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Introduction
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why do hazard rates decrease with duration?

heterogeneity across workers

structural duration dependence for each worker

answer using a structural stopping time model

log net benefit of employment is a Brownian motion with drift

fixed cost of switching employment status

distribution of completed duration is inverse Gaussian (α, β)

parameters of the distribution differ across individuals, G(α, β)

identify G using distribution of two completed spells, density φ(t1, t2)

estimate with Austrian administrative panel, ∼ 1 million workers



Summary
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economically-motivated assumptions about individual durations

individual duration follows inverse Gaussian w/parameters (α, β)

arbitrary heterogeneity across individuals, w/distribution G(α, β)

identify the joint distribution of individual parameters G

identification relies on functional form of inverse Gaussian

test whether φ can be generated by any such a model

estimate using observations on non-employment duration

hazard rate decomposition: “structure” vs “heterogeneity”

estimate small upper bound on fixed switching cost

model w/zero switching cost: soundly rejected



Stopping Time Literature
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Lancaster (1972), Newby and Winterton (1983): strikes

Aalen-Gjessing (2001), Lee-Whitmore (2006, 2010): death

Alvarez-Shimer (2009), (2011): theory

Buhai-Teulings (2014): job tenure, no heterogneity

Shimer (2008): no heterogeneity, no switching costs

Abbring (2012): Lévy process, heterogeneity only in boundaries



Structural Model
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Assumptions
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risk-neutral worker, discount rate r in continuous time

worker can be either employed, s(t) = e, or nonemployed, s(t) = n

employed: wage ew(t), dw(t) = µw,s(t)dt+ σw,s(t)dBw(t)

nonemployed: benefits b0 eb(t), db(t) = µb,s(t)dt+ σb,s(t)dBb(t)

Brownian motions have correlation ρs(t)

switching from nonemployment to employment: cost ψe b0 eb(t)

switching from employment to nonemployment: cost ψn b0 eb(t)

decision rules depend only on ”net” log benefit of employment:

ω(t) ≡ w(t)− b(t) with dω(t) = µs(t)dt+ σs(t)dB(t)



Alternative Interpretation
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worker’s log productivity is w(t) and log wage is b(t)

monopsonist can hire worker at fixed cost ψe b0 eb(t)

monopsonist can fire worker at fixed cost ψn b0 eb(t)

monopsonist discounts the future at rate r

same Bellman equations (differ by a constant)

our approach cannot tell if nonemployment is voluntary



Value Functions
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ω ω̄

log net benefit of employment ω(t) = w(t)− b(t)

va
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Example of Sample Path
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Determinants of Barriers
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assume non-employment benefits constant: µb,s = σb,s = 0

accurate approximation for width of inaction:

(ω̄ − ω)3 ≈ 12 r σ2
eσ

2
n

(µe +
√

µ2
e + 2rσ2

e)(−µn +
√

µ2
n + 2rσ2

n)

ψe + ψn
b0

uncertainty σn, σe widens inaction range (option value)

increase in µn or decrease µe widens inaction

large sensitivity of inaction range to cost, cubic root



Inverse Gaussian Distribution
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nonemployment duration is given by an inverse Gaussian distribution

f(t;α, β) =
β√

2 π t3/2
exp

(

−(αt− β)2

2t

)

where α = µn/σn and β = (ω̄ − ω)/σn

µn = µw,n − µb,n is the drift in ω while nonemployed

σ2
n = σ2

w,n − 2ρnσw,nσb,n + σ2
b,n is its variance

structural parameters all determine ω̄ and ω

worker eventually finds a job if and only if α ≥ 0

parameter heterogeneity maps into cumulative distribution G(α, β)



