

9.^a Conferência do Banco de Portugal

Desenvolvimento económico português no espaço europeu

The Effects of the Increase in Parental Leave Benefits on Wages

Bárbara Alexandrino 19 de novembro de 2018

9ª Conferência do Banco de Portugal Desenvolvimento Económico Português no Espaço Europeu

(1) About this dissertation

- 1. The increase of benefits for a group of workers may have a negative effect on the target, through the increase of the relative costs ("mandated benefits");
- The introduction of parental leave benefits in 2009 ("quasi-experiment") is the setting to estimate the answer of the labor market.

(2) The setting

- The changes studied were introduced by Decree-Law 91/2009 having had its start in May 2009, namely:
 - The new 'sharing bonus', increasing the length of parental leave when the leave is shared between both parents (condition: each parent has to take 30 days to qualify);
 - Increase of the mandatory initial leave exclusive for the father;
 - Increase of the extended parental leave, paid at 25%.

A methodology of difference-in-differences in used, following:

 $\log(W_{it}) = \alpha + \beta_1 treat_i + \beta_2 after_t + \beta_3 after_t \times treat_i + W_{it}\gamma + \varepsilon_{it}$

for individual *i* in year *t*. Y_{it} is our variable of interest – the real hourly wage and W_{it} is the set of observable characteristics for both the employee and the firm. $after_t$ is a dummy set to one for the period covered by the legislation and zero for the period before, 2007 and 2008. $treat_i$ is a dummy variable that equals 1 for treatment group. $after_t \times treat_i$ is the interaction term of interest.

A methodology of difference-in-differences in used, following:

$$\log(W_{it}) = \alpha + \beta_1 treat_i + \beta_2 after_t + \beta_3 after_t \times treat_i + W_{it}\gamma + \varepsilon_{it}$$

for individual *i* in year *t*. Y_{it} is our variable of interest – the real hourly wage and W_{it} is the set of observable characteristics for both the employee and the firm. $after_t$ is a dummy set to one for the period covered by the legislation and zero for the period before, 2007 and 2008. $treat_i$ is a dummy variable that equals 1 for treatment group. $after_t \times treat_i$ is the interaction term of interest.

Treatment group – employees targeted by the legislation, that is, those that may have children and use the benefits. **Control group** – employees that are not targeted by the legislation.

A methodology of difference-in-differences in used, following:

$$\log(W_{it}) = \alpha + \beta_1 treat_i + \beta_2 after_t + \beta_3 after_t \times treat_i + W_{it}\gamma + \varepsilon_{it}$$

for individual *i* in year *t*. Y_{it} is our variable of interest – the real hourly wage and W_{it} is the set of observable characteristics for both the employee and the firm. $after_t$ is a dummy set to one for the period covered by the legislation and zero for the period before, 2007 and 2008. $treat_i$ is a dummy variable that equals 1 for treatment group. $after_t \times treat_i$ is the interaction term of interest.

Three Period specifications

- 1. B: [2007, 2008] A: [2009, 2012]
- 2. B: [2007, 2009] A: [2010, 2012]
- 3. B: [2007, 2008] A: [2010, 2012]

A methodology of difference-in-differences in used, following:

 $\log(W_{it}) = \alpha + \beta_1 treat_i + \beta_2 after_t + \beta_3 after_t \times treat_i + W_{it}\gamma + \varepsilon_{it}$

 $\hat{\beta}_3$, the coefficient, will measure the effects of the legislation change on the treated group.

• $\hat{\beta}_3 < 0 \rightarrow$ mechanism of shifting of the costs to lower wages has happened

If there is no adjustment of wages, some of these may have happened:

Barriers to adjustment;

•The worker does not value the increase in parental leave benefits.

(4) Data

- Used *Quadros de Pessoal,* a data set collected every year in October by the Ministry of Labor, Solidarity, and Social Security
- Compulsory participation for all the firms within the Portuguese private sector
- The information is provided for the employer-employee pairs age, wage, gender, education, qualification, type of employment contract, district, economic sector,...
- Dependent variable is the real hourly wage (in natural logarithm) generated from the existing variables.

(5) Identification Strategy

The use of the *DiD* methodology assumes that:

- The treatment and control groups are following a common trend prior to the new legislation, suggesting that:
- The paths of the outcomes for both groups would not have been different in the absence of the new legislation.

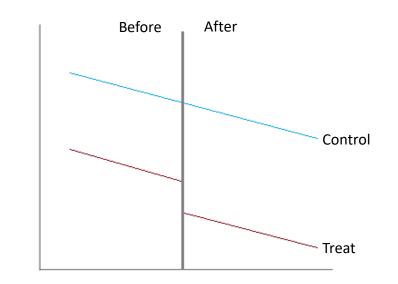


Figure I – Parallel trend

(5) Identification Strategy

- Objective: identify the target group and a control to assess the impact of DL 91/2009
- A reasonable help: looking at the statistics on

•Live births by age group of females and males;

•The use of leave benefits by age group of females and males in 2009 (below)

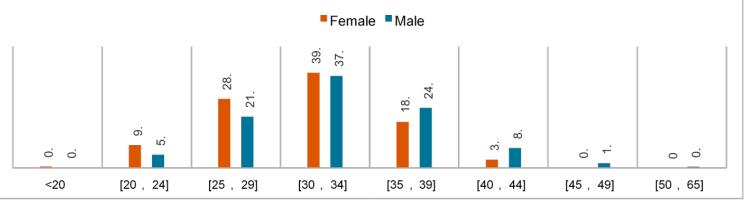


Figure II – Use of leave benefits by age group

(5) Identification Strategy

- It is then possible to point to a set of possible treatmentcontrol pairs, to use in the experiment, which are submitted to the parallel trend test.
- Following the results, a main pair is chosen:
 - Treatment group: individuals aged [25-40];
 - ➤Control group: individuals aged [55-60]
- Alternative pairs that agree to the parallel trend requisite are also selected as for robustness purposes later on.

