is

ct + k̇t + g = f (kt, nt)− δkt, (10)

where f is concave, homogeneous of degree one and differentiable. For simplicity, gov-
ernment consumption is taken to be constant at g > 0. We denote the before-tax net
interest rate by r

∗
t
= fk(kt, nt)− δ. The implementability condition is now

ˆ ∞

0
e
−ρt

�
u
�(ct)ct − v

�(nt)nt

�
= u

�(c0)a0, (11)

where a0 = k0 + b0 denotes initial private wealth, consisting of capital k0 and government
bonds b0. To enforce bounds on capital taxation we impose

θ̇t = θt(ρ − rt), (12a)

rt = (1 − τt)( fk(kt, nt)− δ), (12b)

τt ≤ τ̄, (12c)

for some bound τ̄ > 0, where θt = u
�(ct) denotes the marginal utility of consumption.

The planning problem maximizes (9a) subject to (10), (11) and (12).
Chamley (1986, Theorem 2, pg. 615) formulated the following claim regarding the

path for capital tax rates.27

Claim. Suppose τ̄ = 1 and that preferences are given by (9). Then there exists a time T with the

following three properties:

(a) for t < T, the constraint τt ≤ τ̄ is binding;

(b) for t > T capital income is untaxed: rt = r
∗
t

and τt = 0;

(c) T < ∞.

We do not dispute (a) and (b). At a crucial juncture in the proof of this claim, Chamley
(1986) states in support of part (c) that “The constraint rt ≥ 0 cannot be binding forever
(the marginal utility of private consumption [...] would grow to infinity [...] which is
absurd).”28 Our next result shows that there is nothing absurd about this within the

27Similar claims are made in Atkeson et al. (1999), Judd (1999) and many other papers.
28It is worth pointing out, however, that although Chamley (1986) claims T < ∞ it never states that T is

small. Indeed, it cautions to the possibility that it is quite large saying “the length of the period with capital
income taxation at the 100 per cent rate can be significant.”
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T = ∞

T < ∞

k0

b0

Figure 4: Graphical representation of Proposition 7.

logic of the model and that, quite to the contrary, part (c) of the above claim is incorrect:
indefinite taxation, T = ∞, may be optimal.

Proposition 7. Suppose τ̄ = 1 and preferences are given by (9) with σ > 1. Fix any initial

capital k0 > 0. There exist b < b̄ such that for initial government debt b0 ∈ [b, b̄] the optimum

has τt = τ̄ for all t ≥ 0, while for b0 > b̄ there is no equilibrium.

Here b̄ represents the peak of a “Laffer curve”, above which there is no equilibrium.
The proposition states that for intermediate debt levels it is optimal to tax capital indefi-
nitely. Since these points are below the peak of the Laffer curve, indefinite taxation is not
driven by budgetary need—there are feasible plans with T < ∞; however, the plan with
T = ∞ is simply better. This is illustrated in figure 4 with a qualitative plot of the set of
states (k0, b0) for which indefinite capital taxation is optimal. Although this proposition
only considers τ̄ = 1, as in Chamley (1986), it is natural to conjecture that lower values of
τ̄ make the optimality of T = ∞ even more likely.

Our next result assumes g = 0 and constructs the solution for a set of initial conditions
that allow us to guess and verify its form.

Proposition 8. Suppose that τ̄ = 1, that preferences are given by (9) with σ > 1, and that g = 0.

There exists k < k̄ and b0(k0) such that: for any k0 ∈ (k, k̄] and initial debt b0(k0) the optimum

satisfies τt = τ̄ for all t ≥ 0 and ct, kt, nt → 0 exponentially with constant nt/kt and ct/kt.

Under the conditions stated in the proposition the solution converges to zero in a
homogeneous, constant growth rate fashion. This explicit example illustrates that con-
vergence takes place, but not to an interior steady state. This latter property is more
general: at least with additively separable utility, whenever indefinite taxation of capital
is optimal, T = ∞, no interior steady state exists.
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To see why this is the case consider first the case with τ̄ = 1. Then the after tax in-
terest rate is zero whenever the bound is binding. Since the agent discounts the future
positively this prevents a steady state. In contrast, when τ̄ < 1 the before-tax interest rate
may be positive and the after tax interest rate equal to the discount rate, (1− τ̄)r∗ = ρ, the
condition for constant consumption. This suggests the possibility of a steady state. How-
ever, we must also verify whether labor, in addition to consumption, remains constant.
This, in turn, requires a constant labor tax. Yet, one can show that under the assumptions
of Proposition 7, but allowing τ̄ < 1, we must have

∂tτ
n

t = (1 − τn

t )τtr
∗
t ,

implying that the labor tax strictly rises over time whenever the capital tax is positive,
τt > 0. This rules out a steady state. Intuitively, the capital tax inevitably distorts the
path for consumption, but the optimum attempts to undo the intertemporal distortion in
labor by varying the tax on labor. We conjecture that the imposition of an upper bound
on labor taxes solves the problem of an ever-increasing path for labor taxes, leading to the
existence of interior steady states with positive capital taxation.

3.3 Revisiting Judd (1999)

Up to this point we have focused on the Chamley-Judd zero-tax results. A follow-up
literature has offered both extensions and interpretations. One notable case doing both is
Judd (1999). This paper follows Chamley (1986) closely, setting up a representative agent
economy with perfect financial markets and unrestricted government bonds. It provides
a variant of the result in Chamley (1986) without requiring the allocation to converge to
a steady state. The paper also offers a connection between capital taxation and rising
consumption taxes to provide an intuition for zero-tax results. Let us consider each of
these two points in turn.

Bounded Multipliers and Zero Average Capital Taxes. The main result in Judd (1999)
can be restated using our continuous-time setup from Section 3.2. With τ̄ = 1, the plan-
ning problem maximizes (9a) subject to (10), (11), (12a), and (12b). Let Λ̂t = θtΛt denote
the co-state for capital, that is, the current value multiplier on equation (10), satisfying
˙̂Λt = ρΛ̂t − r

∗
t
Λ̂t. Using that ˙̂Λt/Λ̂t = θ̇t/θt + Λ̇t/Λt and θ̇t/θt = ρ − rt we obtain

Λ̇t

Λt

= rt − r
∗
t .
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If Λt converges then rt − r
∗
t
→ 0. Thus, the Chamley (1986) steady state result actually

follows by postulating the convergence of Λt, without assuming convergence of the al-
location. Judd (1999, pg. 13, Theorem 6) goes down this route, but assumes that the
endogenous multiplier Λt remains in a bounded interval, instead of assuming that it con-
verges.

Theorem 4 (Judd, 1999). Let θtΛt denote the (current value) co-state for capital in equation (10)
and assume

Λt ∈ [Λ, Λ̄],

for 0 < Λ ≤ Λ̄ < ∞. Then the cumulative distortion up to t is bounded,

log
�

Λ0

Λ̄

�
≤
ˆ

t

0
(rs − r

∗
s )ds ≤ log

�
Λ0
Λ

�
,

and the average distortion converges to zero,

1
t

ˆ
t

0
(rs − r

∗
s )ds → 0.

In particular, under the conditions of this theorem, the optimum cannot converge to
a steady state with a positive tax on capital.29 More generally, the condition requires
departures of rt from r

∗
t

to average zero.
Note that our proof proceeded without any optimality condition except the one for

capital kt.30 In particular, we did not invoke first-order conditions for the interest rate rt

nor for the tax rate on capital τt. Naturally, this poses two questions. Do the bounds on
Λt essentially assume the result? And are the bounds on Λt consistent with an optimum?

Regarding the first question, we can say the following. The multiplier e
−ρtΛ̂t repre-

sents the planner’s (time 0) social marginal value of resources at time t. Thus,

MRSSocial
t,t+s = e

−ρs
Λ̂t+s

Λ̂t

= e
−
´

s

0 r
∗
t+s̃

ds̃

represents the marginal rate of substitution between t and t+ s, which, given the assump-
tion τ = 1, is equated to the marginal rate of transformation. The private agent’s marginal

29The result is somewhat sensitive to the assumption that τ̄ = 1; when τ̄ �= 1 and technology is nonlinear,
the co-state equation acquires other terms, associated with the bounds on capital taxation.

30In this continuous time optimal control formulation, the costate equation for capital is the counterpart
to the first-order condition with respect to capital in a discrete time formulation. Indeed, the same result
can be easily formulated in a discrete time setting.
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rate of substitution is
MRSPrivate

t,t+s = e
−ρs

θt+s

θt

= e
−
´

s

0 rt+s̃ds̃,

where θt represents marginal utility. It follows, by definition, that

MRSSocial
t,t+s =

Λt+s

Λt

· MRSPrivate
t,t+s .

This expressions shows that the rate of growth in Λt is, by definition, equal to the wedge
between social and private marginal rates of substitution. Thus, the wedge Λt+s

Λt
= e

´
s

0 (rt+s̃−r
∗
t+s̃

)ds̃

is the only source of nonzero taxes. Whenever Λt is constant, social and private MRSs
coincide and the intertemporal wedge is zero, rt = r

∗
t
; if Λt is enclosed in a bounded

interval, the same conclusion holds on average.
These calculations afford an answer to the first question posed above: assuming the

(average) rate of growth of Λt is zero is tantamount to assuming the (average) zero long-
run tax conclusion. We already have an answer to the second question, whether the
bounds are consistent with an optimum, since Proposition 7 showed that indefinite taxa-
tion may be optimal.

Corollary. At the optimum described in Proposition 7 we have that Λt → 0 as t → ∞. Thus, in

this case the assumption on the endogenous multiplier Λt adopted in Judd (1999) is violated.

There is no guarantee that the endogenous object Λt remains bounded away from
zero, as assumed by Judd (1999), making Theorem 4 inapplicable.

Exploding Consumption Taxes. Judd (1999) also offers an intuitive interpretation for
the Chamley-Judd result based on the observation that an indefinite tax on capital is
equivalent to an ever-increasing tax on consumption. This casts indefinite taxation of
capital as a villain, since rising and unbounded taxes on consumption appear to contra-
dict standard commodity tax principles, as enunciated by Diamond and Mirrlees (1971),
Atkinson and Stiglitz (1972) and others.

The equivalence between capital taxation and a rising path for consumption taxes is
useful. It explains why prolonging capital taxation comes at an efficiency cost, since it
distorts the consumption path. If the marginal cost of this distortion were increasing in T

and approached infinity as T → ∞ this would give a strong economic rationale against
indefinite taxation of capital. We now show that this is not the case: the marginal cost
remains bounded, even as T → ∞. This explains why a corner solution with T = ∞ may
be optimal.
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We proceed with a constructive argument and assume, for simplicity, that technology
is linear, so that f (k, n)− δk = r

∗
k + w

∗
n for fixed parameters r

∗, w
∗ > 0.

Proposition 9. Suppose utility is given by (9), with σ > 1. Suppose technology is linear. Then

the solution to the planning problem can be obtained by solving to the following static problem:

max
T,c,n

u(c)− v(n), (13)

s.t. (1 + ψ(T)) c + G = k0 + ωn,

u
�(c)c − v

�(n)n = (1 − τ(T))u�(c)a0,

where ω > 0 is proportional to w
∗
; G is the present value of government consumption; and, c

and n are measures of lifetime consumption and labor supply, respectively. The functions ψ and τ

are increasing with ψ(0) = τ(0) = 0; ψ is bounded away from infinity and τ is bounded away

from 1. Moreover, the marginal trade-off between costs (ψ) and benefits (τ) from extending capital

taxation
dψ

dτ
=

ψ�(T)
τ�(T)

is bounded away from infinity.

Given c, n and T we can compute the paths for consumption ct and labor nt. Behind
the scenes, the static problem solves the dynamic problem. In particular, it optimizes over
the path for labor taxes. In this static representation, 1 + ψ(T) is akin to a production cost
of consumption and τ(T) to a non-distortionary capital levy. On the one hand, higher T

increases the efficiency cost from the consumption path. On the other hand, it increases
revenue in proportion to the level of initial capital. Prolonging capital taxation requires
trading off these costs and benefits.

Importantly, despite the connection between capital taxation and an ever increasing,
unbounded tax on consumption, the proposition shows that the tradeoff between costs
and benefits is bounded, dψ

dτ < ∞, even as T → ∞. In other words, indefinite taxation
does not come at an infinite marginal cost and helps explain why this may be optimal.

Should we be surprised that these results contradict commodity tax principles, as
enunciated by Diamond and Mirrlees (1971), Atkinson and Stiglitz (1972) and others? No,
not at all. As general as these frameworks may be, they do not consider upper bounds on
taxation, the crucial ingredient in Chamley (1986) and Judd (1999). Their guiding prin-
ciples are, therefore, ill adapted to these settings. In particular, formulas based on local
elasticities do not apply, without further modification.

Effectively, a bound on capital taxation restricts the path for the consumption tax to lie
below a straight line going through the origin. In the short run, the consumption tax is
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constrained to be near zero; to compensate, it is optimal to set higher consumption taxes
in the future. As a result, it may be optimal to set consumption taxes as high as possible
at all times. This is equivalent to indefinite capital taxation.

4 A Hybrid: Redistribution and Debt

Throughout this paper we have strived to stay on target and remain faithful to the original
models supporting the Chamley-Judd result. This is important so that our own results are
easily comparable to those in Judd (1985) and Chamley (1986). However, many contribu-
tions since then offer modifications and extensions of the original Chamley-Judd models
and results. In this section we depart briefly from our main focus to show that our results
transcend their original boundaries and are relevant to this broader literature.