Hazard Rates
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Hazard Rates
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Identification and Testing
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Idea
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input: data on non-employment duration – distribution φ

goal: recover distribution G(α, β)

model implies a mapping φ =M (G)

identification

for each φ, there is at most one G such that φ =M (G)

testing

there exist φ’s for which φ 6=M (G) for all G’s



Idea
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input: data on non-employment duration – distribution φ

goal: recover distribution G(α, β)

model implies a mapping φ =M (G)

identification

for each φ, there is at most one G such that φ =M (G)

testing

there exist φ’s for which φ 6=M (G) for all G’s

model is not identified with data on one spell per individual

model is identified with two spells per individual



Single Nonemployment Spell
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model is not identified with a single nonemployment spell

generate data from a model with one type (α, β)

alternative way to fit the model:

individual i with duration d: σin = 0, µin = (ω̄i − ωi)/d

special cases of the model are identified with one spell:

everyone has the same expected duration

no switching costs, so ω̄ = ω



Two Nonemployment Spells

Decomposing Duration Dependence in a Stopping Time Model -p. 17

fix a nonempty, open set of completed durations T ⊆ R

the joint density of duration of two spells (t1, t2) ∈ T 2 is given by

φ(t1, t2) =

∫∫

f(t1;α, β)f(t2;α, β)dG(α, β)



Two Nonemployment Spells
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fix a nonempty, open set of completed durations T ⊆ R

the joint density of duration of two spells (t1, t2) ∈ T 2 is given by

φ(t1, t2) =

∫∫

f(t1;α, β)f(t2;α, β)dG(α, β)
∫∫

T 2

∫∫

f(t′1;α, β)f(t
′
2;α, β)dG(α, β) dt

′
1 dt

′
2

defines a linear map: φ =M (G)



Sketch of the Identification Proof
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1. φ is ∞-differentiable, except at t1 = t2

2. kth derivatives of φ identify kth conditional moments of (α2, β2)

unique moments of (α2, β2) conditional on surviving to (t1, t2)

unique distribution (α2, β2) conditional on surviving to (t1, t2)

3. extend to unconditional distribution of (α2, β2) (Bayes rule)



Sketch of the Identification Proof
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1. φ is ∞-differentiable, except at t1 = t2

2. kth derivatives of φ identify kth conditional moments of (α2, β2)

unique moments of (α2, β2) conditional on surviving to (t1, t2)

unique distribution (α2, β2) conditional on surviving to (t1, t2)

3. extend to unconditional distribution of (α2, β2) (Bayes rule)

requires only local information, i.e. φ and all derivatives at a point

does not require existence of any moments of φ

does not imply existence of any moments of (α, β)



A Limitation to Identification
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recall f(t;α, β) =
β√

2π t3/2
exp

(

−(αt− β)2

2t

)

easy to prove f(t;α, β) = e2αβf(t;−α, β) for all (α, β)

complete spells only identify distribution up to sign of α
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recall f(t;α, β) =
β√

2π t3/2
exp

(

−(αt− β)2

2t

)

easy to prove f(t;α, β) = e2αβf(t;−α, β) for all (α, β)

complete spells only identify distribution up to sign of α

let G+ w/density g+ have all mass on α > 0

define G−: g−(−α, β) = e4αβg+(α, β)

then M(G+) =M(G−)

so is any convex combination of g+(α, β) and g−(α, β)



A Limitation to Identification
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recall f(t;α, β) =
β√

2π t3/2
exp

(

−(αt− β)2

2t

)

easy to prove f(t;α, β) = e2αβf(t;−α, β) for all (α, β)

complete spells only identify distribution up to sign of α

let G+ w/density g+ have all mass on α > 0

define G−: g−(−α, β) = e4αβg+(α, β)

then M(G+) =M(G−)

so is any convex combination of g+(α, β) and g−(α, β)

proceed as if α ≥ 0 for all individuals

incomplete spells provide partial information on sign α



Incomplete Spells and Sign of α
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G+ distribution consistent w/ φ with α ≥ 0

we identify G+ from distribution of two complete spells

c ≡ fraction of two consecutive complete spells in T ⊂ R
2:

c =

∫∫

(t1,t2)∈T 2

∫∫

f(t1;α, β)f(t2;α, β)dG(α, β)dt1dt2

we can measure ĉ in actual data

G+ or G− are likely not to be consistent with ĉ

define Ḡ, G consistent with φ and ĉ:

distribution Ḡ w/largest number of negative α

distribution G w/smallest number of negative α



Test: Conditional Moments of α2, β2
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differentiate φ(t1, t2) w.r.t. t1 and t2

φi(t1, t2)

