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Introduction

0 why do hazard rates decrease with duration?

> heterogeneity across workers
> structural duration dependence for each worker

[0 answer using a structural stopping time model

> log net benefit of employment is a Brownian motion with drift
> fixed cost of switching employment status

> distribution of completed duration is inverse Gaussian («, ()
> parameters of the distribution differ across individuals, G(«, )

O identify G using distribution of two completed spells, density ¢(t, t2)

> estimate with Austrian administrative panel, ~ 1 million workers
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Summary

0 economically-motivated assumptions about individual durations

> individual duration follows inverse Gaussian w/parameters («, ()
> arbitrary heterogeneity across individuals, w/distribution G(«, 3)

O identify the joint distribution of individual parameters G

> identification relies on functional form of inverse Gaussian
> test whether ¢ can be generated by any such a model

[0 estimate using observations on non-employment duration

> hazard rate decomposition: “structure” vs “heterogeneity”
> estimate small upper bound on fixed switching cost
> model w/zero switching cost: soundly rejected
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Stopping Time Literature

' [0 Lancaster (1972), Newby and Winterton (1983): strikes

0 Aalen-Gjessing (2001), Lee-Whitmore (2006, 2010): death
O Alvarez-Shimer (2009), (2011): theory

[0 Buhai-Teulings (2014): job tenure, no heterogneity

0 Shimer (2008): no heterogeneity, no switching costs

O Abbring (2012): Lévy process, heterogeneity only in boundaries
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Structural Model
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Assumptions

[ risk-neutral worker, discount rate r in continuous time

O worker can be either employed, s(t) = ¢, or nonemployed, s(t) = n
> employed: wage e®, dw(t) = puy s dt + w51 dBuw(t)
> nonemployed: benefits by e, db(t) = py o1ydt + 04 s(1)d By (t)

> Brownian motions have correlation p,x
O switching from nonemployment to employment: cost 1, by e*("

O switching from employment to nonemployment: cost v, by (¥

[0 decision rules depend only on "net” log benefit of employment:

w(t) — w(t) — b(t) with dw(t) — ,us(t)dt + O'S(t)dB(t)
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Alternative Interpretation

O worker’s log productivity is w(t) and log wage is b(t)
O monopsonist can hire worker at fixed cost v, b, e"?)
O monopsonist can fire worker at fixed cost v, by ¥

0 monopsonist discounts the future at rate r

[0 same Bellman equations (differ by a constant)

> our approach cannot tell if nonemployment is voluntary
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Value Functions

value

— employed value E(w)

- -- always employed

— nonemployed value N (w)
--- never employed

_____________________________________________________

&
&

log net benefit of employment w(t) = w(t) — b(t)
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Example of Sample Path
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Determinants of Barriers

[0 assume non-employment benefits constant: p;, s = o3 s = 0

[0 accurate approximation for width of inaction:

12ro%0? Ve + n

(@ —w)’ ~
(fe + /112 +2r02) (= + /1% +2r02) o

> uncertainty o,,, 0. widens inaction range (option value)
> increase in u,, or decrease u,. widens inaction
> large sensitivity of inaction range to cost, cubic root
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Inverse Gaussian Distribution

0 nonemployment duration is given by an inverse Gaussian distribution

Lo (=)
NG 2t

where a = p,, /o, and g = (v — w) /o,

f(t; o, B)

> 1y = fwn — e 1S the drift in w while nonemployed
> 02 =02 20n0wn0bn + 04, 1S its variance

w,n
[ structural parameters all determine w and w

0 worker eventually finds a job if and only if o« > 0

O parameter heterogeneity maps into cumulative distribution G(«, 5)
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ldentification and Testing
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|dea

' O input: data on non-employment duration — distribution ¢
O goal: recover distribution G(«, )

O model implies a mapping ¢ = M (G)

O identification

> for each ¢, there is at most one G such that ¢ = M (G)

[ testing
> there exist ¢'s for which ¢ # M (G) for all G's
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|dea

' O input: data on non-employment duration — distribution ¢
O goal: recover distribution G(«, )

O model implies a mapping ¢ = M (G)

O identification

> for each ¢, there is at most one G such that ¢ = M (G)

[ testing
> there exist ¢'s for which ¢ # M (G) for all G's

0 model is not identified with data on one spell per individual

0 model is identified with two spells per individual
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Single Nonemployment Spell

' 0 model is not identified with a single nonemployment spell
O generate data from a model with one type («, 5)