To make this point with a relevant example, we consider a hybrid model, with redistri-
bution between capitalists and workers as in Judd (1985), but sharing the essential feature
in Chamley (1986) of unrestricted government debt. It is very simple to modify the model
in Section 2 in this way. We add bonds to the wealth of capitalists at = kt + bt, modifying
equation (1c) to

βU
�(Ct)(Ct + kt+1 + bt+1) = U

�(Ct−1)(kt + bt)

and the transversality condition to βt
U

�(Ct)(kt+1 + bt+1) → 0. Equivalently, we have the
present value implementability condition,

∞

∑
t=0

βt
U

�(Ct)Ct = U
�(C0)R0(k0 + b0),

With U(C) = C
1−σ/(1 − σ) this is

(1 − σ)
∞

∑
t=0

βt
U(Ct) = U

�(C0)R0(k0 + b0). (14)

Anticipated Confiscatory Taxation. For σ > 1 the left hand side in equation (14) is
decreasing in Ct and the right hand side is decreasing in C0. It follows that one can take a
limit with the property that Ct → 0 for all t = 0, 1, . . . , which is optimal for γ = 0. Along
this limit R1 → 0, so the tax on capital is exploding to infinity. This same logic applies if
the tax is temporarily restricted for periods t ≤ T − 1 for some given T, but is unrestricted
in period T.
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Proposition 10. Consider the two-class model from Section 2 but with unrestricted government

bonds. Suppose σ > 1 and γ = 0. If capital taxation is unrestricted in at least one period, then

the optimum features an infinite tax in some period and Ct → 0 for all t = 0, 1, . . .

This result exemplifies how extreme the tax on capital may be without bounds. In ad-
dition to this result, even when σ < 1, if no constraints are imposed on taxation except at
t = 0, then in the continuous time limit as the length of time periods shrinks to zero, tax-
ation tends to infinity. This point was also raised in Chamley (1986) for the representative
agent Ramsey model, and served as a motivation for imposing stationary upper bounds,
τt ≤ τ̄.

Long Run Taxation with Constraints. We now impose upper bounds on capital taxation
and show that these constraints may bind forever, just as in Section 3.2. As we did there,
it is convenient to switch to a continuous-time version of the model.

Proposition 11. Consider the two-class model from Section 2 but with unrestricted government

bonds and in continuous time. Suppose σ > 1 and γ = 0. If capital taxation is restricted by

τt ≤ τ̄ for some τ̄ > 0, then at the optimum τt = τ̄, i.e. capital should be taxed indefinitely.

These results hold for any value of τ̄ > 0, not just τ̄ = 1. Intuitively, σ > 1 is enough
to ensure indefinite taxation of capital because γ = 0 makes it optimal to tax capitalists
as much as possible. Similar results hold for positive but low enough levels of γ, so that
redistribution from capitalists to workers is desired.

This proposition assumes that transfers are perfectly targeted to workers. However,
indefinite taxation, T = ∞, remains optimal when this assumption is relaxed, so that
transfers are also received by capitalists.

We have also maintained the assumption from Judd (1985) that workers do not save.
In a political economy context, Bassetto and Benhabib (2006) study a situation where all
agents save (in our context, both workers and capitalists) and are taxed linearly at the
same rate. Indeed, they report the possibility that indefinite taxation is optimal for the
median voter.

Overall, these results suggest that indefinite taxation is optimal in a range of models
that are descendants of Chamley-Judd, with a wide range of assumptions regarding the
environment, heterogeneity, social objectives and policy instruments.
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5 Conclusions

This study revisited two closely related models and results, Chamley (1986) and Judd
(1985). Our findings contradict well-established results and their standard interpreta-
tions. We showed that, provided the intertemporal elasticity of substitution (IES) is less
than one, the long run tax on capital is actually positive. Empirically, an IES below one is
considered most plausible.

Why were the proper conclusions missed by Judd (1985), Chamley (1986) and many
others? Among other things, these papers assume that the endogenous multipliers asso-
ciated with the planning problem converge. Although this seems natural, we have shown
that this is not necessarily true at the optimum. In fact, on closer examination it is evi-
dent that presuming the convergence of multipliers is equivalent to the assumption that
the intertemporal rates of substitution of the planner and the agent are equal. This then
implies that no intertemporal distortion or tax is required. Consequently, analyses based
on these assumptions amount to little more than assuming zero long-run taxes.

In quantitative evaluations it may well be the case that one finds a zero long-run tax
on capital, e.g. for the model in Judd (1985) one may set σ < 1, and in Chamley (1986)
the bounds may not bind forever if debt is low enough.31 In this paper we refrain from
making any such claim, one way or another. We confined our attention to the original
theoretical zero-tax results, widely perceived as delivering ironclad conclusions that are
independent of parameter values or initial conditions. Based on our results, we have
found little basis for such an interpretation.
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Appendix

A Recursive Formulation of (1a)
In our numerical simulations, we use a recursive representation of the Judd (1985) econ-
omy. The two constraints in the planning problem feature the variables Ct−1, kt, Ct, kt+1
and ct. This suggests a recursive formulation with (kt, Ct−1) as the state and ct as a control.
The associated Bellman equation is then

V(k, C−) = max
c≥0,(k�,C)∈A

{u(c) + γU(C) + βV(k�, C)} (15)

c + C + k
� + g = f (k) + (1 − δ)k

βU
�(C)(C + k

�) = U
�(C−)k

c, C, k
� ≥ 0.

Here, A is the feasible set, that is, states (k0, C−1) such that there exists a sequence {kt+1, Ct}
satisfying all the constraints in (1) including the transversality condition. At t = 0, cap-
ital k0 is given, so there is no need to impose βU

�(C0)(C0 + k1) = U
�(C−1)k0. Thus, the

planner maximizes V(k0, C−1) with respect to C−1. If V is differentiable, the first order
condition is

VC(k0, C−1) = 0.

Since one can show that µt = VC(kt, Ct−1)U��(Ct−1)kt, this is akin to the condition µ0 = 0
in equation (2a).32

B Proof of Proposition 3

The proof of Proposition 3 consists of three parts. In the first part, we provide a few
definitions that are necessary for the proof. In particular, we define the feasible set of
states. In the second part, we characterize the feasible set of states geometrically. The
proofs for the results in that part are somewhat cumbersome and lengthy, so they are
relegated to the end of this section to ensure greater readability. Finally, in the third part,

32Alternatively, we may impose that R0 is taken as given, with R0 = R
∗
0 for example, to exclude an initial

capital tax. In that case the planner solves

max
k1,c0,,C0

{u(c0) + γU(C0) + βV(k1, C0)}

subject to

C0 + k1 = R0k0

c0 + C0 + k1 = f (k0) + (1 − δ)k0

c0, C0, k1 ≥ 0.

This alternative gives rise to similar results.

36



we use our geometric results to prove Proposition 3. Readers interested only in the main
steps of the proof are advised to jump straight to the third part.

B.1 Definitions

For the proof of Proposition 3 we make a number of definitions, designed to simplify
the exposition. A state (k, C−) as in the recursive statement (15) of problem (1a) will
sometimes be abbreviated by z, and a set of states by Z. The total state space is denoted
by Zall ⊂ R2

+ and is defined below. It will prove useful at times to express the set of
constraints in (15) as

k
� = x − C−

�
βx

k

�1/σ

(16a)

C = C−

�
βx

k

�1/σ

(16b)

C
σ/(σ−1)
−

�
β

k

�1/(σ−1)
≤ x ≤ f (k) + (1 − δ)k − g, (16c)

where x = k
� + C replaces c as control. In the last equation, the first inequality ensures

non-negativity of k
� while the second inequality is merely the resource constraint. Substi-

tuting out x, we can also write the law of motion for capital as k
� = 1

β
k

C
σ
−

C
σ − C, which we

will be using below.
The whole set of future states z

� which can follow a given state z = (k, C−) is denoted
by Γ(z), which can be the empty set. We will call a path {zt} feasible if (a) zt+1 ∈ Γ(zt) for
all t ≥ 0, which precludes Γ(zt) from being empty; and (b) if the transversality condition
holds along the path, C

−σ
t

kt+1 → 0. Similarly, a state z will be called feasible, if there exists
a feasible (infinite) path {zt} starting at z0 = z. In this case, z is generated by {zt}. Because
z1 ∈ Γ(z), we also say z is generated by z1. A steady state z = (k, C−) ∈ Z is defined to be a
state with C− = (1 − β)/βk. For very low and high capital levels k, steady states turn out
to be infeasible, but notice that all others are self-generating, z ∈ Γ(z). Similarly, a set Z is
called self-generating if every z ∈ Z is generated by a sequence in Z. Denote by Z

∗ (= A

in the notation above) the set of all feasible states. An integral part of the proof will be to
characterize Z

∗.
It will be important to specify between which capital stocks the economy is moving.

For this purpose, define kg and k
g > kg to be the two roots to the equation

k = f (k) + (1 − δ)k − g� �� �
≡F(k)

−1 − β

β
k. (17)

Demanding that k
g > kg is tantamount to specifying F

�(kg) < 1/β < F
�(kg). Equation

(17) was derived from the resource constraint, demanding that capitalists’ consumption is
at the steady state level of C = 1−β

β k and workers’ consumption is equal to zero. Equation
(17) need not have two solutions, not even a single one, in which case government con-
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g)

Z2
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Z3

Z4

k̄
k

C−

Figure 5: The state space Zall, including the feasible set Z
∗ (between the two red curves),

and all sets Zi (separated by the blue curves). The point (k∗, C
∗) is the zero-tax steady

state. Showing that this is the qualitative shape of the feasible set Z
∗ is an integral part of

the proof.

sumption is unsustainably high for any capital stock. Such values for g are uninteresting
and therefore ruled out. Corresponding to kg and k

g, we define Cg ≡ (1 − β)/β kg and
C

g ≡ (1 − β)/β k
g as the respective steady state consumption of capitalists. The steady

states (kg, Cg) and (kg, C
g) represent the lowest and highest feasible steady states, respec-

tively. The reason for this is that the steady state resource constraint (17) is violated for
any k �∈ [kg, k

g].
As in the Neoclassical Growth Model, the set of feasible states of this model is easily

seen to allow for arbitrarily large capital stocks. This is why we cap the state space for
high values of capital, and we take the total state space to be Zall = [0, k̄]× R+ for states
(k, C−), where k̄ ≡ max{kmax, k0} and k = kmax solves k = f (k) + (1 − δ)k − g. This way,
the set of capital stocks that are resource feasible given an initial capital stock of k0 must
necessarily lie in the interval [0, k̄], so the restriction for k̄ is without loss of generality for
any given initial capital stock k0. Note that with this state space, the set of feasible states
Z
∗ is also capped at k̄ in its k-component.

The outline of this proof is as follows. In Section B.2 we characterize the geometry of
the set of feasible states Z

∗. The results derived there are essential for the actual proof of
Proposition 3 in Section B.3.

B.2 Geometry of Z
∗

For better guidance through this section, we refer the reader to figure 5, which shows the
typical shape of Z

∗. The main results in this section are characterizations of the bottom
and top boundaries of Z

∗. We proceed by splitting up the state space, Zall = [0, k̄]× R+,
into four pieces and characterizing the feasible states in each of the four pieces.
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Define

wg(k) ≡






1−β
β k for 0 ≤ k ≤ kg

Cg

�
k

kg

�1/σ
for kg ≤ k ≤ k̄

w
g(k) ≡






1−β
β k for 0 ≤ k ≤ k

g

C
g

�
k

kg

�1/σ
for k

g ≤ k ≤ k̄,

and split up the state space as follows (see figure 5)

Zall =

�
k < kg, C− ≥ 1 − β

β
k

�

� �� �
Z1

∪
�

C− < wg(k)
�

� �� �
Z2

∪
�

k ≥ kg, wg(k) ≤ C− ≤ w
g(k)

�
� �� �

Z3

∪
�

k ≥ kg, C− ≥ w
g(k)

�
� �� �

Z4

.

Lemma 1 characterizes the feasible states in sets Z1 and Z2.

Lemma 1. Z
∗ ∩ Z1 = Z

∗ ∩ Z2 = ∅. All states with k < kg or C− < wg(k) are infeasible.

Proof. See Subsection B.4.1.

In particular, Lemma 1 shows that all states with C− < wg(k) are infeasible. Lemma
2 below complements this result stating that all states with wg(k) ≤ C− ≤ w

g(k) (and
k ≥ kg) in fact are feasible, that is, lie in Z

∗. This means, {C− = wg(k), k ≥ kg} constitutes
the lower boundary of the feasible set Z

∗.

Lemma 2. Z3 ⊆ Z
∗
, or equivalently, all states with wg(k) ≤ C− ≤ w

g(k) and k ≥ kg are feasi-

ble and generated by a feasible steady state. Moreover, states on the boundary {C− = wg(k), k >
kg} can only be generated by a single feasible state, (kg, Cg). Thus, there is only a single “feasible”

control for those states, c > 0.

Proof. See Subsection B.4.2.