φ(t1, t2)
=

1

2

[

1

t2i
E(β2|t1, t2)−

3

ti
− E(α2|t1, t2)

]

for i = 1, 2

where E(α2|t1, t2) =
∫∫

α2f(t1;α, β)f(t2;α, β)dG(α, β)
∫∫

f(t1;α, β)f(t2;α, β)dG(α, β)

and E(β2|t1, t2) =
∫∫

β2f(t1;α, β)f(t2;α, β)dG(α, β)
∫∫

f(t1;α, β)f(t2;α, β)dG(α, β)

if t1 6= t2, gives 2 linear equations in E(α2|t1, t2),E(β2|t1, t2)

test: these moments are non-negative

higher order partial derivatives give more tests



Power of Test: Constant Hazard
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data generating process: constant hazard rate of finding a job h

observe φ(t1, t2) = h2e−h(t1+t2) and perform our test

E(α2|t1, t2) = 2− 3

t1 + t2
> 0 ⇔ t1 + t2 >

3

2h

and E(β2|t1, t2) =
3t1t2
t1 + t2

> 0

conclusion: data was not generated by our model

paper extends to case of distribution of constant hazard rates h



Power of Test: Log Normal
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data generating process: log-normal distribution (µ, σ)

observe φ(t1, t2) and perform our test

E(α2|t1, t2) =
2

σ2(t1 + t2)

(

t1 log t1 − t2 log t2
t1 − t2

−
(

µ+ 1
2
σ2
)

)

and E(β2|t1, t2) =
2t1t2

σ2(t1 + t2)

(

t2 log t1 − t1 log t2
t1 − t2

+
(

µ+ 1
2
σ2
)

)

.

E(α2|t1, t2) is negative at small (t1, t2), e.g. t1 = t2 < eµ+
1
2
σ2−1

E(β2|t1, t2) is negative at large (t1, t2), e.g. t1 = t2 > eµ+
1
2
σ2+1

conclusion: data was not generated by our model



Decompositions
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Notation
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type-specific hazard rate h(t;α, β) =
f(t;α, β)

1− F (t;α, β)

time-t survivor distribution dG(α, β; t) =
(1− F (t;α, β))dG(α, β)

∫∫

(1− F (t;α′, β′))dG(α′, β′)

note: dG(α, β; 0) = dG(α, β)

aggregate hazard is H(t) =
∫∫

h(t;α, β)dG(α, β; t)



Hazard Rate Decomposition
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hazard rate Ḣ(t) = Ḣs(t) + Ḣh(t) where

Ḣs(t) =

∫∫

ḣ(t;α, β)dG(α, β; t)

Ḣh(t) =

∫∫

h(t;α, β)dĠ(α, β; t)

= −
∫∫

(h(t;α, β)−H(t))2dG(α, β; t) < 0

this is R.A. Fisher’s fundamental theorem of natural selection

“the rate of increase in fitness of any organism at any time is equal
to its genetic variance in fitness at that time”



Austrian Data
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Description
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universe of private sector employees, 1986–2007

social security records

observe employment, unemployment, retirement, maternity leave

full-time, part-time, “marginal” jobs

start and end date for each spell

definition of non-employment spell:

end of one full-time job to start of next full-time job ( in weeks)

registered as unemployed at some point (avoid job-to-job)

only spells if individual > 25 at the time (avoid school)

age criterium individual is (potentially) for at least 15 yrs in sample



Data Construction

Decomposing Duration Dependence in a Stopping Time Model -p. 29

set T = [0, 260] weeks

individuals age < 45 in 1986 and > 40 in 2007

w/at least one completed non-employment 1,266,716

w/at least two completed non-employment 852,570

w/ one of the first 2 spells longer than 260 weeks 56,760

final sample 795,810

mean non-employment spell duration on T : 29.6 weeks

mean employment duration between spells: 96.4 weeks



Joint Density of Two Spells
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Results
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Test
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cannot measure the density at all (t1, t2) ∈ R+

propose a discrete version of the test

log φ(t1 + 1, t2)− log φ(t1 − 1, t2) =
b(t1, t2)

t21
− 3

t1
− a(t1, t2)