[ alternative way to fit the model:

> individual 7 with duration d: ¢! =0, p! = (" — w")/d

[0 special cases of the model are identified with one spell:

> everyone has the same expected duration
> no switching costs, so w = w
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Two Nonemployment Spells

[ fix a nonempty, open set of completed durations 7' C R

O the joint density of duration of two spells (¢,,t3) € T? is given by

O, 1) — / / F(t: o, B) f (f2: v, B)dG e, B)
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Two Nonemployment Spells

[ fix a nonempty, open set of completed durations 7' C R

O the joint density of duration of two spells (¢,,t3) € T? is given by

gb(t / ) _ ff f(t13Oé,ﬁ)f(tz;&,ﬂ)dG(ajﬂ)
VT T [T £t 0 B) F(ty: ., B)dG o, B) dty i

O defines a linear map: ¢ = M (G)
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Sketch of the Identification Proof

1. ¢ Is co-differentiable, except at t; = ¢,
2. k' derivatives of ¢ identify k" conditional moments of (a2, 5?%)
O unigue moments of (a2, 5%) conditional on surviving to (¢, ts)

O unique distribution (a2, 5%) conditional on surviving to (¢, t5)

3. extend to unconditional distribution of (o2, 5%) (Bayes rule)
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Sketch of the Identification Proof

1. ¢ Is co-differentiable, except at t; = ¢,
2. k' derivatives of ¢ identify k" conditional moments of (a2, 5?%)
O unigue moments of (a2, 5%) conditional on surviving to (¢, ts)

O unique distribution (a2, 5%) conditional on surviving to (¢, t5)

3. extend to unconditional distribution of (o2, 5%) (Bayes rule)

[0 requires only local information, i.e. ¢ and all derivatives at a point
[0 does not require existence of any moments of ¢

O does not imply existence of any moments of («, 3)
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A Limitation to Identification

O recall f(t;a, 8) = —(&t_6)2>

5
Nor TR ( ot
O easy to prove f(t;a, B) = e2*? f(t; —a, 8) for all (a, )

[0 complete spells only identify distribution up to sign of «

Decomposing Duration Dependence in a Stopping Time Model -p. 19



A Limitation to Identification

O recall f(t;a, 8) = —(&t_6)2>

5
Nor TR ( ot
O easy to prove f(t;a, B) = e2*? f(t; —a, 8) for all (a, )

[0 complete spells only identify distribution up to sign of «

O let G™ w/density ¢ have all mass on a > 0
O define G~: g (—a, 8) = e'PgT (a, B)
O then M(G*) = M(G™)

O so is any convex combination of ¢ (a, 5) and g~ (a, )
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A Limitation to Identification

O recall f(t;a, 8) = —(&t_6)2>

5
Nor TR ( ot
O easy to prove f(t;a, B) = e2*? f(t; —a, 8) for all (a, )

[0 complete spells only identify distribution up to sign of «

O let G™ w/density ¢ have all mass on a > 0

O define G~: g (—a, 8) = e'PgT (a, B)

O then M(G*) = M(G™)

O so is any convex combination of ¢ (a, 5) and g~ (a, )
O proceed as if o > 0 for all individuals

0 incomplete spells provide partial information on sign «
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Incomplete Spells and Sign of «

O G distribution consistent w/ ¢ with o > 0
O we identify GT from distribution of two complete spells

O ¢ = fraction of two consecutive complete spells in T' C R?:

o~ | /()T [[ #ttisa.5) 1t 0. 8)dG @, it

[0 we can measure ¢ in actual data
O G or G are likely not to be consistent with ¢

O define G, G consistent with ¢ and ¢:

> distribution G w/largest number of negative o
> distribution G w/smallest number of negative «
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Test: Conditional Moments of  «o?, 32

I O differentiate ¢(¢,t2) w.r.t. t; and t,

i(T1, 12 1|1 5 3 5 .
fb((; ti)) = = | BE(PI,t) — = ~E(o?|t1, 1) | fori=1,2
) [ @ f(t;a, B) f(te; o, B)dG (e, B)
where Blalint2) = 22 o0 B) 1 (t2: @, B)dC @, B)
o ffﬂ2f(t17O‘aﬂ)f<t27oéaﬂ)dG(Oéaﬂ)

and E(BZ‘tla t2) — ff f(t1§ Q, 5)]"(152; Q, 5)05@(04, 5)