Lemma 2 finishes the characterization of all feasible states with C− ≤ w
g(k). What

remains is a characterization of feasible states with C− > w
g(k), or in terms of the k −

C− diagram of Figure 5, the characterization of the red top boundary. This boundary is
inherently more difficult than the bottom boundary because it involves states that are not
merely one step away from a steady state. Rather, paths might not reach a steady state at
all in finite time. The goal of the next set of lemmas is an iterative construction to show
that the boundary takes the form of an increasing function w̄(k) such that states with
C− > w

g(k) are feasible if and only if C− ≤ w̄(k).
For this purpose, we need to make a number of new definitions: Let ψ(k, C−) ≡ (k +

C−)/C
σ
−. Applying the ψ function to the successor (k�, C) of a state (k, C−) and using the

IC constraint (1c) gives ψ(k�, C) = β−1
k/C

σ
−, a number that is independent of the control

x. Hence, for every state (k, C−) there exists an iso-ψ curve containing all its potential
successor states.
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In some situations it will be convenient to abbreviate the laws of motion for capitalists’
consumption and capital, equations (16a) and (16b), as k

�(x, k, C−) and C(x, k, C−).
Finally, define an operator T on the space of continuous, increasing functions v :

[kg, k̄] → R+, as,

Tv(k) = sup{C− | ∃x ∈ (0, F(k)] : v(k�(x, k, C−)) ≥ C(x, k, C−)}, (18)

where recall that F(k) = f (k) + (1 − δ)k − g, as in (17). The operator is designed to
extend a candidate top boundary of the set of feasible states by one iteration. To make
this formal, let Z

(i) be the set of states with C− ≥ w
g(k) which are i steps away from

reaching C− = w
g(k). For example, Z

(0) = {C− = w
g(k)}. Lemma 3 proves some basic

properties of the operator T.

Lemma 3. T maps the space of continuous, strictly increasing functions v : [kg, k̄] → R+ with

ψ(k, v(k)) strictly decreasing in k and v(kg) = Cg, v(kg) = C
g
, into itself.

Proof. See Subsection B.4.3.

Lemma 4 uses the operator T to describe the sets Z
(i).

Lemma 4. Z
(i) = {w

g(k) ≤ C− ≤ T
i
w

g(k)}. In particular T
i
w

g(k) ≥ T
j
w

g(k) ≥ w
g(k) for

i ≥ j.

Proof. See Subsection B.4.4.

The next lemma characterizes the limit function w̄(k) whose graph will describe the
top boundary of the set of feasible states.

Lemma 5. There exists a continuous limit function w̄(k) ≡ limi→∞ T
i
w

g(k), with w̄(kg) = Cg

and w̄(kg) = C
g
. All states with C− = w̄(k) are feasible, but only with policy c = 0.

Proof. See Subsection B.4.5.

Lemma 6. No state with C− > w̄(k) (and kg ≤ k ≤ k̄) is feasible.

Proof. See Subsection B.4.6.

Finally, Lemma 7 shows an auxiliary result which is both used in the proof of Lemma
6 and in Lemma 9 below.

Lemma 7. Let {kt+1, Ct} be a feasible path starting at (k0, C−1) with controls ct = 0. Let

kg < k0 ≤ k̄. Then:

(a) If C−1 = w̄(k0), (kt+1, Ct) → (kg, C
g).

(b) If C−1 > w̄(k0), (kt+1, Ct) �→ (kg, C
g).

Proof. See Subsection B.4.7.
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B.3 Proof of Proposition 3

Armed with the results from Section B.2 we now prove Proposition 3 in a series of inter-
mediate results. For all statements in this section, we consider an economy with an initial
capital stock of k0 ∈ [kg, k̄]. We call a path {kt+1, Ct} optimal path, if the initial C−1 was
optimized over given the initial capital stock k0. Analogously, we call a path {kt+1, Ct}
locally optimal path, if initial C−1 was not optimized over but rather taken as given at a
certain level, respecting the constraint that (k0, C−1) be feasible.

The first lemma proves that the multiplier on the capitalists’ IC constraint explodes
along an optimal path, and at the same time, workers’ consumption drops to zero.

Lemma 8. Along an optimal path, µt ≥ 0, µt → ∞ and ct → 0, where µt, ct are as in problem

(1a).

Proof. Consider the law of motion for µt,

µt+1 = µt

�
σ − 1
σκt+1

+ 1
�
+

1
βσκt+1υt

.

From Lemma 1 in Section B.2 we know that κt+1 = kt+1/Ct is bounded away from ∞.
Since µ0 = 0 and σ > 1, it follows that µt ≥ 0 and µt → ∞.

Suppose ct �→ 0. In this case, there exists c > 0 and an infinite sequence of indices (ts)
such that cts

≥ c for all s. Along these indices, the FOC for capital (2d) implies

u
�(cts

)� �� �
≤u�(c)

( f
�(kts

) + (1 − δ)) =
1
β

u
�(cts−1)� �� �

≥0

+U
�(cts−1)� �� �

bounded

· (µts
− µts−1)� �� �

≥const·µts−1→∞

,

and so kts
→ 0 for s → ∞, which is impossible within the feasible set Z

∗ because it violates
k ≥ kg (see Lemma 1).

Lemma 8 is mainly important because it shows that workers’ consumption drops to
zero. Together with the following lemma, this gives us a crucial geometric restriction of
where an optimal path goes in the long run.

Lemma 9. In the interior of Z
∗
, the optimal control policy is always c > 0. It follows that an

optimal path approaches either (kg, Cg) or (kg, C
g).

Proof. Note that any point in the interior of Z
∗ is element of some Z

(i), i < ∞, and can
thus reach the set {C− ≤ w

g(k)} \ {(kg, Cg), (kg, C
g)} in finite time. From there, at most

two steps are necessary to reach a interior steady state (kss, Css) with kg < kss < k
g and

hence positive consumption css > 0. Note that such an interior steady state can be reached
without leaving the interior of the feasible set, since by Lemmas 2 and 7, hitting the upper
or lower boundary once means convergence to a non-interior steady state.33

33Note that hitting the right boundary at k = k̄ (other than with k0) is of course not feasible due to
depreciation.
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Now take an interior state (k, C−) and suppose the optimal control was c = 0. Then,
by the FOC for capital (2d),34 it would have to stay at zero for the whole locally optimal
path, and so the value of this path would be u(0)/(1 − β). Clearly, this is less than the
value of a path converging to an interior steady state with positive workers’ consumption
along the whole path.

We conclude that the set of states with optimal control c = 0, {c = 0} for short, lies on
the boundary of Z

∗. By Lemmas 2 and 5 this means that {c = 0} is exactly equal to the
top boundary {C− = w̄(k)}. An optimal path which approaches {c = 0} must then share
the same limiting behavior as states in the set {c = 0}.35 By virtue of Lemma 7, it must
either converge to (kg, Cg) or (kg, C

g).

Lemma 9 gives a sharp prediction for the behavior of an optimal path: It converges
to one of two c = 0 steady states: One with little capital or one with abundant capital.
Which one that is, will be clear from the next lemma.

Lemma 10. If an optimal path {kt+1, Ct} converges to (kg, C
g), then the value function V is

locally decreasing in C at each point (kt+1, Ct), for all t > T, with T large enough.

Proof. Let xt ≡ F(kt)− ct and consider the following variation: Suppose that at a point
T, (kT+1, CT) is not at the lower boundary (in which case it cannot converge to (kg, C

g)
anyway) and that ct < F(kt)− F

�(kt)kt for all t ≥ T.36 For simplicity, call this T = −1. Do
the perturbation Ĉ−1 ≡ C−1 − �, k̂0 = k0, but keep the controls ct at their optimal level for
(k0, C−1), that is ĉt = ct. Denote the perturbed capital stock and capitalists’ consumption
by k̂t+1 = kt+1 + dkt+1 and Ĉt = Ct + dCt. Then the control x changes by dxt = F

�
t
dkt

to first order. We want to show that dkt+1 > 0 and dCt < 0 for all t ≥ 0, knowing that
dC−1 = −� and dk0 = 0.

From the constraints we find,

dkt+1 = F
�(kt)dkt� �� �

≥0

− Ct

Ct−1
dCt−1

� �� �
>0

+
1
σ

Ct

xt

F(kt)− F
�(kt)kt − ct

kt

dkt

� �� �
≥0

> 0

dCt =
Ct

Ct−1
dCt−1

� �� �
≤0

− 1
σ

Ct

xt

F(kt)− F
�(kt)kt − ct

kt

dkt

� �� �
≤0

< 0.

Using matrix notation, this local law of motion can be written as
�

dkt+1
dCt

�
=

�
at + bt −dt

−bt dt

��
dkt

dCt−1

�
,

34Note that the c ≥ 0 restriction need not be imposed due to Inada conditions for u.
35The formal reason for this is that by Berge’s Maximum Theorem, the optimal policy c is upper hemicon-

tinuous in the state. Because c = 0 along the boundary, and the path converges to the boundary, its policy
c converges arbitrarily close to 0. Therefore, it can only converge to where states in {c = 0} are converging.

36Such a finite T > 0 exists for two reasons: (a) because ct → 0; and (b) because F(k)− F
�(k)k which is

positive in a neighborhood around k = k
g since k

g was defined by F(kg) = k
g/β and F

�(kg) < 1/β.
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with at = F
�(kt), dt = Ct/Ct−1, bt = 1

σ
Ct

xt

F(kt)−F
�(kt)kt−ct

kt
. Close to (kg, C

g), this matrix has
d ≈ 1. Suppose for one moment that a was zero; the fact that a > 0 only works in favor
of the following argument. With a = 0, the matrix has a single nontrivial eigenvalue of
b + d, which exceeds 1 strictly in the limit, and the associated eigenspace is spanned by
(1,−1). The trivial eigenvalue’s eigenspace is spanned by (d, b). Notice that the latter
eigenvector is not collinear with the initial perturbation (0,−1), implying that dk∞ > 0
and dC∞ < 0. Hence, k̂∞ > k∞ = k

g and Ĉ∞ < C∞ = C
g.

But notice that to the bottom right of (kg, C
g), the new point is interior, which implies

a continuation value of u(0)/(1 − β). More formally, this means there must exist a time
T
� > 0 for which the continuation value of (kT�+1, CT�) is strictly dominated by the one

for (k̂T�+1, ĈT�), that is, V(kT�+1, CT�) < V(k̂T�+1, ĈT�). Because all controls were equal up
until time T

�, this implies that V(kT+1, CT) < V(kT+1, CT − �) for � small (Recall that we
had set T = −1 during the proof). Thus, the value function must increase if CT is lowered,
for a path starting at (kT+1, CT), for large enough T. This proves that the value function
is locally decreasing in C at that point.

And finally, Lemma 11 proves Proposition 3.

Lemma 11. An optimal path converges to (kg, Cg).

Proof. By Lemma 9 it is sufficient to prove that an optimal path does not converge to
(kg, C

g). Suppose the contrary held and there was an optimal path converging to (kg, C
g).

By Lemma 10, this means that the value function is locally decreasing around the optimal
path (kt+1, Ct) for t ≥ T, with T > 0 sufficiently large. Consider the following feasible
variation for t = −1, 0, . . . , T, Ĉt = Ct(1 − d�t), k̂t+1 = kt+1, x̂t = xt − Ctd�t where37

d�t =

�
1 − 1

σ

Ct

xt

�−1
d�t−1. (19)

Observe that (19) is precisely the relation which ensures that the variation satisfies all
the constraints of the system (in particular (16b) of which (19) is the linearized version).
Workers’ consumption increases with this variation by dct = Ctd�t > 0. Therefore, the
value of this path changes by

dV =
T

∑
t=0

βt
u
�(ct)dct

� �� �
>0

+βT+1 (V(kT+1, CT − CTd�T)− V(kT+1, CT))� �� �
>0, by Lemma 10

> 0,

which is contradicting the optimality of {kt+1, Ct}. Ergo, an optimal path converges to
(kg, Cg).

37Notice that xt = Ct + kt+1 ≥ Ct by definition of xt, and σ > 1. Hence this expression is well defined.
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B.4 Proofs of Auxiliary Lemmas

B.4.1 Proof of Lemma 1

Proof. Focus on Z1 first and consider a state (k, C−) with k < kg and C− ≥ 1−β
β k. Then,

x ≡ k
� + C ≤ f (k) + (1 − δ)k − g = 1

β k(1 − �(k)), where �(kg) = 0 and �(k) > 0 for all
k < kg, by definition of kg and Inada conditions for f . Also, by g > 0 there is a capital
stock k̃ ∈ (0, kg) where �(k̃) = 1 (namely when f (k̃) + (1 − δ)k̃ − g = 0). The highest k

�

which can generate a state (k, C−) ∈ Z1 is then bounded by

k
� = x − C−

�
βx

k

�1/σ

≤ 1
β

k(1 − �(k))− 1 − β

β
k (1 − �(k))1/σ

� �� �
≥1−�(k)

≤ k(1 − �(k)),

where in the first inequality we used the fact that k
� is increasing in x in the relevant range

for x, as specified in (16c). This implies that k always strictly falls in that range, and after
a finite number of periods crosses k̃. For k < k̃, the constraint set is empty because then
f (k) + (1 − δ)k − g < 0. Therefore, no state in

�
k < kg, C− ≥ 1−β

β k

�
can be generated by

an infinite path and so Z
∗ ∩ Z1 = ∅.

Now consider a state (k, C−) with C− < wg(k), thus, in particular (C−/Cg)σ < k/kg.38

Define h(k, C−) ≡ k/C
σ
−. Suppose next period’s state satisfies C < 1−β

β k
�, or else C ≥

1−β
β k

� which we already know leads to an empty constraint set in finite time.39 Then,

h(k�, C) =
k
�

Cσ =
k
�

C
σ
−βx/k

=
k

C
σ
−

k
�

β(k� + C)� �� �
>1

> h(k, C−). (20)

This implies that, along any feasible path, h is strictly increasing. Suppose h �→ ∞. Then,
by the monotone sequence convergence theorem, there exists an H > 0 such that h → H

along the path. Using (20) this implies that kt+1/ (β(kt+1 + Ct)) → 1, or equivalently that
kt+1/Ct → β/(1 − β). If kt+1 �→ 0 (in the case kt+1 → 0 we are done because for any
k < k̃ the constraint set is empty, as before), then this means the state (kt, Ct−1) converges
to a feasible steady state.40 However, the lowest feasible steady state is (kg, Cg) and since
(C−/Cg)σ < k/kg,

h > h(kg, Cg) = sup
kg≤k≤kg

h(k, (1 − β)/βk),

38This inequality even holds if k < kg because there, Cg(k/kg)1/σ > (1 − β)/βk. To see this recall that
Cg = (1 − β)/βkg and so Cg(k/kg)1/σ/((1 − β)/βk) = (k/kg)1/σ−1 > 1, where we used σ > 1.

