Discussion of "Credit Supply and the Housing Boom" by Justiniano, Primiceri, and Tambalotti

Sebastian Di Tella

Stanford GSB

8th Conference on Monetary Economics Banco de Portugal June 13th, 2015

Overview

- ► The housing boom was a result of looser lending constraints:
 - ▶ increase in supply of credit
 - lower R, higher debt, higher house prices, constant LTV ratio
- ▶ Not looser collateral constraints:
 - ▶ increase demand for credit
 - higher R, higher debt, lower house prices(!), higher LTV ratio
 - may have triggered crisis

The model

▶ Borrowing constraint

$$D \leq \theta ph$$

▶ Lending constraint

$$L \leq \bar{L}$$

► Focus on the region where borrowers want to borrow, and lenders lend, as much as possible

$$\theta p\bar{h} = \bar{L}$$

ightharpoonup Credit market clears via $p\bar{h}$

House values and the interest rate

- Simplify: $\theta = 1$ and u'(c) = 1, $p_{t+1} = p_t = p$
- \blacktriangleright Consider increasing h and paying it back tomorrow with lower c

$$\beta_b v'(\bar{h}) + \beta_b (1 - \delta)p = \beta_b Rp$$

- If $R \downarrow \Longrightarrow p \uparrow$
- ▶ This is the unconstrained pricing equation for houses!
 - ▶ Houses are valued as collateral only if $\theta > 1$

Lending constraint

► Looser lending constraint works like an exogenous shift to the supply of credit

$$\theta p\bar{h}\uparrow = \bar{L}\uparrow$$

▶ Higher $\bar{L} \Longrightarrow \text{lower } R$, higher debt \bar{L} , higher $p\bar{h}$, but constant LTV ratio θ

Lending constraint

▶ Looser lending constraint works like an exogenous shift to the supply of credit

$$\theta p \bar{h} \uparrow = \bar{L} \uparrow$$

- ▶ Higher $\bar{L} \Longrightarrow \text{lower } R$, higher debt \bar{L} , higher $p\bar{h}$, but constant LTV ratio θ
- Looser lending constraints could represent
 - financial innovation/ regulatory changes redirect funds from Treasuries to mortgages
 - ▶ higher supply of savings (e.g. "global savings glut")

Interest rate spread

Collateral constraint

 Looser collateral constraint acts as a shift in demand for credit

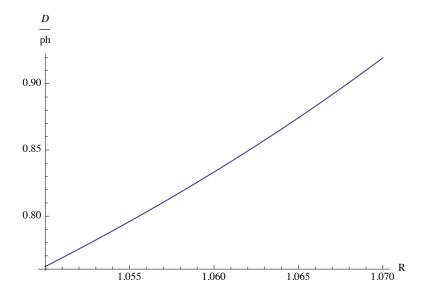
$$\uparrow \theta p \bar{h} \downarrow = \bar{L}$$

▶ Higher $\theta \implies$ higher R, constant debt \bar{L} , lower $p\bar{h}$ (!), higher LTV θ

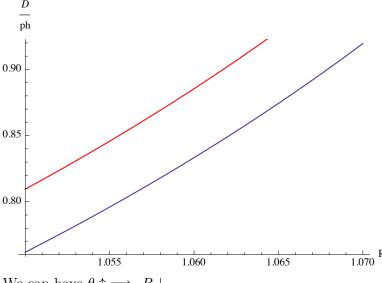
Collateral constraint

 Looser collateral constraint acts as a shift in demand for credit

$$\uparrow \theta ph \downarrow = \bar{L}$$

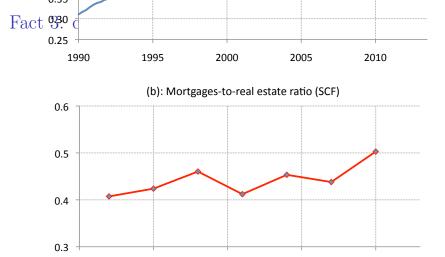

- ▶ Higher $\theta \implies$ higher R, constant debt \bar{L} , lower $p\bar{h}$ (!), higher LTV θ
- ▶ But collateral constraint θ can also affect supply of credit and lead to lower equilibrium interest rates

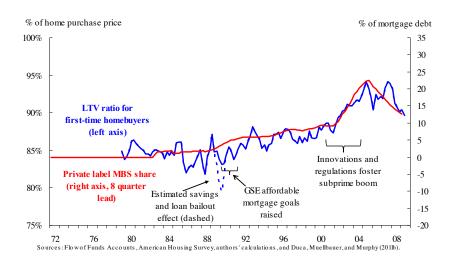
A toy example with default


- ▶ Borrow *D* with house as collateral ph = e + D
- With probability 1π pay back $D \times R$
- ▶ With probability π default, bank gets up to θph

$$rD = (1 - \pi)DR + \pi\theta ph$$
$$\frac{D}{ph} = \frac{\pi\theta}{r - (1 - \pi)R}$$

LTV ratio as a function of R


If houses are better collateral: $\theta \uparrow$


We can have $\theta \uparrow \Longrightarrow R \downarrow$

Mortgage heterogeneity

- ► Large variety of mortgage contracts
 - ▶ interest rate
 - ▶ LTV ratio
 - adjustable vs. fixed rate,
 - prepayment penalties, etc.
- Change in composition: growth of non-traditional mortgages
 - e.g. subprime, alt-A

Composition effect?

Conclusion

- ▶ Housing boom driven by increase in supply of credit
 - ▶ I would put more emphasis on supply of total savings, rather than Treasuries vs. mortgages, e.g. "world savings glut"
- Looser collateral constraints could also increase the "supply of credit"