O if t; # t,, gives 2 linear equations in E(a?|t;, t5), E(8?|t1, t2)
[ test: these moments are non-negative

[0 higher order partial derivatives give more tests
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Power of Test: Constant Hazard

I [0 data generating process: constant hazard rate of finding a job ~

O observe ¢(t,,t,) = h2e~"1+%2) and perform our test

3
— >0t +1r > —
t 41 LT 9on

31t

1+ 12

E(@Q‘tl, tg) =2

and E(ﬁQItl,tg) - ; > ()

[0 conclusion: data was not generated by our model

[0 paper extends to case of distribution of constant hazard rates A
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Power of Test: Log Normal

O data generating process: log-normal distribution (u, o)

O observe ¢(t1,ty) and perform our test

2 tl lOgtl —tg lOth
E(a?|ty, ty) = — 1o?
(Oé ‘ 1 2) 0'2(t1—|—t2) ( tl —t2 (,u_l_ 20)
2t1t2 tg lOg tl — tl lOg tg
and E(3%|t,t;) = 1o%) ).
(ﬂ ‘ 1 2) 0'2(t1—|_t2> ( tl_tQ + (lu—l_QO-)

> E(a?|t1,t,) is negative at small (t1,1,), €.9. t; =ty < /271

> E(8%|t1,1,) is negative at large (t1,t3), €.9. ¢ = t5 > ettzo+!

[0 conclusion: data was not generated by our model
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Decompositions
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Notation

ft; o, B)
1 — F(t;a, B)

(1= F(t; o, p))dG (a, B)
JJ (1= F(t; o/, 5))dG(o, )

O type-specific hazard rate h(t; o, 5) =

O time-t survivor distribution dG(a, 8;t) =

> note: dG(«, 5;0) = dG(a, )

00 aggregate hazard is H(t) = [[ h(t; o, B)dG(c, B;t)
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Hazard Rate Decomposition

O hazard rate H(t) = H*(t) + H"(t) where

// (0, B)dG av, B 1)
// (t: a, B)dC (v, B: )
— [[(ha.9) - HO)PG(a,5:0) <0

O this is R.A. Fisher’'s fundamental theorem of natural selection

> “the rate of increase in fithess of any organism at any time is equal
to its genetic variance in fitness at that time”
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Austrian Data
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Description

' 0 universe of private sector employees, 1986—-2007

> social security records

> observe employment, unemployment, retirement, maternity leave
> full-time, part-time, “marginal” jobs

> start and end date for each spell

[ definition of non-employment spell:

> end of one full-time job to start of next full-time job ( In weeks)
> registered as unemployed at some point (avoid job-to-job)

O only spells if individual > 25 at the time (avoid school)

[0 age criterium individual is (potentially) for at least 15 yrs in sample
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Data Construction

O set 7' = [0, 260] weeks

Individuals age < 45 in 1986 and > 40 in 2007

w/at least one completed non-employment 1,266,716
w/at least two completed non-employment 852,570
w/ one of the first 2 spells longer than 260 weeks 56,760
final sample 795,810

0 mean non-employment spell duration on 7": 29.6 weeks

[0 mean employment duration between spells: 96.4 weeks
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Joint Density of Two Spells
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Results
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Test

O cannot measure the density at all (¢;,72) € R

[0 propose a discrete version of the test

b(ty,t 3

log ¢(t1 -+ 1,t2) — lOg ¢(t1 — 1,t2) — ( 12 2) — t_ — a(tl,tg)
1 1
b(t1,t 3

log ¢(t1,t2 + 1) —log d(t1,t2 +1) = ( 12 2) LT a(ty,t2)
2 2

0 model is symmetric

> measure (¢(tq,t2) + d(ta, t1))/2

[0 measured ¢ is noisy

> “noise” mostly end of month effect
> smooth with a two-dimensional HP filter, except on diagonal
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Test Results
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Test Results
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Estimation: Part |

O model

> start with a finite number of types, k=1,... K

> select pairs (ax, 8¢);—, on pre-specified grid, a;, > 0
> shares g, > 0,3, gr = 1,0r g € AK-!