39Note that if C ≥ (1− β)/β k
�, then k

� < kg. The reason is as follows: The constraints (16a) and (16b) can
be rewritten as k

� = (C/C−)
σ

k/β−C. Because (C−/Cg)σ < k/kg, this implies that k
� >

�
C/Cg

�σ
kg/β−C.

Note that the right hand side of this inequality is increasing in C as long as it is positive (which is the
only interesting case here). Substituting in C ≥ (1 − β)/β k

�, this gives k
� >

�
k
�/kg

�σ
kg/β − (1 − β)/βk

�.
Rearranging, k

�/kg >
�
k
�/kg

�σ, a condition which can only be satisfied if k
�/kg < 1 (recall that σ > 1).

40Notice that, if kt+1/C
σ
t
→ H > 0 and kt+1/Ct → β/(1 − β) then convergence of kt+1 and Ct+1 them-

selves immediately follow.
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which follows because k/((1 − β)/βk)σ is decreasing in k. This is a contradiction to
(kt, Ct−1) converging to a feasible steady state. Therefore, h → ∞, and thus Ct → 0
because k is bounded from above by the resource constraint. Again, if kt+1 eventually
drops below k̃, the constraint set is empty. Assume kt+1 ≥ k for some k > 0. Then,
U

�(Ct)kt+1 → ∞, contradicting the transversality condition. We conclude that no state
(k, C−) with (C−/Cg)σ < k/kg can be generated by an infinite path satisfying the neces-
sary constraints. Hence, Z

∗
2 = ∅.

B.4.2 Proof of Lemma 2

Proof. Consider a state (k, C−) with wg(k) ≤ C− ≤ w
g(k) and k ≥ kg. In particular,

C− ≤ (1 − β)/βk, (C−/Cg)σ ≥ k/kg and (C−/C
g)σ ≤ k/k

g.41 The idea of the proof
is to show that in fact such a state can be generated by a steady state (kss, Css) (with
Css = (1 − β)/βkss and kg ≤ kss ≤ k

g). By definition of kg and k
g, such a steady state is

always self-generating.
Guess that the right steady state has kss = (βC−/(1 − β))σ/(σ−1)

k
−1/(σ−1) and Css =

(1 − β)/βkss. It is straightforward to check that this steady state can be attained with
control x = (Css/C−)σ

k/β. This steady state is self-generating because kg ≤ kss ≤ k
g,

which follows from (C−/Cg)σ ≥ k/kg and (C−/C
g)σ ≤ k/k

g. Finally, the control x is
resource-feasible because C− ≤ (1 − β)/βk and thus,

x =
1
β





�
β

1−β C−
�σ

k





1/(σ−1)

≤ k

β
≤ f (k) + (1 − δ)k − g,

where the latter inequality follows from the fact that kg ≤ k ≤ k
g and the definition of kg

and k
g. This concludes the proof that all states with wg(k) ≤ C− ≤ w

g(k) and k ≥ kg are
feasible.

Now regard a state on the boundary {C− = wg(k), k > kg}, so we also have that
C− < (1 − β)/βk.42 For such a state, kss = kg and Css = Cg, and so such a state is
generated by (kg, Cg). Moreover, the unique control which moves (k, C−) to (kg, Cg) is
x < k/β ≤ f (k) + (1 − δ)k − g, or in terms of c, c > 0.

To show that (kg, Cg) is in fact the only feasible state generating (k, C−), let (k�, C)
be a state generating (k, C−). If k

� < kg, then (k�, C) is not feasible by Lemma 1, and
k
� = kg is exactly the case where (kg, Cg) generates (k, C−). Suppose k

� > kg. Then,
C < (1− β)/βk

�,43 and so we can recycle equation (20) to see h(k�, C) > h(k, C−). Because
h(k, C−) = h(kg, Cg) however, this implies that h(k�, C) > h(kg, Cg), or put differently,
C < wg(k�). Again by Lemma 1 such a (k�, C) is not feasible. Therefore, the only state that

41These inequalities hold for all k ≥ kg. The proofs are analogous to the proofs in footnotes 38 and 42.
42This holds because C− = wg(k) = Cg(k/kg)1/σ and thus C−/((1 − β)/βk) = (k/kg)1/σ−1 < 1.
43This holds because by the IC constraint (1c), β(k� + C)/C

σ = kg/C
σ
g or equivalently (k� + C)/C =

1/(1 − β) (C/Cg)σ. Thus, letting κ = k
�/C, (κ + 1)κσ = (1 − β)−1 · (β/(1 − β))σ · (k�/kg)σ. Since the right

hand side is increasing in κ, the fact that k
� > kg tells us that κ > β/(1 − β), which is what we set out to

show.
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can generate a state on the boundary {C− = wg(k), k > kg} is (kg, Cg), and the associated
unique control involves positive c.

B.4.3 Proof of Lemma 3

Proof. First note that T can be rewritten as

Tv(k) = max{C− | v(k�(F(k), k, C−)) = C(F(k), k, C−)}. (21)

There are two ways in which (21) differs from (18):

• Suppose that the supremum in (18) is attained with x0 < F(k). Because ψ(k, v(k)) is
strictly decreasing in k and ψ(k�(. . .), C(. . .)) is constant in x, there can at most be a
single crossing between the graph of v and {(k�, C) | x ∈ (0, F(k)]}. Further, notice
that the function

Φ : x �→ ψ
�
k
�(x, k, C−), C(x, k, C−)

�
� �� �

constant in x

−ψ
�
k
�(x, k, C−), v(k�(x, k, C−))

�
� �� �

decreasing in x

(22)

is strictly increasing in x with Φ(x0) ≥ 0. Therefore, Φ(F(k)) > 0, or, in other
words, v(k�(F(k), k, C−)) > C(F(k), k, C−). Since v is continuous, this means that
C− can be increased without violating v(k�) ≥ C — a contradiction to C− attaining
the supremum.

• Suppose that the supremum in (18) is attained with x = F(k) but v(k�(F(k), k, C−)) >
C(F(k), k, C−). Again, this means increasing C− does not violate the condition that
v(k�(x, k, C−)) ≥ C(x, k, C−).

These two arguments prove that (21) is a valid way to write Tv(k). Now pick a con-
tinuous, increasing function v : [kg, k̄] → R+ with ψ(k, v(k)) strictly decreasing in k and
v(kg) = Cg, v(kg) = C

g and check the claimed properties in turn:

• Tv(kg) = Cg because k
�(F(kg), kg, Cg) = kg and C(F(kg), kg, Cg) = Cg. However,

k
�(F(kg), kg, C−) is strictly decreasing in C− and so k

�(F(kg), kg, C−) < kg for C− >
Cg (for k < kg, v(k) is not even defined).

• Note that v(k�(F(k), k, C−)) = C(F(k), k, C−) has exactly one solution C
∗
−(k) for C−

since v(k�) is increasing in k
� but k

� is strictly decreasing in C− and C strictly increas-
ing in C−. Also, it is easy to see that for C− < Cg(k/(βF(k)))1/σ , C(F(k), k, C−) <
Cg and so v(k�(F(k), k, C−)) > C(F(k), k, C−). Similarly, for C− sufficiently high,
k
� = kg but C > Cg.44

44
C > Cg must hold if k

� = kg, and k > kg because: From k > kg it follows that k
�(F(k), k, (1− β)/βk) > kg

and C(F(k), k, (1 − β)/βk) > Cg. Since k
�(. . .) is decreasing in C−, it follows that C− > (1 − β)/βk is

necessary to achieve k
� = kg. Because C(. . .) is increasing in C−, it follows that C > Cg.
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• To show that Tv(k) is increasing note that ψ(k�(. . .), C(. . .)) = β−1
k/C

σ
− is strictly

increasing in k and strictly decreasing in C−. Further, recall that

k
�(F(k), k, C−) = F(k)

�
1 − C−

�
β

kF(k)σ−1

�1/σ
�

is strictly increasing in k and strictly decreasing in C−, and that v was such that
ψ(k, v(k)) is strictly decreasing in k. Then, the function

Ψ : (k,−C−) �→ ψ
�
k
�(F(k), k, C−), C(F(k), k, C−)

�
� �� �

� in k and (−C−)

− ψ
�
k
�(F(k), k, C−), v(k�(F(k), k, C−))

�
� �� �

� in k and (−C−)

is strictly increasing in k and −C−. Because the {Ψ = 0} locus is exactly the graph
of Tv(k), it follows that Tv(k) is strictly increasing.

• Then, it also easily follows that Tv(k) is continuous because Ψ is strictly increasing
and continuous, and has exactly one zero for each value of k ∈ [kg, k̄].45

• For ψ(k, Tv(k)) decreasing in k, pick k1 < k2. Suppose ψ(k1, Tv(k1)) ≤ ψ(k2, Tv(k2)).
Since Tv(k) is strictly increasing, it follows that

k1
Tv(k1)σ − k2

Tv(k2)σ <
k1

Tv(k1)σ + Tv(k1)
1−σ

� �� �
ψ(k1,Tv(k1))

− k2
Tv(k2)σ − Tv(k2)

1−σ

� �� �
−ψ(k2,Tv(k2))

≤ 0,

and so
ψ(k�1, C1) = β−1 k1

Tv(k1)σ < β−1 k2
Tv(k2)σ = ψ(k�2, C2). (23)

This, however, implies that Tv(k2) cannot have been optimal: Pick an alternative
consumption level C2,− as C2,− = Tv(k1)(k2/k1)1/σ, which exceeds Tv(k2) by (23).
Moreover, denoting by x1 the policy to take state (k1, Tv(k1)) to state (k�1, C1), pick x1
as alternative policy for (k2, C2,−). Note that x1 is feasible in state (k2, C2,−) because
x1 ≤ F(k1) ≤ F(k2). Since k1/Tv(k1)σ = k2/C

σ
2,− by construction, it follows that

the state succeeding (k2, C2,−) is (k�(x1, k2, C2,−), C(x1, k2, C2,−)) = (k�1, C1), which
lies on the graph of v. Hence Tv(k2) cannot have been optimal and so ψ(k, Tv(k)) is
decreasing in k.

• Finally, Tv(kg) = C
g. The reason for this is that one the one hand, k

�(F(kg), k
g, C

g) =
k

g and C(F(kg), k
g, C

g) = C
g. On the other hand, because k

�(. . .) is decreasing and
C(. . .) is increasing in C−, it follows that k

�(F(kg), k
g, C−) < k

g but C(F(kg), k
g, C−) >

45This is a fact that holds more generally: If f (x, y) is a strictly increasing two-dimensional function and
for each x there exists a unique y

∗(x) s.t. f (x, y
∗(x)) = 0, then y

∗(x) must be continuous in x.
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C
g for C− > C

g. Such a state can never lie on the graph of v given v(kg) = C
g and

its monotonicity.

B.4.4 Proof of Lemma 4

Proof. Note that any state (k, C−) reaches the space {C− ≤ v(k)} in one step if and only
if C− ≤ Tv(k) (provided that v satisfies the regularity properties in Lemma 3). Thus, by
iteration, Z

(i) = {w
g(k) ≤ C− ≤ T

i
w

g(k)}. Because Z
(i) ⊇ Z

(j) for i ≥ j, it holds that
T

i
w

g(k) ≥ T
j
w

g(k).46

B.4.5 Proof of Lemma 5

Proof. The existence of the limit limi→∞ T
i
w

g(k) is straightforward for every k (monotone
sequence, bounded above because for large values of C−, k

�(F(k), k, C−) < kg for any
k). By Lemma 2, w̄ must be weakly increasing, w̄(kg) = Cg, w̄(kg) = C

g, and ψ(k, w̄(k))
must be weakly decreasing. Suppose that w̄ was not continuous. Then, there need to
be two arbitrarily close values of k, k1 < k2 with a gap between w̄(k1) and w̄(k2). Be-
cause k

�(F(k1), k1, C−) is decreasing in C− and C(F(k1), k1, C−) is increasing in C−, the
fixed point property Tw̄ = w̄ can only hold if w̄ were locally decreasing around state
(k�(F(k1), k1, C

∗
−(k1)), C(F(k1), k1, C

∗
−(k1)), a contradiction. Therefore, w̄ is continuous.

Note that by the fixed point property, Tw̄(k) = w̄(k), from which it follows that c = 0,
or in other words x = F(k), is the only feasible policy for states with C− = w̄(k) (consider
the representation of T in equation (21) – this implies that v(k�) < C for any c > 0, by a
similar logic as in (22)).

B.4.6 Proof of Lemma 6

Proof. Define h as before, h(k�, C) ≡ k
�/C

σ. Fix a state (k, C−) with C− > w̄(k). First,
consider the case C− ≥ (1 − β)/βk. Note that such a path must have Ct > (1 − β)/βkt+1
along the whole path unless kt+1 < kg. This follows directly from Ct > w̄(kt+1) (which
must hold by construction of w̄) for kt+1 ≤ k

g. If kt+1 > k
g it must be the case that

46A subtlety here is that Z
(i) ⊇ Z

(j) only holds because states in the set {C− = w
g(k)} is “self-generating”,

that is, if a path hits the set {C− = w
g(k)} after j steps, it can stay in that set forever. In particular, it can hit

the set after i ≥ j steps as well. This explains why Z
(i) ⊇ Z

(j).
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ks+1 > k
g for all s < t as well.47 But then, using xt ≤ F(kt) < kt/β,

kt+1
Ct

=
xt

Ct

− 1 <
kt/β

Ct−1
− 1 =

β

1 − β
.