log φ(t1, t2 + 1)− log φ(t1, t2 + 1) =
b(t1, t2)

t22
− 3

t2
− a(t1, t2)

model is symmetric

measure (φ(t1, t2) + φ(t2, t1))/2

measured φ is noisy

“noise” mostly end of month effect

smooth with a two-dimensional HP filter, except on diagonal



Test Results
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Estimation: Part I
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model

start with a finite number of types, k = 1, . . . , K

select pairs (αk, βk)
K
k=1 on pre-specified grid, αk ≥ 0

shares gk ≥ 0,
∑N

k=1 gk = 1, or g ∈ ∆K−1

use densities f(t;αk, βk)

condition on all types having t ∈ T = [0, 260]

data

smoothed estimate of density φ̂(t1, t2) (2-dimensional HP)

evaluate at pairs of times (t1, t2) ∈ T ≡ {0, 260}2



Estimation: Part II
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find ĝ in ∆K−1 which minimizes:

∑

(t1,t2)∈T 2

( K
∑

k=1

[

φ̂(t1, t2)F̄ (αk, βk)
2 − f(t1;αk, βk)f(t2;αk, βk)

]

gk

)2

where F̄ (αk, βk) ≡
∑

(t′1,t
′

2)∈T
2

f(t′1;αk, βk)f(t
′
2;αk, βk)

regularize it by adding penalty on ||g||2 – ill-posed inverse problem

drop types with ĝk < 10−6, refine estimates (α̂k, β̂k, ĝk)
K
k=1 using EM

maximum likelihood with a given number of types (= K)

EM algorithm uses step 1 as initial guess

allows us to find values of (α, β) outside the grid



Summary Statistics from Estimation
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minimum distance estimate EM estimate
mean median st.dev. min mean median st.dev min

α 0.36 0.20 0.51 0.007 391 0.12 2776 0.08
β 7.48 5.03 5.94 1.466 2510 6.01 15623 1.43
µn
ω̄−ω

0.04 0.04 0.03 0.005 0.04 0.04 0.04 0.02
σn
ω̄−ω

0.21 0.20 0.12 0.005 0.22 0.17 0.14 10−5



Empirical and Theoretical Marginal Distribution
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Error in Joint Density Estimates
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Sign of α
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consider three G consistent w/ distribution φ of two complete spells

G+ assumes all α ≥ 0

implies fraction of completed spells c = 0.98
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consider three G consistent w/ distribution φ of two complete spells

G+ assumes all α ≥ 0

implies fraction of completed spells c = 0.98

construct G, Ḡ consistent with ĉ = 0.80

G with minimum number of α < 0, about 18% of workers

Ḡ with maximum number of α < 0, about 51% of workers



Sign of α
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consider three G consistent w/ distribution φ of two complete spells

G+ assumes all α ≥ 0

implies fraction of completed spells c = 0.98

construct G, Ḡ consistent with ĉ = 0.80

G with minimum number of α < 0, about 18% of workers

Ḡ with maximum number of α < 0, about 51% of workers

hazard rate decomposition for all three cases



Hazard Rate Decomposition
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Hazard Rate Decomposition
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Hazard Rate Decomposition
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Fixed Cost
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Size of Fixed Costs
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use model and estimated G to infer the distribution of (ψn + ψe)/b0

fixed costs (for each type) unidentified without more information

common values of other parameters

discount rate r = 0.03, constant benefit of non-employment
cost of switching from employ. to non-employ.: ψn = 0

drift of wages µe = 0.015 and µn = −0.03

volatility of wages when employed σe = 0.05

volatility σn and width ω̄ − ω from estimates

mean (median) fixed costs ψe

b0
= 1.8 (0.5) percent per year

mean (median) width of inaction ω̄ − ω = 1.8 (1.7) percent



Should We Set Fixed Cost to Zero? No.
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we estimate very small fixed cost

what happens if we set them to zero?