> use densities f(¢; ax, Ox)

> condition on all types having t € T' = |0, 260]

[0 data

I> smoothed estimate of density ¢(¢1, t») (2-dimensional HP)

> evaluate at pairs of times (¢1,t,) € T = {0,260}
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Estimation: Part Il

O find g in A%~ which minimizes:

Z (Z[ tlatz @kaﬁk)Q—f(tl;@k,ﬁk)f(tz;@k,ﬂk)} %)2

(tl,t2)€T2 k=

where F(ay, B;) = £t o, Be) f(ty; an, Br)

(t],t5) €T

regularize it by adding penalty on ||g||* — ill-posed inverse problem

O drop types with g, < 107, refine estimates (@k,Bk,ﬁk),ﬁle using EM

> maximum likelihood with a given number of types (= K)
> EM algorithm uses step 1 as initial guess
> allows us to find values of («, 8) outside the grid
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Summary Statistics from Estimation

minimum distance estimate EM estimate
mean median st.dev. min | mean median st.dev min

0.36 0.20 0.51 0.007 | 391 0.12 2776 0.08
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Empirical and Theoretical Marginal Distribution
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Error in Joint Density Estimates
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Sign of «

[0 consider three G consistent w/ distribution ¢ of two complete spells

O G assumes all a > 0

> implies fraction of completed spells ¢ = 0.98
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Sign of «

[0 consider three G consistent w/ distribution ¢ of two complete spells

O G assumes all a > 0

> implies fraction of completed spells ¢ = 0.98

O construct G, G consistent with ¢ = 0.80

> G with minimum number of o < 0, about 18% of workers
> G with maximum number of o < 0, about 51% of workers
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Sign of «

[0 consider three G consistent w/ distribution ¢ of two complete spells

O G assumes all a > 0

> implies fraction of completed spells ¢ = 0.98

O construct G, G consistent with ¢ = 0.80

> G with minimum number of o < 0, about 18% of workers
> G with maximum number of o < 0, about 51% of workers

[0 hazard rate decomposition for all three cases
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Hazard Rate Decomposition
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Hazard Rate Decomposition
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Hazard Rate Decomposition
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Fixed Cost
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Size of Fixed Costs

" O use model and estimated G to infer the distribution of (2, + 1e) /bo

> fixed costs (for each type) unidentified without more information
[> common values of other parameters

o discount rate » = 0.03, constant benefit of non-employment
o cost of switching from employ. to non-employ.: ¢,, =0

o drift of wages p, = 0.015 and p,, = —0.03

o volatility of wages when employed o, = 0.05

> volatility o,, and width & — w from estimates

[0 mean (median) fixed costs % = 1.8 (0.5) percent per year

O mean (median) width of inaction w — w = 1.8 (1.7) percent
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Should We Set Fixed Cost to Zero? No.

[0 we estimate very small fixed cost

OO what happens if we set them to zero?

> 0 = w and hence 8 = 0 for all workers
> this restriction is emphatically rejected (much smaller likelihood)
> implied durations are much too short
> if « = 3 = 0, mean duration conditional on t € [t,#] is (tt)'/?
o other values of « give still shorter durations

D> if T = [1,260], upper bound = 16, while mean in data =~ 30

Decomposing Duration Dependence in a Stopping Time Model -p. 43



Conclusions
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Conclusions

0 we model nonemployment duration as a stopping time
0 we allow for arbitrary parameter heterogeneity

0 we prove the model is partially identified and testable

> test and don't reject the model on Austrian data
> estimate the distribution of unobserved types in Austrian data

[0 we decompose evolution of hazard rate and residual duration

> hazard rate suggests heterogeneity is the dominant force

O we find that small fixed switching cost important for model fit
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Mixed Proportional Hazard Model
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Nonparametric Test

" O individual hazard rate: 6h(t)

0 survivor function: fraction of people with duration at least ¢; and ¢

(D(tl,t2> :/6—9(2(t1)+Z(t2))dG(9)

O Z(t) is the integrated baseline hazard

[ test

(<I>(t1,t2)—<1>(t1+1,t2))

/ _ D(t1,t2)—D(t1,t2+1) o
\Ij(tla tl) t2) - q)(t’l,tg)—<1>(t’1+1,t2)) o h(t’l)
q)(tll,tz)—cb(t/l,tQ—l—l)
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Non-employment Exit Rate
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Non-employment Exit Rate
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Non-employment Exit Rate
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Non-employment Exit Rate
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Non-employment Exit Rate
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Detalls on Identification Proof
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¢ IS Smooth Almost Everywhere

[0 our identification approach differentiates ¢ to construct moments of ¢

O for any G, ¢ is infinitely differentiable at any ¢, = ¢

> proof applies Leibniz’s formula

O easy to construct examples where ¢ is not differentiable at some (¢, t)