We established that Ct > (1 − β)/βkt+1 along the whole path.
Thus,

h(kt+1, Ct) =
kt+1
C

σ
t

=
kt

C
σ
t−1

kt+1
β(kt+1 + Ct)� �� �

<1

< h(kt, Ct−1).

If h(kt+1, Ct) converges to zero, then either kt+1 → 0 or Ct → ∞ (in which case kt+1 → 0
by the law of motion for capital and the fact that kt ≤ k̄). Such a path is not feasible
because kt+1 drops below k̃ in finite time (see proof of Lemma 1 for k̃). Hence, suppose
h(kt+1, Ct) → h > 0. Then, kt+1/(β(kt+1 + Ct)) → 1, so the path must approximate the
steady state line described by C− = (1 − β)/βk. Because Ct > w̄(kt+1) along the path,
(kt+1, Ct) must be converging to (kg, C

g).
Next we show that along this convergence, ct can be zero. Suppose there were times

with ct > 0. Then, define a new path {k̂t+1, Ĉt}, starting at the same initial state (k, C−)
but with controls ct = 0. Observe that

h(k̂t+1, Ĉt) = ψ(k̂t+1, Ĉt)− Ĉ
1−σ
t

= β−1
h(k̂t, Ĉt−1)− h(k̂t, Ĉt−1)

(σ−1)/σ(βF(k̂t))
−(σ−1)/σ

k̂t+1 = F(k̂t)−
�

βF(k̂t)

h(k̂t, Ĉt−1)

�1/σ

,

where the first equation is increasing in h(k̂t, Ĉt−1) for the relevant parameters for which
h(k̂t+1, Ĉt) ≥ 0, and similarly the second equation is increasing in F(k̂t) if k̂t+1 ≥ 0. By
induction over t, if h(k̂t, Ĉt−1) ≥ h(kt, Ct−1) and k̂t ≥ kt (induction hypothesis), then,
because F(k̂t) ≥ xt,

h(k̂t+1, Ĉt) ≥ β−1
h(kt, Ct−1)− h(kt, Ct−1)

(σ−1)/σ(βxt)
−(σ−1)/σ = h(kt+1, Ct)

k̂t+1 ≥ F(kt)−
�

βF(kt)
h(kt, Ct−1)

�1/σ

,

47The reason for this is that for any state (k, C−) with k ≤ k
g and C− > w̄(k) we have that k

� ≤ k
g:

• if ψ(k�, C) ≥ ψ(kg, C
g), then the curve {(k�(x, k, C−), C(x, k, C−)), x > 0} (without resource con-

straint restriction) and the graph of w̄ intersect at a state with capital less than k
g. In particular,

this implies that the intersection of {(k�(x, k, C−), C(x, k, C−)), x > 0} and the steady state line
{C = (1 − β)/βk} lies in the interior of {C ≤ w̄(k)}. Therefore, if C were smaller than (1 − β)/βk

�,
this would mean that C < w̄(k�) – a contradiction to C− > w̄(k) given the construction of w̄.

• if ψ(k�, C) = k/C
σ
− < ψ(kg, C

g) = k
g/ (Cg)σ, then k

� ≤ F(k) − C−
�

βF(k)
k

�1/σ
< F(kg) −

C
g

�
βF(kg)

kg

�1/σ
= k

g.
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confirming that k̂t ≥ kt and h(k̂t, Ĉt−1) ≥ h(kt, Ct−1) for all t. Given that h(kt+1, Ct) →
h > 0, either

�
k̂t+1, Ĉt

�
→ (kg, C

g) as well or {k̂t+1, Ĉt} converges to some steady state
between kg and k

g. The latter cannot be because of Ct > w̄(kt+1) along the path. But the
former is precluded by Lemma 7 below.

Now, consider the case k > k
g and C− < (1 − β)/βk. If the succeeding state is above

the steady state line, C ≥ (1 − β)/βk
�, the case above applies. Hence, suppose the path

stayed below the steady state line forever, i.e. Ct < (1 − β)/βkt+1 for all t. In that case,

h(kt+1, Ct) =
kt+1
C

σ
t

=
kt

C
σ
t−1

kt+1
β(kt+1 + Ct)� �� �

>1

> h(kt, Ct−1).

Note that h(kt+1, Ct) is bounded from above, for example by h(kg, Cg) (because all states
below the steady state line with h equal to h(kg, Cg) are below the graph of w

g and thus
below w̄ as well). So, h(kt+1, Ct) converges and kt+1/(β(kt+1 + Ct)) → 1. The state
approximates the steady state line. Because the only feasible steady state with below the
steady state line but above the graph of w̄ is (kg, C

g) it follows that (kt+1, Ct) → (kg, C
g).

Following the same steps as before, it can be shown that without loss of generality,
controls ct can be taken to be zero along the path. By Lemma 7 below this is a contradic-
tion.

B.4.7 Proof of Lemma 7

Proof. We prove each of the results in turn.

(a) Notice that c = 0 takes any state on the graph of w̄ to another state on the graph
of w̄ (because Tw̄ = w̄). Suppose k0 < k

g (the case k0 > k
g is analogous). Then,

no future capital stock kt+1 can exceed k
g. Because if it did, there would have to

be a capital stock k ∈ (kg, k
g) with k

�(F(k), k, C
∗
−(k)) = k

g, by continuity of k �→
k
�(F(k), k, C

∗
−(k)). But this is impossible by definition of k

g.48 Thus, along the path,
Ct > (1 − β)/βkt+1 and so h(kt+1, Ct) is decreasing. As h(kg, Cg) > h(k, w̄(k)) for
all k > kg,49 this means (kt+1, Ct) → (kg, C

g).

(b) For simplicity, focus on the case k0 < k
g. Again, the case k0 > k

g is completely
analogous. Suppose (kt+1, Ct) was converging to (kg, C

g). Note that at k
g, F(k)/k is

decreasing50. Thus, there exists a time T > 0 for which the capital stock kT is suffi-
ciently close to k

g that F(k)/k is decreasing for all k in a neighborhood of k
g which in-

cludes {kt}t≥T. Let {k̂t+1, Ĉt} denote the path with ct = 0, starting from (kT, w̄(kT)).
Observe that both (kt+1, Ct) and (k̂t+1, Ĉt) have controls ct = 0 here, unlike in the
proof of Lemma 6. Denote the zero-control laws of motion for capital and capital-
ists’ consumption by Lk(k, C−) ≡ k

�(F(k), k, C−) and LC(k, C−) ≡ C(F(k), k, C−).
Since F(k)/k is locally decreasing, it follows that dLk/dk > 0, dLk/dC− < 0 and

48By definition of k
g, F(kg) = k

g + C
g, and so, F(k) < k

g + C
g for k < k

g.
49Note that w̄(k) > wg(k) and h(k, wg(k)) = const, see Lemmas 1 and 2 above.
50This holds because F

�(kg) < 1/β and F(kg) = 1/βk
g.
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dLC/dk < 0, dLC/dC− > 0. This implies that because CT−1 > w̄(kT) (which must
hold or else C− ≤ w̄(k) by construction of w̄), Ct > Ĉt and kt+1 > k̂t+1 for all t ≥ T.
Moreover, borrowing from equation (20), we know that

h(kt+1, Ct) = h(kt, Ct−1)

�
1
β
−

�
1

h(kt, Ct−1)

�1/σ 1
(βF(kt))1−1/σ

�
,

which implies that by induction h(kt+1, Ct) ≤ h(k̂t+1, Ĉt), that is,

log h(kt+T, Ct+T−1)

= log h(kT, CT−1) +
t−1

∑
s=0

log

�
1
β
−

�
1

h(kT+s, CT+s−1)

�1/σ 1
(βF(kT+s))1−1/σ

�

≤ log h(kT, CT−1) +
t−1

∑
s=0

log

�
1
β
−

�
1

h(k̂T+s, ĈT+s−1)

�1/σ 1
(βF(k̂T+s))1−1/σ

�

= log h(k̂t+T, Ĉt+T−1) + log h(kT, CT−1)− log h(k̂T, ĈT−1).

As t → ∞, this equation yields

log h(kg, C
g) ≤ log h(kg, C

g) + log h(kT, CT−1)− log h(k̂T, ĈT−1)� �� �
=−kT(Ĉ

−σ
T−1−C

−σ
T−1)<0

,

which is a contradiction. Therefore, (kt+1, Ct) �→ (kg, C
g).

C Numerical Method

To solve the Bellman equation (15) we must first compute the feasible set A (or Z
∗ in the

notation above). We restrict the range of capital to a closed interval [k, k̄] with k ≥ kg. This
leads us to seek a subset A

k ⊂ A of the feasible set A. We compute this set numerically as
follows.

Start with the set A0 defined by C− = 1−β
β k and k ∈ [k, k̄]. This set is self generating

and thus A0 ⊂ A
k. We define an operator that finds all points (k, C−) for which one can

find c, K
�, C satisfying the constraints of the Bellman equation and (k�, C) ∈ A0. This gives

a set A1 with A0 ⊂ A1. Iterating on this procedure we obtain A0, A1, A2 . . . and we stop
when the sets do not grow much.

We then solve the Bellman equation by value function iteration. We start with a guess
for V0 that uses a feasible policy to evaluate utility. This ensures that our guess is be-
low the true value function. Iterating on the Bellman equation then leads to a sequence
V0, V1, . . . and we stop when iteration n yields a Vn that is sufficiently close to Vn−1. Our
procedure uses a grid that is defined on a transformation of (k, C−) that maps A into a
rectangle. We linearly interpolate between grid points.

The code was programmed in Matlab and executed with parallel ’parfor’ commands,
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to improve speed and allow denser grids, on a cluster of 64-128 workers. Grid density
was adjusted until no noticeable difference in the optimal paths were observed.

D Proof of Proposition 4

First, we define the following object,

ωτ =
dWτ

dkτ+1
= ∑

τ�≥τ+1
βτ�−τ

u
�(cτ�)(F

�(kτ�)− Rτ�)

�
τ�−1

∏
s=τ+1

SI,sRs

�
, (24)

which corresponds to the response in welfare Wτ, measured in units of period τ utility, of
a change in savings by an infinitesimal unit between periods τ and τ + 1. Now consider
the effect of a one-time change in the capital tax, effectively changing Rt to Rt + dR in
period t. This has three types of effects on total welfare: It changes savings behavior in
all periods τ < t through the effect of Rt on Sτ. It changes capitalists’ income in period
t through the effect of Rt on Rtkt. And finally it changes workers’ income in period t

directly through the effect of Rt on F(kt) − Rtkt. Summing up these three effects, one
obtains a total effect of

dW =
t−1

∑
τ=0

βτ−tωτ Sτ,Rt
dR� �� �

change in savings in period τ<t

+ ωt SI,tktdR� �� �
change in savings in period t

−u
�(ct) ktdR����

change in workers� income in period t

.

The total effect needs to net out to zero along the optimal path, that is,

ωtSI,t − u
�(ct) = − 1

kt

t−1

∑
τ=0

βτ−tωτSτ,Rt
. (25)

By optimization over the initial interest rate R0, we find the condition

ω0SI,0k0 − u
�(c0)k0 = 0. (26)

Notice that SI,0 > 0 and so ω0 ∈ (0, ∞). Since the ωτ satisfy the recursion

ωτ = u
�(cτ+1)(F

�(kτ+1)− Rτ+1) + βSI,τ+1Rτ+1ωτ+1,
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and since it is easy to see that Rτ+1 > 0 for all τ,51 it also follows that ωτ is finite for all τ.
Then, due to the recursive nature of (25), if ωτ > 0 for τ < t,

ωtSI,t − u
�(ct) = − 1

kt

t−1

∑
τ=0

βτ−t ωτ����
>0

Sτ,Rt����
≤0

≥ 0.

In particular, using the initial condition (26), this proves by induction that

ωtSI,t − u
�(ct) ≥ 0 for all t > 0. (27)

Now suppose the economy were converging to an interior steady state with non-positive
limit tax (either zero or negative), that is, ∆t ≡ F

�(kt) − Rt converges to a non-positive
number, ct → c > 0, and SI,tRt → SI R > 0. Note that it is immediate by (24) that if ∆t con-
verges to a negative number, then ωt must eventually become negative—contradicting
(27). Hence suppose ∆t → 0. Distinguish two cases.

Case I: Suppose ∏τ
s=1(βSI,sRs) is unbounded or converging to a number in (0, ∞).

Then, because ω0 is finite, we have that the partial sums converge to zero,

ω̄τ ≡ ∑
τ�≥τ+1

βu
�(cτ�)(F

�(kτ�)− Rτ�)
τ�−1

∏
s=1

(βSI,sRs) → 0, as τ → ∞.

Hence,

ωτ =

�
τ

∏
s=1

(βSI,sRs)

�−1

ω̄τ → 0,

contradicting the fact that ωt is bounded away from zero by u
�(c)/SI . In fact notice that

when βSI R > 1, then notice that by (24) ω0 can never be finite unless ∆t → 0. Thus we
proved that βSI R > 1 is not compatible with any interior steady state.

Case II: Now suppose βSI R < 1. In this case, we show convergence of ωτ to zero
directly. Fix � > 0. Let τ large enough such that βSI,sRs < b for some b < 1 and that
|u�(cτ�)∆τ� | < �(1 − b). Then,

|ωτ| ≤ ∑
τ�=τ+1

�(1 − b)bτ�−1−τ = �.

Again, this contradicts the fact that ωt is bounded away from zero by u
�(c)/SI .