ω̄ = ω and hence β = 0 for all workers

this restriction is emphatically rejected (much smaller likelihood)

implied durations are much too short

if α = β = 0, mean duration conditional on t ∈ [t, t̄] is (t t̄)1/2

other values of α give still shorter durations

if T = [1, 260], upper bound ≈ 16, while mean in data ≈ 30



Conclusions
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Conclusions
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we model nonemployment duration as a stopping time

we allow for arbitrary parameter heterogeneity

we prove the model is partially identified and testable

test and don’t reject the model on Austrian data

estimate the distribution of unobserved types in Austrian data

we decompose evolution of hazard rate and residual duration

hazard rate suggests heterogeneity is the dominant force

we find that small fixed switching cost important for model fit
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Mixed Proportional Hazard Model

Decomposing Duration Dependence in a Stopping Time Model -p. 47



Nonparametric Test
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individual hazard rate: θh(t)

survivor function: fraction of people with duration at least t1 and t2

Φ(t1, t2) =

∫

e−θ(Z(t1)+Z(t2))dG(θ)

Z(t) is the integrated baseline hazard

Z(t) ≡
∫ t

0

h(τ)dτ

test

Ψ(t1, t
′
1; t2) ≡

(Φ(t1,t2)−Φ(t1+1,t2)
Φ(t1,t2)−Φ(t1,t2+1)

)

(Φ(t′1,t2)−Φ(t′1+1,t2)

Φ(t′1,t2)−Φ(t′1,t2+1)

)

=
h(t1)

h(t′1)



Non-employment Exit Rate
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Decomposing Duration Dependence in a Stopping Time Model -p. 49

5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

t2 in weeks

Ψ
(t

1
,2
;t

2
)

t1 = 26



Non-employment Exit Rate
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Non-employment Exit Rate
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φ is Smooth Almost Everywhere
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our identification approach differentiates φ to construct moments of G

for any G, φ is infinitely differentiable at any t1 6= t2

proof applies Leibniz’s formula

easy to construct examples where φ is not differentiable at some (t, t)

α/β = µ and β is Pareto distributed

mixture of these distributions

consistent with the “ridge” in the empirical distribution of φ



Kinked φ
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First Moments of Ĝ(α2, β2|t1, t2)
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differentiate φ:
2t2iφi(t1, t2)

φ(t1, t2)
= E(β2|t1, t2)− 3ti − E(α2|t1, t2)t2i , where

E(α2|t1, t2) =
∫∫

α2f(t1;α, β)f(t2;α, β)dG(α, β)
∫∫

f(t1;α, β)f(t2;α, β)dG(α, β)

and E(β2|t1, t2) =
∫∫

β2f(t1;α, β)f(t2;α, β)dG(α, β)
∫∫

f(t1;α, β)f(t2;α, β)dG(α, β)

if t1 6= t2, this gives two invertible linear equations in two unknowns



Second Moments of Ĝ(α2, β2|t1, t2)
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differentiate φ a second time:

4t4iφii(t1, t2)

φ(t1, t2)
= E(α4|t1, t2)t4i + E(β4|t1, t2)− 2E(α2β2|t1, t2)t2i

+ 6E(α2|t1, t2)t3i − 10E(β2|t1, t2)ti + 15t2i , i = 1, 2,

4t21t
2
2φ12(t1, t2)

φ(t1, t2)
= E(α4|t1, t2)t21t22+E(β4|t1, t2)−E(α2β2|t1, t2)(t21+ t22)

+ 3E(α2|t1, t2)t1t2(t1 + t2)− 3E(β2|t1, t2)(t1 + t2) + 9t1t2.

if t1 6= t2, this gives three invertible linear equations in three unknowns



mth moments of Ĝ(α2, β2|t1, t2)
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Φm(t1, t2) = Lm(t1, t2) · Um(t1, t2) ·Mm(t1, t2) + vm(t1, t2)

(m+ 1)× 1 data vector: Φm(t1, t2) =

[

2mt
2(m−i)
1 t2i2
φ(t1,t2)

∂mφ(t1,t2)

∂tm−i

1 ∂ti2

]

0≤i≤m

(m+ 1)× (m+ 1) lower-triangular matrix, nonsingular if t1 6= t2:

Lm(t1, t2) =
[

(−1)i(m−j)!
(m−i)!(i−j)!

t
2(i−j)
2 (t21 − t22)

j/2
]

0≤j≤i≤m

(m+ 1)× (m+ 1) upper-triangular matrix, nonsingular if t1 6= t2:

Um(t1, t2) =
[

j!
i!(j−i)!