Pairs	S	Treatment	Control	(1) No Covariates	(2) With covariates
1		[25-40]	[55-60]	0.026	0.0003
				(0.000)	(0.000)
2		[20-40]	[55-65]	0.022	-0.0009
				(0.000)	(0.000)
3		[25-40]	[50-55]	0.020	0.0004
				(0.000)	(0.000)
4		[20-40]	[50-60]	0.016	0.0004
				(0.000)	(0.004)
5		[20-40]	[50-65]	0.018	-0.0006
				(0.000)	(0.000)

The Effects of the Increase in Parental Leave Benefits on Wages | Barbara Alexandrino

Table I – Parallel trend test

(6) Findings

Results show that:

- $\hat{\beta}_3 < 0$, meaning the workers are bearing (part of the) costs of the legislation change, through lower wages.
- Negative impact of the legislation of -3.6% for the relative wages of treated individuals considering the
 - full sample, that is statistically significant.
- The impact is more expressive for the male group.

	Per	riod specificatio	on
	[1]	[2]	[3]
A. Full Sample			
After	0.101	0.023	0.108
	(0.000)	(0.000)	(0.000)
Treat	-0.389	0.126	-0.331
	(0.000)	(0.000)	(0.000)
After X Treat	-0.037	-0.050	-0.061
	(0.000)	(0.000)	(0.000)
Covariates	Yes	Yes	Yes
No. of observations	7 729 036	7 729 036	6 263 298
B. Female			
After	0.103	0.023	0.107
	(0.000)	(0.000)	(0.000)
Treat	-0.316	0.208	-0.266
	(0.000)	(0.000)	(0.000)
After X Treat	-0.035	-0.047	-0.055
	(0.000)	(0.000)	(0.000)
Covariates	Yes	Yes	Yes
No. of observations	3 578 637	3 578 637	2 901 667
C. Male			
After	0.102	0.026	0.112
	(0.000)	(0.000)	(0.000)
Treat	-0.410	0.108	-0.347
	(0.000)	(0.001)	(0.000)
After X Treat	-0.040	-0.055	-0.070
	(0.000)	(0.000)	(0.000)
Covariates	Yes	Yes	Yes
No. of observations	4 150 399	4 150 399	3 361 631

Table II – Estimates for the main pair

(6)	Robustness
-----	------------

The four alternative pairs that **survived the parallel trend** are used.

Same pattern can be seen here:

- 1. Estimated negative impact of the policy;
- 2. More expressive results for the male group.

A **falsification exercise** is also conducted using placebo-treated groups and control pairs. Results display less expressive coefficients than the ones found in the experiment.

|--|

13	The Effects of the Increase in Parental Leave Benefits on Wages	Barbara Alexandrino
----	---	---------------------

_	Full	Female	Male	
A. Pair 2 - T: [20-40], C:		Feiliale	Male	
After	0.102	0.103	0.102	
	(0.000)	(0.000)	(0.000)	
Treat	-0.427	-0.344	-0.464	
	(0.000)	(0.000)	(0.000)	
After X Treat	-0.038	-0.036	-0.042	
	(0.000)	(0.000)	(0.000)	
Covariates	Yes	Yes	Yes	
No. of observations	9 142 553	4 215 985	4 926 568	
B. Pair 3 - T: [25-40], C:	[50-55]			
After	0.090	0.091	0.090	
	(0.000)	(0.000)	(0.000)	
Treat	-0.262	-0.232	-0.260	
	(0.000)	(0.000)	(0.000)	
After X Treat	-0.026	-0.024	-0.028	
	(0.000)	(0.000)	(0.000)	
Covariates	Yes	Yes	Yes	
No. of observations	8 269 016	3 830 436	4 438 580	
C. Pair 4 - T: [20-40], C:	[50-60]			
After	0.089	0.090	0.089	
	(0.000)	(0.000)	(0.000)	
Treat	-0.282	-0.244	-0.282	
	(0.000)	(0.000)	(0.000)	
After X Treat	-0.026	-0.023	-0.029	
	(0.000)	(0.000)	(0.000)	
Covariates	Yes	Yes	Yes	
No. of observations	10 078 433	4 619 041	5 459 392	
D. Pair 5 - T: [20-40], C:	[50-65]			
After	0.087	0.089	0.086	
	(0.000)	(0.000)	(0.000)	
Treat	-0.301	-0.252	-0.309	
	(0.000)	(0.000)	(0.000)	
After X Treat	-0.023	-0.022	-0.026	
	(0.000)	(0.000)	(0.000)	
Covariates	Yes	Yes	Yes	
No. of observations	10 359 329	4 727 923	5 631 406	19 de novembro 2018

Table III – Estimates for alternative pairs

(7) Conclusion

- There appears to be a negative impact of the increase in parental leave benefits on the relative wages of the individuals more likely to use the benefit.
- ✓ Findings are consisted with the theory of mandated benefits, as there is a shift to wages following an increase in the cost for the employer.

The Effects of the Increase in Parental Leave Benefits on Wages

Barbara Alexandrino