51Otherwise capital would be zero forever after due to S(0, . . .) = 0, a contradiction to the allocation
converging to an interior steady state.
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E Derivation of the Inverse Elasticity Rule (4) and Proof of

the Corollary

Consider equation (25). Because βSI R < 1, ωτ converges to

ω =
β

1 − βSI R
(F

�(k)− R)u�(c).

Suppose ω = 0, or equivalently a zero limit tax T = 0, and regard equation (25). We
make the additional convergence assumption

t

∑
τ=1

β−τ ωt−τkt−τ

ωtkt

�St−τ ,Rt
→

∞

∑
τ=1

β−τ�S,τ ∈ [−∞, ∞], as t → ∞, (28)

which amounts to first taking the limit of the summands as t → ∞, and then taking the
limit of the series, instead of considering both limits simultaneously. Under this order of
limits assumption, we can characterize the limit of equation (25) as t → ∞,

SI,t −
u
�(ct)
ωt� �� �

→±∞

= −
t

∑
τ=1

β−τ ωt−τkt−τ

ωtkt

�St−τ ,Rt

� �� �
→∑∞

τ=1 β−τ�S,τ

.

This implies that ∑∞
τ=1 β−τ�S,τ is either plus or minus infinity, which is compatible with

the inverse elasticity formula. Next consider the case ω �= 0. Again, by taking the limit of
(25) as t → ∞ and using the condition (28), we find

SI −
u
�(c)
ω

= −
∞

∑
τ=1

β−τ�S,τ,

which can be rewritten as

βSI R

1 − βSI R
(F

�(k)− R)− R = − 1
1 − βSI R

(F
�(k)− R)

∞

∑
τ=1

β−τ+1�S,τ.

Note that F
�(k)− R = T

1−T R. Therefore, we can rearrange the condition to

βSI R

1 − βSI R
− 1 − T

T = − 1
1 − βSI R

∞

∑
τ=1

β−τ+1�S,τ

⇒ T =
1 − βRSI

1 + ∑∞
t=1 β−t+1�S,t

.

Proof of the Corollary. Notice that by Proposition 4 the limit tax rate is positive, T >
0, conditional on convergence to an interior steady state. If now the inverse elasticity
formula implies a negative tax rate, then either the regularity condition for the inverse
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elasticity rule is not satisfied or the allocation does not converge to an interior steady
state.

F Infinite Sum of Elasticities with Recursive Utility

Proposition 12. Suppose capitalists have recursive preferences represented by (5a) (see Section

3.1, with U = c) then at any zero tax steady state

T

∑
τ=1

β−τ�S,τ

diverges to +∞ or −∞ as T → ∞.

Proof. For this exercise, suppose capitalists’ utility is characterized by the recursion Vt =
W(Ct, Vt+1), assuming W is twice continuously differentiable and strictly increasing in
both arguments. Suppose after-tax interest rates Rt converge to some R > 0 and Ct, at

converge to positive values. Note that because utility is strictly increasing in a permanent
increase in consumption at the steady state, we have WV ∈ (0, 1) (see also footnote ??

below).
The conditions for optimality are then,

Vt = W (Rtat − at+1, Vt+1)

WC (Rtat − at+1, Vt+1) = Rt+1WV (Rtat − at+1, Vt+1)WC (Rt+1at+1 − at+2, Vt+2) .

The first equation is the recursion for utility Vt and the second equation is the Euler equa-
tion. In particular, note that the latter implies that RWV = 1 at the steady state. Lineariz-
ing these equations around the steady state (denoted without time subscripts) yields,

WV dVt+1 = −WCR dat + WC dat+1 + dVt − WCa dRt (29)

and

(RWCWVC − RWCC − WCC) dat+1 + WCC dat+2 − (WVWC + WCCa) dRt+1

+ (WCV − RWCWVV) dVt+1 − WCV dVt+2

= (R
2
WCWVC − WCCR) dat + (RWCWVCa − WCCa) dRt, (30)

where all derivatives are evaluated at the steady state ((R − 1) a, V). We solve (29) and
(30) by the method of undetermined coefficients, guessing

dat+1 = λ dat +
∞

∑
s=0

θs dRt+s (31a)

dVt = WCR dat + (WCa)
∞

∑
s=0

W
s

V
dRt+s. (31b)
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The form of equation (31a) is what is required by the Envelope condition. We are left to
find λ and the sequence {θs}. Substituting the guesses (31a) and (31b) into (30), we obtain
an expression featuring dat, dat+1, dat+2 and dRt+s for s = 0, 1, . . . . Setting the coefficient
on dat to zero gives a quadratic for λ,

λ
2
+

�
2RWCWVC − WCC (1 + R)− R

2
W

2
C

WVV

WCC − WVCWCR

�
λ + R = 0. (32)

Note that in the additive separable case (when W(C, V) is linear in V), λ̄ = 1 is a solution.
Setting the coefficient on dRt to zero gives

θ0 =
(RWCWVC − WCC) a

2RWCWVC − WCC (1 + R) + (WCC − RWCVWC) λ − R2W
2
C

WVV

=
λ (RWCWVC − WCC) a

−R (WCC − WVCWCR)
= λ

a

R
.

Similarly for dRt+1 we find (after various simplifications),

θ1 = WVλθ0 + λWV

W
2
V
+

�
WCC

WC
+ R

∗
WCWVV − WCV

�
WV a

WVC − WV

WC
WCC

,

and for dRt+s (after many simplifications)

θs = WVλθs−1 + λ (WV)
s (1 − WV)

WVC + WC

1−WV
WVV

WVC − WV

WC
WCC

a,

for s = 2, 3, . . . . The result then follows immediately from this expression. If WVC +
WC

1−WV
WVV = 0 then λ̄ = 1 and θs = WVθs−1. Otherwise, the second term is nonzero and

is geometric in W
s

V
.

G Linearized Dynamics and Proof of Proposition 5

A natural way to prove Proposition 5 would be to linearize our first order conditions in
(2), and to solve forward for the multipliers µt and λt using transversality conditions,
arriving at an approximate law of motion of the form

�
kt+1
Ct

�
−

�
kt

Ct−1

�
= Ĵ

�
kt − k

∗

Ct−1 − C
∗

�
.

To maximize similarity with Kemp et al. (1993), however, we do not take that route; rather
we start with the continuous time problem, derive its first order conditions and linearize
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them around the zero tax steady state. The problem in continuous time is

max
ˆ ∞

0
e
−ρt (u(ct) + γU(Ct)) dt

s.t. ct + Ct + g + k̇t = f (kt)− δkt

Ċt =
Ct

σ

�
f (kt)

kt

− δ − ct

kt

− ρ

�
.

Let pt and qt denote the costates corresponding respectively to the states kt and Ct. The
FOCs are,

u
�
t = ptct + qt

1
σ

Ct

kt

ṗt = ρpt − pt( f
�(kt)− δ) + qt

Ċt

kt

− qt

Ct

kt

( f
�(kt)− δ)

q̇t = ρqt − γU
�(Ct)− qt

1
σ

�
f (kt)

kt

− δ − ct

kt

− ρ

�
.

In addition to the FOCs, we require the two transversality conditions to hold,

lim
t→∞

e
−ρt

qtCt = 0 and lim
t→∞

e
−ρt

ptkt = 0. (33)

Denote the 4-dimensional state of this dynamic system by xt and its unique positive
steady state (the zero-tax steady state) by x

∗ = (k∗, C
∗, p

∗, q
∗). The linearized system

is,
ẋt = J(xt − x

∗), (34)

where the 4 × 4 matrix J can be written as

J =

�
A B

C ρI − A
�

�
,

with 2 × 2 matrices

A =

�
ρ + z −1 − z/ρ
ρz/σ −z/σ

�
,

B =

�
−1/u

�� −ρ/(σu
��)

−ρ/(σu
��) −ρ2/(σ2

u
��)

�
= B

�

C =

�
z

2
u
�� + ρq

∗(1 − 1/σ) f
�� − γU

�
f
�� −zq/(σk

∗)
−zq/(σk

∗) z
2
u
��/ρ2

�
= C

�,
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where z ≡ ρq
∗/(σk

∗
u
��). Despite J’s somewhat cumbersome form, its determinant sim-

plifies to

det J = (1 − σ)
f
��

u
�

u��� �� �
>0

ρ2

σ2 , (35)

its characteristic polynomial is, det(J − λI) = λ4 − c1λ3 + c2λ2 − c3λ + c4, with c1 =
trace(J) = 2ρ, c2 = ρ2 + ρz(1 − σ)/σ − f

��
u
�/u

��, c3 = ρ(c2 − ρ2) = ρ2
z(1 − σ/σ −

ρ f
��

u
�/u

��, c4 = det J, and that its eigenvalues can be written as,

λ1−4 =
ρ

2
±

��ρ

2

�2
− δ

2
± 1

2

�
δ2 − 4 det J

�1/2
�1/2

, (36)

with δ = c2 − ρ2 = ρz(1− σ)/σ − f
��

u
�/u

��. Substituting in the formulas of z and q
∗, δ can

also be written as,

δ =
ρ

σ

u
� − γU

�

u��k∗
− f

��
u
�

u�� . (37)

In the remainder, let eigenvalues be numbered as follows: λ1 has ++, λ2 has +−, λ3 has
−+, and λ4 has −−. For convenience, define γ∗ by γ∗ = u

�/U
�.

Note that in general, a solution xt to the linearized FOCs (34) can load on all four
eigenvalues. However, taking the two transversality conditions into account, restricts the
system to only load on eigenvalues with Re(λi) ≤ ρ/2. In Lemma 12 below, we show
that this means the solution loads on eigenvalues λ3 and λ4. Let Q be an invertible matrix
such that QJQ

−1 = diag(λ1, . . . , λ4). Write

Q =

�
Q11 Q12
Q21 Q22

�
.

Thus, the initial values for the two multipliers, p0 and q0, need to satisfy

Q11

�
k0
C0

�
+ Q12

�
p0
q0

�
= 0.

This completely specifies the trajectory of state xt in the linearized system.
The following lemma proves properties about J’s eigenvalues {λi}, in particular about

λ3 and λ4, which are the relevant eigenvalues for the local dynamics of the state.

Lemma 12. The eigenvalues in (36) can be shown to satisfy the following properties.

(a) It is always the case that

Reλ1 ≥ Reλ2 ≥ ρ/2 ≥ Reλ4 ≥ Reλ3.

(b) If σ > 1, then det J < 0, implying that

Reλ1 = λ1 > ρ > Reλ2 ≥ ρ/2 ≥ Reλ4 > 0 > λ3 = Reλ3. (38)

58



In particular, there is a exactly one negative eigenvalue. The system is saddle-path stable.

(c) If σ < 1 and γ ≤ γ∗
, then det J > 0 and δ < 0, implying that

Reλ1, Reλ2 > ρ > 0 > Reλ4, Reλ3. (39)

In particular, there exist exactly two eigenvalues with negative real part. The system is

locally stable.

(d) If σ < 1 and γ > γ∗
, the system may either be locally stable, or locally unstable (all

eigenvalues having positive real parts).

Proof. We follow the convention that the square root of a complex number a is defined as
the unique number b that satisfies b

2 = a and has nonnegative real part (if Re(b) = 0 we also
require Im(b) ≥ 0). Hence, the set of all square roots of a is given by {±b}. We prove the
results in turn.

(a) First, observe the following fact: Given a real number x and a complex number
b with nonnegative real part, it holds that Re

�√
x + b

�
≥ Re

�√
x − b

�
.52 From

there, it is straightforward to see that Reλ1 ≥ Reλ2 and Reλ4 ≥ Reλ3. Finally
Reλ2 ≥ ρ/2 ≥ Reλ4 holds according to our convention of square roots having
nonnegative real parts.

(b) The negativity of det J follows immediately from (35). This implies

−δ

2
+

1
2

�
δ2 − 4 det J

�1/2
> 0 > −δ

2
− 1

2

�
δ2 − 4 det J

�1/2
,

and so (38) holds, using monotonicity of Re
√

x for real numbers x.

(c) The signs of det J and δ follow immediately from (35) and (37). In this case, −δ/2 ±
1/2Re

�
δ2 − 4 det J

�1/2
> 0 proving (39).

(d) This is a simple consequence of the fact that if det J > 0, then either
−δ/2 ± 1/2Re

�
δ2 − 4 det J

�1/2
> 0, or −δ/2 ± 1/2Re

�
δ2 − 4 det J

�1/2
< 0, where

under the latter condition the system is locally unstable.

H Proof of Proposition 6

In this proof, we first exploit the recursiveness of the utility V to recast the IC constraint
(7) entirely in terms of Vt and W(U, V

�). Then, using the first order conditions, we are
able to characterize the long-run steady state.

52To prove this, let b̄ denote the complex conjugate of b and note that Re
�√

x + b

�
is monotonic in the

real number x. Then, Re
�√

x + b

�
= Re

�√
x + b̄

�
= Re

��
x − b + (b̄ + b)

�
≥ Re

�√
x − b

�
where

b̄ + b = 2Re(b) ≥ 0 and monotonicity are used.
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Let βt ≡ ∏t−1
s=0 WVs. Using the definition of the aggregator in (3) this implies that

Vct = βtWUtUct and Vnt = βtWUtUnt. Thus the IC constraint (7) can be rewritten as

∞

∑
t=0

βtWUt(Uctct + Untnt) = WU0Uc0

�
R0k0 + R

b

0b0

�
, (40)

and the planning problem becomes

max V0

s.t. Vt = V(U(ct, nt), U(ct+1, nt+1), . . .) (41)
RC (6), IC (40).