(t21 − t22)
i/2
]

0≤i≤j≤m

(m+ 1)× 1 moment vector Mm(t1, t2) =
[

E(α2(m−i)β2i|t1, t2)
]

0≤i≤m

(m+ 1)× 1 known lower moment vector vm(t1, t2)



From Conditional Moments to Distributions
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all moments of distribution of Ĝ(α2, β2|t1, t2) are identified

under regularity conditions, this identifies Ĝ(α2, β2|t1, t2)

Carleman’s sufficient condition for a one dimensional problem

apply Cramér-Wold theorem to extend it to two dimensions

the conditions hold in our environment



From Conditional to Unconditional Distributions
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using Bayes rule,

dĜ(α2, β2|t1, t2) =
f(t1;α, β) f(t2;α, β)dG(α, β)

∫∞

0

∫∞

0
f(t1;α′, β′) f(t2;α′, β′) dG(α′, β′)

.

take ratios and invert to get

dG(α, β)

dG(α′, β′)
=

dĜ(α2, β2|t1, t2)
dĜ(α′2, β′2|t1, t2)

f(t1;α
′, β′)f(t2;α

′, β′)

f(t1;α, β)f(t2;α, β)

theorem: φ near any t1 6= t2 identifies G



Pareto Example Revisited
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Pareto distribution has infinite higher moments

yet we prove the conditional moments is always finite

can’t we integrate conditional moments to get unconditional ones?

E(β2m) =

∫∫

T 2

E(β2m|t1, t2)φ(t1, t2) dt1 dt2

E(β2m|t1, t2) <∞ at all t1 6= t2

integral does not converge exactly when the moment is infinite



Multidimensional HP Filter
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Nonparametric Filter
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data: ψ(t1, t2) for t1 ∈ {1, . . . , t2} and t2 ∈ {1, . . . , T}

smooth ψ on each side of the diagonal

trend: ψ̄(t1, t2)

min
{ψ̄(t1,t2)}

(

T
∑

t2=1

t2
∑

t1=1

(ψ(t1, t2)− ψ̄(t1, t2))
2

+ λ
T
∑

t2=3

t2−1
∑

t1=2

(ψ̄(t1 + 1, t2)− 2ψ̄(t1, t2) + ψ̄(t1 − 1, t2))
2

+ λ
T−1
∑

t2=2

t2−1
∑

t1=1

(ψ̄(t1, t2 + 1)− 2ψ̄(t1, t2) + ψ̄(t1, t2 − 1))2

)


	Non-employment Exit Hazard
	Introduction
	Summary
	Stopping Time Literature
	Structural Model
	Assumptions
	Alternative Interpretation
	Value Functions
	Example of Sample Path
	Determinants of Barriers
	Inverse Gaussian Distribution
	Hazard Rates

	Identification and Testing 
	Idea
	Single Nonemployment Spell
	Two Nonemployment Spells
	Sketch of the Identification Proof
	A Limitation to Identification
	Incomplete Spells and Sign of 
	Test: Conditional Moments of 2, 2
	Power of Test: Constant Hazard
	Power of Test: Log Normal

	Decompositions
	Notation
	Hazard Rate Decomposition

	Austrian Data
	Description
	Data Construction
	Joint Density of Two Spells

	Results
	Test
	Test Results
	Estimation: Part I
	Estimation: Part II
	Summary Statistics from Estimation
	Empirical and Theoretical Marginal Distribution
	Error in Joint Density Estimates
	Sign of 
	Hazard Rate Decomposition

	Fixed Cost
	Size of Fixed Costs
	Should We Set Fixed Cost to Zero? No. 

	Conclusions
	Conclusions

	Details on Identification Proof
	 is Smooth Almost Everywhere
	Kinked 
	First Moments of (2,2|t1,t2)
	Second Moments of (2,2|t1,t2)
	mth moments of (2,2|t1,t2)
	From Conditional Moments to Distributions
	From Conditional to Unconditional Distributions
	Pareto Example Revisited

	Multidimensional HP Filter
	Nonparametric Filter