> o/f = uand j§ is Pareto distributed

> mixture of these distributions

O consistent with the “ridge” in the empirical distribution of ¢
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Kinked ¢
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First Moments of G(a?, 52|t1, t2)

2t2 i (t1, t2)

[ differentiate ¢: oty 1)
1,02

= E(B%|t1, t2) — 3t; — E(a?|ty, t2)t7, where

E(O&Z‘t 4 ) _ ff @2f(t1;0476)f(t2;@76)dG(O‘75)
DT s a, B) f(t; v, B)dG a, )

: [ B f (b e, B) fta; v, B)AG (v, B)

and BT 1) = 2 5 1 o, B) £ (ta: o B)dGi (v, B)

O if £, £ t9, this gives two invertible linear equations in two unknowns
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Second Moments of G(a2, 32|t1, t2)

' [ differentiate ¢ a second time:

At i (ty, to)

= E(a*[ty, t2)t] + B(B*[ts, ta) — 2B(a®B2Jty, b))t
¢(t17 tQ)

+ 6E(a?|ty, t)t; — 10E(B%|t1, to)t; + 15t2, i = 1,2,

At3t5d12(t1, to)
qb(tl? tQ)
+ 3E(a®|t1, to)tita(t + ta) — SBE(B%|t, t2)(t1 + 1) + 9tits.

= E(a*|t1, t2)t1t5 + E(Bt1, t2) — E(®B%|t1, t2) (1] + 3)

O if t; # t,, this gives three invertible linear equations in three unknowns
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m'™ moments of G(a?2, B2|t1, t,)

D, (t1,t2) = Lip(tr,ta) - Un(ty, ta) - My (t1,t2) + vp(t1, to)

2432 gm(ty ,t9)
P(t1,t2) ot "ot

O (m+ 1) x 1 data vector: ®,,(t1,t2) = [ ]
0<i<m

O (m+ 1) x (m+ 1) lower-triangular matrix, nonsingular if t; # t5:

~ D (m—1)! ,2(i—7 '
Lin(t1,t2) = {Em—)z‘)(!(i—%!tZ( (8 - tg)m} o< icicm

O (m+ 1) x (m + 1) upper-triangular matrix, nonsingular if t; # t5:

Um(tlatQ) — Lg(j?l-)!(t% — t%)im}

0<i<j<m

O (m+ 1) x 1 moment vector M,,(t1,t2) = | E(a?™~ 5%ty t5) |

0<:<m

0O (m+1) x 1 known lower moment vector v,, (¢, %)
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From Conditional Moments to Distributions

O all moments of distribution of G(a2, 32|t1, t,) are identified

O under regularity conditions, this identifies G(a?2, 52|t1, t»)
> Carleman’s sufficient condition for a one dimensional problem
> apply Cramér-Wold theorem to extend it to two dimensions

> the conditions hold in our environment
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From Conditional to Unconditional Distributions

0 using Bayes rule,

f(tla 76) f(t27 CM,B)CZG(CE,B)
fo fo tla 76/ f(t2;@/75/) dG<O/aﬁ/).

( Bt ) =

[0 take ratios and invert to get

dG(a, ) dG(a?, Bty 1) [t o, B)f(ts; o, )
dG(a/, B")  dG(«?, 82|t ty) [ty a, B) f(ta; v, B)

[0 theorem: ¢ near any t; # t, identifies GG
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Pareto Example Revisited

0 Pareto distribution has infinite higher moments
0 yet we prove the conditional moments is always finite

[0 can’t we integrate conditional moments to get unconditional ones?

E(5*™) = //T2 E(3%™[t1, t2)d(t1, t2) dty diy

> E(ﬂ%n‘tl,tg) < oo at all 5] 7é to

> integral does not converge exactly when the moment is infinite
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Multidimensional HP Filter
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Nonparametric Filter

- O data: Y(ty,ty) forty € {1,...,t.}and ty € {1,...,T}

> smooth ) on each side of the diagonal

O trend: (¢, 1)

min <ZZ Wty ty) — P(ty, ts))?

{¢(t1 t2 to=1t1=1

T to—1

+ A Z Z Wty + 1, t2) — 20(ty, ta) + () — 1,t))?

to=3t1=2
T—1tx—1

—1—)\22 (t1,t2 +1) 2¢(t1>t2)+¢(t1’t21))2>

to=21t1=1
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