To state the first order conditions, define At = ∂
∂Vt+1

∑∞
s=0 βsWUs(Ucscs + Unsns) and Bt =

∑∞
s=0

∂(βsWUs)
∂Ut

(Ucscs + Unsns). Let χt be the current value multiplier on the Koopmans
constraint (41), λt the current value multiplier on the resource constraint (6), and µ the
multiplier on the IC constraint (40). Defining νt ≡ ∑t

s=0
βt

βs
χs the first order conditions

then take the form

1 + ν0 = 0

−νt + νt+1 + µ
At

βt+1
= 0

−νtWUtUct + µWUt (Uct + Ucc,tct + Unc,tnt) + µ
Bt

βt

Uct = λt

νtWUtUnt − µWUt (Unt + Ucn,tct + Unn,tnt)− µ
Bt

βt

Unt = λt fnt

−λt + λt+1WVt fkt+1 = 0,

where we defined f (k, n) = F(k, n) + (1 − δ)k and the notation Xzt stands for the deriva-
tive of quantity X with respect to z, evaluated at time t. Now suppose the allocation
converges to an interior steady state in c, k, and n. Then Ut and Vt converge, as well as
their first and second derivatives (when evaluated at ct, kt, and nt). Similarly, the repre-
sentative agent’s assets at converge to a value a, which can be characterized using a time
t + 1 version of the IC constraint,

a = lim
t→∞

at+1 = lim
t→∞

(WUt+1Uct+1βt+1Rt+1)
−1

∞

∑
s=t+1

βsWUs(Ucscs + Unsns)

= ((1 − β)UcR)−1 (Ucc + Unn) ,

where β ≡ β̄(V) = WV ∈ (0, 1) (see footnote 22). Using this representation, we see that
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At/βt+1 converges as well, to some limit A,

At = βtWUV,t(Uctct + Untnt) + βtWVV,t β−1
t+1

∞

∑
s=t+1

βsWUs(Ucscs + Unsns)

� �� �
WUt+1Uct+1Rt+1at+1→WUUcRa

⇒ At

βt+1
→ βU

β
(Ucc + Unn) +

βV

β
WUUcRa

=

�
1 − β

WU

βU + βV

�
1
β

WUUcRa =
β̄�(V)

β
WUUcRa ≡ A. (42)

where we defined βX ≡ WVX and X = U, V. Similarly, we can show that Bt/βt converges
to some finite value B. Taking the limits of quantities in the first order conditions above,
we thus find

−νt + νt+1 + µA = 0 (43a)

−νt + µ

�
1 +

Uccc

Uc

+
Uncn

Uc

�
+ µ

B

WU

= λt

1
WUUc

(43b)

−νt + µ

�
1 +

Ucnc

Un

+
Unnn

Un

�
+ µ

B

WU

= −λt

fn

WUUn

(43c)

−λt + λt+1β fk = 0.

Note that
β fk − 1 =

λt

λt+1
− 1 = −WUUc

λt+1
µA. (44)

We now argue that this implies that β fk = 1 at any steady state. If A = 0 or µ = 0 the
result is immediate from the last equation. If instead A �= 0 and µ �= 0 then −νt + νt+1 +
µA = 0 implies that νt and hence λt diverges to +∞ or −∞. The result then follows since
β fk − 1 = −WUUc

λt
µA → 0. The case with µ = 0 implies that the entire solution is first

best, which is uninteresting. The cases with A = 0 and A �= 0 are discussed below.
Combining equations (43b) and (43c) we find

λt

fn

WUUn

τn = µ

�
Uccc

Uc

+
Uncn

Uc

− Ucnc

Un

− Unnn

Un

�
, (45)

where τn ≡ 1 + Un

Uc fn
is the steady state tax on labor. By normality of consumption and

labor the term in brackets is negative, Uccc

Uc
+ Uncn

Uc
− Ucnc

Un
− Unnn

Un
< 0.

Now distinguish three cases according to the asymptotic behavior of νt:

• Case A: νt → +∞, then, λt → −∞ and thus τn = 0. By (43a) and µ > 0, this requires
A ≤ 0.

• Case B: νt → ν ∈ R, then λt → λ by (43b). By (43a) and µ > 0, this requires A = 0.
There are two subcases to consider. If λ �= 0 then τn �= 0 is possible. If instead
λ = 0, then (45) implies that µ = 0. Thus, the economy was first best to start with.
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• Case C: νt → −∞. Then, λt → ∞ and we converge to a first best steady state with
τn = 0. This case requires A ≥ 0.

What are the condition for Case B with τn > 0? This requires A = 0, which, according
to (42), implies that we must have either β̄�(V) = 0 or a = 0. In sum, this proves that if
β̄�(V) �= 0, then at any interior steady state of the problem, either the agent’s assets are
zero, a = 0, or the economy is at first best, τn = 0.

I Proof of Proposition 7

For the whole proof we fix some positive initial level of capital k0 > 0. The problem under
scrutiny is

V(b0) ≡ max
{ct,nt,kt}

ˆ ∞

0
e
−ρt (u(ct)− v(nt)) , (46a)

ċt ≥ − ρ

σ
ct, (46b)

ct + gt + k̇t = f (kt, nt)− δkt, (46c)ˆ ∞

0
e
−ρt

�
u
�(ct)ct − v

�(nt)nt

�
≥ u

�(c0)(k0 + b0), (46d)

where recall that u(c) = c
1−σ/(1 − σ) and v(n) = n

1+ζ/(1 + ζ). Note that the value
function V(b0) is decreasing in b0. Problem (46a) has the following necessary first order
conditions

ΦW

v v
�(nt) = λt fn(kt, nt), (47a)

η̇t − ρηt = ηt

ρ

σ
+ λt − ΦW

u u
�(ct), (47b)

λ̇t = (ρ − r
∗
t )λt, (47c)

η0 = −µσc
−σ−1
0 (k0 + b0), (47d)

where we defined ΦW
v ≡ 1 + µ(1 + ζ) and ΦW

u ≡ 1 + µ(1 − σ) and denoted by r
∗
t

the
before-tax interest rate fk − δ.53 Here, µ is the multiplier on the IC constraint (46d), λt is
the multiplier of the resource constraint (46c), and ηt denotes the costate of consumption
ct. In this proof we take parts (a) and (b) of the claim on page 25 as given (see proof in
Chamley (1986, Theorem 2, pg. 615)). In particular, we take for granted that the optimal
capital tax policy is bang-bang, with τt = τ̄ for t < T and τt = 0 for t > T, where
T ∈ [0, ∞].

If ηt < 0, then constraint (46b) is binding. Further, if at T < ∞ we have ηt = 0 for

53Note that it can be shown that r
∗
t
> 0 by a standard argument: If ever fk(kt, nt) were to drop below δ,

then a marginal variation involving a marginal reduction in labor and capital growth k̇t in the time prior
to negative interest rates relax the implementability condition (46d) and resource constraint (46c) while
improving the objective (46a).
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t ∈ [T, T + ε) then we must have

ηT = 0 and λT = ΦW

u u
�(cT).

Otherwise, the conditions for optimality of T = ∞ are satisfied provided

ηt < 0 for all t, (48)
e
−ρtηtct → 0. (49)

We first prove a helpful lemma relating the occurrence of T = ∞ to the multiplier on the
IC constraint, µ. This lemma will become important below.

Lemma 13. If µ > 1/(σ − 1) then T = ∞. Thus, if T < ∞, µ is bounded from above by

1/(σ − 1).

Proof. If µ > 1/(σ − 1) then ΦW
u < 0. Suppose T were finite. In that case we already

noted that λT = ΦW
u u

�(cT) implying that λT < 0. This contradicts the FOC for labor (47a)
at t = T. Therefore, T = ∞.

It is convenient to characterize a restricted problem, where T is required to be infinite.
Effectively, this implies that constraint (46b) holds with equality throughout and the path
of ct is entirely characterized by c0. To this end we define the minimum discounted sum
of labor disutilities needed to sustain this path {ct} as

ṽ(c0) ≡ min
{ct,nt,kt}

ˆ ∞

0
e
−ρt

v(nt)

s.t. ct + gt + k̇t ≤ f (kt, nt)− δkt

ct = c0e
−ρ/σt.

Notice that ṽ is bounded away from zero, and differentiable, strictly increasing and con-
vex in c0. Next, define the restricted problem

V∞(b0) ≡ max
c0>0

u(c0)
σ

ρ
− ṽ(c0) (50a)

c0
σ

ρ
− c

σ
0 (1 + ζ)ṽ(c0) ≥ k0 + b0. (50b)

We obtained (50a) from the original problem (46a) by requiring that T = ∞ and using the
definition of ṽ. Also, we divided the IC condition (46d) by u

�(c0) to arrive at (50b). Note
that, by construction, V∞ ≤ V, but whenever T = ∞ is optimal, V∞ = V. Our next result
characterizes the restricted value function V∞.

Lemma 14. There exists a level of initial debt b̄ such that a solution to the restricted planner’s

problem (50a) exists for all b0 ≤ b̄. The restricted value function V∞ : (−∞, b̄] → R is weakly

decreasing, concave, and differentiable. Moreover, lim
b�b̄

V
�
∞(b) = −∞.
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Proof. First, define
b̄ ≡ max

c0
c0

σ

ρ
− (1 + ζ)cσ

0 ṽ(c0)− k0. (51)

Given the constraint (50b), the constraint set is non-empty if and only if b0 ≤ b̄. Then,
notice that V∞(b0) is weakly decreasing because the constraint set for c0 is decreasing in
b0. Also, the constraint (50b) describes a convex set in (b0, c0) space, and the objective
(50a) is strictly concave. Therefore, V∞ is concave and the maximizer c

∗
0(b0) for a given b0

is unique.
Due to the properties of ṽ mentioned above, c̄ ≡ c

∗
0(b̄) > 0 is the unique maximizer of

(51), satisfying the following first order condition,

σ

ρ
c̄
−σ = (1 + ζ)σc̄

−1
ṽ(c̄) + (1 + ζ)ṽ�(c̄).

Notice that at c0 = c̄, the derivative of the objective function is positive,

u
�(c̄)

σ

ρ
− ṽ

�(c̄) = (1 + ζ)σc̄
−1

ṽ(c̄) + ζṽ
�(c̄) > 0,

implying that c
∗
0(b0) > c̄ for all b0 < b̄. Let µ̃ be the Lagrange multiplier on the constraint

(50b) in the restricted problem (50a). By the necessary first order condition for c0 we have
that

u
�(c∗)

σ

ρ
− ṽ

�(c∗) + µ̃

�
σ

ρ
(c∗)−σ − (1 + ζ)σ(c∗)−σ

ṽ(c∗)− (1 + ζ)ṽ�(c∗)

�
= 0, (52)

for c
∗ = c

∗(b0) and any b0 < b̄. This shows that there is always a unique multiplier
µ̃, characterized by (52) since the factor multiplying µ̃ is nonzero as c

∗
0(b0) > c̄ for all

b0 < b̄. Therefore we can apply the Envelope Theorem and obtain that the restricted
value function V∞(b0) is differentiable at every b0 < b̄, with V

�
∞(b0) = −µ̃.

Now, note that there exists a unique maximizer for any Lagrangian of the form,

L(c0, µ̃; b0) = u(c0)
σ

ρ
− ṽ(c0) + µ̃

�
c0

σ

ρ
− c

σ
0 (1 + ζ)ṽ(c0)− k0 − b0

�

with µ̃ ∈ [0, ∞), even for very large values of µ̃. Thus there also exists a value of b0 satis-
fying the constraint (50b), so the image of V

�
∞ must span all values (−∞, 0]. By concavity,

this implies that lim
b�b̄

V
�(b) = −∞.

Lemma 14 provides a characterization of the problem conditional on T = ∞. As a
corollary, for b0 ≤ b̄ the constraint set of the original problem (46a) is nonempty as well.
In a next lemma we prove that in fact the constraint set of the original problem is non-
empty if and only if b0 ≤ b̄. Moreover, for b0 = b̄ only allocations with T = ∞ are inside
this constraint set, implying that V(b̄) = V∞(b̄).

Lemma 15. Take b0 ∈ R. The constraints (46b), (46c), (46d) define a non-empty set for

{ct, nt, kt} if and only if b0 ≤ b̄. Moreover, if b0 = b̄ then necessarily T = ∞, implying
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V(b̄) = V∞(b̄).

Proof. It suffices to show that the constraint set in the original problem is empty for b0 > b̄,
and that T = ∞ is necessary for b0 = b̄. We show both by proving that any b0 ≥ b̄ is
infeasible with T < ∞.

Hence fix some b0 ≥ b̄ and assume it was achievable with T < ∞. Then, the process
for consumption at any optimum is governed by

�
ċt = − ρ

σ ct for t < T

ċt = ct(r∗t − ρ)/σ for t ≥ T,

with a particular initial consumption value c0. Denote by ĉt the path which starts at
the same initial consumption ĉ0 = c0 but keeps falling at the fastest possible rate −ρ/σ
forever. Similarly, define by n̂t the path for labor which keeps kt fixed but satisfies the
resource constraint with consumption equal to ĉt. Clearly, n̂t ≤ nt for all t. Because
the left hand side of (46d) is strictly decreasing in ct and nt, this strictly relaxes the IC
constraint. Hence,

ˆ ∞

0
e
−ρt

ĉ
1−σ
t

−
ˆ ∞

0
e
−ρt

v(n̂t) > ĉ
−σ
0 (k0 + b0).

Notice, however, that for T = ∞, we can do even better by optimizing over labor (not
necessarily keeping capital constant), leading to

ĉ
1−σ
0

σ

ρ
− (1 + ζ)ṽ(ĉ0) > ĉ

−σ
0 (k0 + b0).

By definition of b̄ this is a contradiction to b0 ≥ b̄. Therefore, b̄ is the highest sustainable
debt level in the original problem and can only be achieved with T = ∞.

This lemma is very useful because it shows that V(b̄) = V∞(b̄). Given that V(b0) ≥
V∞(b0) for all b0 this means that V also becomes infinitely steep close to b̄.

To show that there is an interval [b, b̄] with b < b̄ for which T = ∞ is optimal, or
equivalently V = V∞, we assume to the contrary that there exists an increasing sequence
(bn) approaching b̄ for which T < ∞ is optimal. In particular, V(b) > V∞(b) for all
b = bn along the sequence. Because V and V∞ are both continuous functions, the set
{V �= V∞} = {T < ∞} has nonzero measure in any neighborhood (b, b̄) of b̄. To prove
a contradiction, we would like to use the Envelope Theorem to link the local behavior of
V to what we know about the µ multiplier from Lemma 13. In order to be able to do so,
notice that the value function V(b0) is the value of a convex maximization problem. To
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see this, rewrite the problem in terms of ut ≡ u(ct) and vt ≡ v(nt),54

V(b0) ≡ max
ut,vt,kt

ˆ ∞

0
e
−ρt (ut − vt) , (53)

u̇t ≥ (σ − 1)
ρ

σ
ut,

((1 − σ)ut)
−1/(σ−1) + gt + k̇t ≤ f

�
kt, ((1 + ζ)vt)

1/(1+ζ)
�
− δkt,ˆ ∞

0
e
−ρt ((1 − σ)ut − (1 + ζ)vt) ≥ ((1 − σ)u0)

σ/(σ−1) (k0 + b0).

Because the resource constraint and IC of this problem are strictly convex, the Lagrangian
of this maximization problem is strictly concave. Therefore, there is a globally unique
maximizer, which varies smoothly in b0 by Berge’s Maximum Theorem. Applying the
Envelope theorem of Milgrom and Segal (2002, Corollary 5), we obtain that V is absolutely
continuous, with

V(b0) = V(b̄) +
ˆ

b̄

b0

µ(b)c0(b)
−σ

db,

for b0 ≤ b̄. By optimality of T < ∞ and Lemma 13, the multiplier µ(b) is bounded from
above by 1/(σ − 1) for all b ∈ {V �= V∞}; moreover c0(b), with b ∈ [bn, b̄] is uniformly
bounded from below by c0 using the IC constraint, where c0 > 0 is the smaller of the two
solutions to c0σ/ρ − (1 + ζ)cσ

0 ṽ(c0) = k0 + bn, and n is large enough to ensure that c0 is

positive.55 Therefore, µ(b)c0(b)−σ ≤ c
−σ
0

σ−1 for all b ∈ {V �= V∞} ∩ [bn, b̄]. It follows that for

any b0 ∈ {V �= V∞} ∩ [bn, b̄] sufficiently close to b̄, such that V
�
∞(b0) < − c

−σ
0

σ−1 ,

V(b0) = V(b̄)−
ˆ
{V �=V∞}∩[b0,b̄]

(−µ(b)c0(b)
−σ)� �� �

>V�
∞(b)

db −
ˆ
{V=V∞}∩[b0,b̄]

(−µ(b)c0(b)
−σ)� �� �

=V�
∞(b)

db

< V(b̄) +
ˆ

b0

b̄

V
�
∞(b̃)db̃ = V∞(b0),

contradicting the optimality of T < ∞. Hence, there exists a neighborhood [b, b̄] for which
T = ∞ is optimal.

54Note that we can without loss of generality relax the resource constraint given that λt > 0 at the
optimum, see (47a).

55To see that this is indeed a lower bound, write the IC constraint as g(c0, T) = (k0 + b0). Notice that in
the proof of Lemma 15 we showed that g(·, T) can only increase as we move to T = ∞ (and simultaneously
optimize over labor with ṽ), where g(c0, ∞) = c0

σ
ρ − (1 + ζ)cσ

0 ṽ(c0) is strictly concave and g(0, ∞) = 0.
Therefore, for b0 ≥ bn, the optimal choice c0 in the original problem must be bounded from below by the
smaller of the two solutions to g(c0, ∞) = k0 + bn.
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J Proof of Proposition 8

We proceed by solving the necessary first order conditions to problem (46a) and invoking
a transversality condition. Noting that the problem is strictly convex, see (53), this implies
that we are characterizing the unique solution.

By demanding equal growth rates of ct, nt, kt, we demand that ct/kt = c0/k0 and
nt/kt = n0/k0 at all times. Define ΦW

u ≡ 1 + µ(1 − σ) and ΦW
v ≡ 1 + µ(1 + ζ). Solving

the necessary FOCs,

ΦW

v v
�(nt) = λt fn(kt, nt) (54)

ct + k̇t = f (kt, nt)− δktˆ
e
−ρt

�
c

1−σ
t

− n
1+ζ
t

�
= c

−σ
0 (k0 + b0),

and defining g ≡ ( fk(1, ·))−1 we find expressions for c0, n0, b0 and the constant interest
rate r

∗ = fk(k0, n0)− δ and wage w
∗ = fn(k0, n0),

r
∗ = ζ

ρ

σ
+ ρ

w
∗ = fn

�
1, g

�
ζ

ρ

σ
+ ρ + δ

��

n0 = k0g

�
ζ

ρ

σ
+ ρ + δ

�

c0 = k0

�
f

�
1, g

�
ζ

ρ

σ
+ ρ + δ

��
− δ +

ρ

σ

�

b0 = c0
σ

ρ
− 1

ρ + (1 + ζ)ρ/σ
c

σ
0 n

1+ζ
0 − k0.

Here, it is straightforward to show that c0 > 0 by definition of g.
The process for ηt can be inferred from its law of motion, η̇t − ρηt = ηt

ρ
σ + λt −

ΦW
u u

�(ct), and the transversality condition, e
−ρtηtct → 0,

ηt = − λ0
ρ + (1 + ζ)ρ/σ

e
−ζρ/σt +

σ

ρ
ΦW

u c
−σ
0 e

ρt.

This leaves us with three conditions for λ0, η0, µ,

η0 = − λ0
ρ + (1 + ζ)ρ/σ

+
σ

ρ
ΦW

u c
−σ
0

η0 = −µσc
−σ−1
0 (k0 + b0)

ΦW

v n
ζ
0 = λ0w

∗,

and the inequality ΦW
u ≤ 0 ensuring that ηt < 0 for all t. Define 1 − τ�

0 ≡ n
ζ
0c

σ
0 /w

∗. Then,
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µ can be determined as

µ =
τ�

0 + σ + ζ

σ
�
(1 − τ�

0 )w
∗n0/c0 − 1

�
− τ�

0 (1 + ζ)
.

Note that τ�
0 is a decreasing function of k0, with τ�

0 → 1 as k0 → 0. In particular µ varies
with k0 according to56

µ < 0 for k0 < k

µ ≥ 1/(σ − 1) for k0 ∈ (k, k̄]

µ < 1/(σ − 1) for k0 > k̄.

This proves that for k0 ∈ (k, k̄], there exists a debt level b0(k0) for which the quantities
ct, nt, kt all fall to zero at equal rate −ρ/σ and all the necessary optimality conditions of
the problem are satisfied.

K Proof of Proposition 9

First, we show that the planner’s problem is equivalent to (13). Then we show that the
functions ψ(T) and τ(T) are increasing, have ψ(0) = τ(0) = 0 and bounded derivatives.

The planner’s problem in this linear economy can be written using a present value
resource constraint, that is,

max
ˆ

e
−ρt (u(ct)− v(nt)) (55)

s.t. ċ ≥ c
1
σ
((1 − τ̄)r∗ − ρ)ˆ

e
−r

∗
t(ct − w

∗
nt) + G = k0ˆ

e
−ρt [(1 − σ)u(ct)− (1 + ζ)v(nt)] ≥ u

�(c0)a0,

where G =
´ ∞

0 e
−r

∗
t
gt is the present value of government expenses, k0 is the initial capital

stock, a0 is the representative agent’s initial asset position, and per-period utility from
consumption and disutility from work are given by u(ct) = c

1−σ
t

/(1 − σ) and v(nt) =

n
1+ζ
t

/(1 + ζ). Note that we assumed σ > 1. The FOCs for labor imply that given n0,

nt = n0e
−(r∗−ρ)t/ζ . (56)

Part (a) and (b) of the claim on page 25 imply the existence of T ∈ [0, ∞] such that

56In particular, µ has a pole at τ�
0,pole = σ(w∗

n0/c0 − 1)/(1 + ζ + σw
∗
n0/c0). We define k to be the value

of k0 corresponding to τ�
0,pole. Notice that one can show that τ�

0,pole > −(σ + ζ), implying that the pole is
always to the left of µ = 0.
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τt = τ̄ for t ≤ T and zero thereafter. In particular, the after-tax (net) interest rate will be
rt = (1 − τ̄)r∗ ≡ r̄ for t ≤ T and rt = r

∗ for t > T. Then, by the representative agent’s
Euler equation, the path for consumption is determined by

ct = c0e
− ρ−r̄

σ t+ r
∗−r̄

σ (t−T)+ . (57)

Substituting equations (56) and (57) into (55), the planner’s problem simplifies to,

max
T,c0,n̄

ψ1(T)u(c0)− ψ3v(n0) (58)

s.t. ψ2(T)(χ
∗)−1

c0 + G = k0 + ψ3w
∗
n0

ψ1(T)u
�(c0)c0 − ψ3v

�(n0)n0 = χ∗
u
�(c0)a0,

where ψ1(T) =
χ∗

χ

�
1 − e

−χT
�
+ e

−χT, ψ2(T) =
χ∗

χ̂

�
1 − e

−χ̂T
�
+ e

−χ̂T, ψ3 = χ∗
�

r
∗ + r

∗−ρ
ζ

�−1

and χ = σ−1
σ r̄ + ρ

σ , χ∗ = σ−1
σ r

∗ + ρ
σ , χ̂ = r

∗ + ρ−r̄

σ . Notice that χ̂ > χ∗ > χ.
Now normalize consumption and labor

c ≡ ψ1(T)
1/(1−σ)

c0/χ∗
n ≡ ψ

1/(1+ζ)
3 n0/ (χ∗)(1−σ)/(1+ζ)

and define an efficiency cost ψ(T) ≡ ψ2(T)ψ1(T)1/(σ−1) − 1, a capital levy τ(T) ≡ 1 −
ψ1(T)−σ/(σ−1), and the present value of wage income ωn ≡ w

∗ψ
ζ/(1+ζ)
3 n. Here, we note

that by definition, ψ is bounded away from infinity and τ is bounded away from 1. Then,
we can rewrite problem (58) as

max
T,c,n

u(c)− v(n)

s.t. (1 + ψ(T))c + G = k0 + ωn

u
�(c)c − v

�(n)n = (1 − τ(T))u�(c)a0,

which is what we set out to show. Notice that ψ1(0) = ψ2(0) = 1 and so ψ(0) = τ(0) = 0.
Further, given our assumption that σ > 1, ψ1(T) and τ(T) are increasing in T. To show
that ψ�(T) ≥ 0, notice that, after some algebra,

d

dT

�
ψ2ψ

1/(σ−1)
1

�
≥ 0 ⇔ χ̂

�
e

χT − 1
�
≤ χ

�
e

χ̂T − 1
�

,

which is true for any T ≥ 0 because χ̂ > χ. Therefore, ψ�(T) ≥ 0, with strict inequality
for T > 0, implying that ψ(T) is strictly increasing in T.

Now consider the ratio of derivatives,

ψ�(T)
τ�(T)

=
1
σ

ψ2ψ
(1+σ)/(σ−1)
1

�
(σ − 1)

ψ�
2

ψ2

ψ1
ψ�

1
+ 1

�
.

Notice that ψ1(T) ∈ [1, χ∗/χ] and ψ2(T) ∈ [χ∗/χ̂, 1], so both are bounded away from
infinity and zero. Further, the ratio ψ�

2/ψ�
1 is also bounded away from infinity, ψ�

2/ψ�
1 =
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− 1
σ−1 e

−(χ̂−χ)T ∈ [−1/(σ − 1), 0], implying that ψ�(T)/τ�(T) is bounded away from ∞.

L Proof of Proposition 11

We proceed as in the first part of the proof of Proposition 7. As in Section 2, labor supply
is inelastic at nt = 1. The problem is then

max
ˆ ∞

0
e
−ρt

u(ct), (59a)

Ċt ≥ − ρ

σ
Ct, (59b)

ct + Ct + k̇t = f (kt)− δkt, (59c)ˆ ∞

0
e
−ρt

u
�(Ct)Ct ≥ u

�(C0)(k0 + b0). (59d)

Problem (59a) has the following necessary first order conditions

η̇t − ρηt = ηt

ρ

σ
+ λt − ΦW

u U
�(Ct), (60a)

λ̇t = (ρ − f
�(kt) + δ)λt, (60b)

η0 = −µσC
−σ−1
0 (k0 + b0), (60c)

u
�(ct) = λt (60d)

where we defined ΦW
v ≡ µ(1 + ζ) and ΦW

u ≡ µ(1 − σ). Here, µ is the multiplier on the
IC constraint (59d), λt is the multiplier of the resource constraint (59c), and ηt denotes the
costate of capitalists’ consumption Ct. If ηt < 0, then constraint (59b) is binding.

Suppose T < ∞, in which case we have ηT = 0 and η̇T = 0 (see Lemma .13 in the
proof of Proposition 7 for a similar argument). Using the law of motion for ηt, equation
(60a), this implies that λT = ΦW

u U
�(CT) < 0. This contradictions λT = u

�(cT) > 0 from
(60d). Thus, T = ∞.
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