Investment Hangover and the Great Recession

Matthew Rognlie(MIT) Andrei Shleifer(Harvard) Alp Simsek(MIT)

June 2015

Rognlie, Shleifer, Simsek ()

Investment Hangover

June 2015 1 / 34

Great Recession: Worst slump since Great Depression. Why?

Recent macro views: Bust of the housing bubble.

- Financial crisis and bank lending channel (Bernanke-Gertler, Kiyotaki-Moore, Chodorow-Reich...)
- Household deleveraging crisis reduced consumption (Eggertsson-Krugman, Guerrieri-Lorenzoni, Mian-Sufi...)

Low demand and recession, exacerbated by the liquidity trap (Hall...)

Asymmetric recovery poses a challenge

• Challenge: Why is residential investment left behind in recovery?

- This time is different: Typically leads the recovery (Leamer, 2007).
- This paper: New (complementary) channel: Investment hangover.

Key observation: There was also an investment bubble...

...that created an overhang of residential capital.

Rognlie, Shleifer, Simsek ()

Investment Hangover

We build stylized model with excess initial residential capital.

- Reduction in residential investment (Hayek...)
- But countered by reduction in the real interest rate and reallocation.
- Nonresidential investment picks up. No (economy-wide) recession.

Second key ingredient: Liquidity trap and bounded r.

Main result: Limited reallocation and a Keynesian recession.

What happens to nonresidential sectors during the recession?

- Nonresidential investment can initially fall despite low rates.
- Intuition: Low demand & low return (similar to the accelerator).
- Later, low rates dominate and nonresidential investment booms.
- This generates asymmetric recovery, as in the Great Recession.

Policy implications:

- Private investment decisions inefficient due to demand externalities.
- Broad policy lesson: Transfer investment to demand-deficient dates.

Related literature/contributions

Housing and deficient demand in the Great Recession:

- Deficient demand: financial frictions, deleveraging, stagnation...
- Housing: lacovieollo-Pavan (2013), Boldrin et al. (2013)...

Recessions driven by overbuilding/reallocation:

- News-driven cycles/overhang. Beaudry-Galizia-Portier (2014).
- Reallocation vs. aggregate: Lilien (1982), Blanchard-Diamond (1989).
- Supply side frictions to reallocation: Caballero-Hammour (1996)...

General mechanisms during the liquidity trap:

- Low demand reduces investment: Schmitt-Grohe and Uribe (2012)...
- Demand externalities: Farhi-Werning (2013), Korinek-Simsek (2014)...

- **()** Baseline version: Basic investment hangover mechanism.
- **@** Extension: Investment response and the acceleration principle.
- Sextension: Aggregate demand externalities, policy implications.

- Time $t \in \{0, 1, ...\}$ with two goods: consumption and housing.
- Three factors: h_t, k_t, l_t . Production functions h_t and $F(k_t, l_t)$.
- Absent shocks, economy converges to target level, h^* .
- We capture **past overbuilding** with $h_0 > h^*$. Adjustment.
- No adjustment costs in the baseline model. Evolution:

$$h_{t+1} = h_t \left(1 - \delta^h
ight) + i_t^h$$
 and $k_{t+1} = k_t \left(1 - \delta^k
ight) + i_t^k$.

Household decisions

Representative household with preferences, with two simplifications:

$$U\left(\hat{c}_{t}, I_{t}, h_{t}\right) = u\left(\hat{c}_{t} - v\left(I_{t}\right)\right) + u^{h}\mathbf{1}\left[h_{t} \geq h^{*}\right].$$

• Suppose u^h is large. Then, decumulation in single period,

$$h_{t+1}=h^*$$
, which implies $i^h_t=h^*-h_t\left(1-\delta^h
ight)$.

3 GHH prefs: $u(\hat{c}_t - v(l_t))$, where $c_t = \hat{c}_t - v(l_t)$ is **net consumption**.

- Labor supply solves the static problem, $e_t = \max_{l_t} w_t l_t v (l_t)$.
- Consumption-saving solve the dynamic problem:

$$\max_{\{c_{t}, a_{t+1}\}_{t}} \sum_{t=0}^{\infty} \beta^{t} u(c_{t})$$

s.t. $c_{t} + a_{t+1} + i_{t}^{h} = e_{t} + a_{t} (1 + r_{t}) + \Pi_{t}.$

Investment sector equates cost of capital to net return,

$$r_{t+1} = R_{t+1} - \delta^k.$$

• Liquidity trap: Nominal interest rate is bounded:

 $r_{t+1}^n \ge 0$ for each t.

• Nominal prices are completely sticky (coming) so that,

$$r_{t+1}^n = r_{t+1} \ge 0$$
 for each t .

Supply side: New Keynesian with extreme stickiness

- Competitive final good sector with, $\hat{y}_t = \left(\int_0^1 \hat{y}_t \left(\nu\right)^{\frac{\varepsilon-1}{\varepsilon}} d\nu\right)^{\varepsilon/(\varepsilon-1)}$
- Monopolistic intermediate sector with, $\hat{y}_t(\nu) = F(k_t(\nu), l_t(\nu))$.
- Monopolists have preset nominal price, $P_t(\nu) = P$. Simplicity.
- They face real price, $p_t(\nu) = P_t(\nu) / P = 1$, and thus solve,

$$\Pi_t = \max_{k_t, l_t} F\left(k_t, l_t\right) - w_t l_t - R_t k_t \text{ s.t. } F\left(k_t, l_t\right) \leq \hat{y}_t.$$

In equilibrium, net output is equal to net aggregate demand,

$$y_t = F(k_t, l_t) - v(l_t) = c_t + i_t^k + i_t^h.$$

Monetary policy tries to replicate the efficient benchmark:

• Efficient benchmark maximizes net output in every period,

$$y_{t}^{*} = s(k_{t}) \equiv F(k_{t}, l_{t}^{*}) - v(l_{t}^{*})$$
, where $l_{t}^{*} = \arg \max_{l_{t}} F(k_{t}, l_{t}) - v(l_{t})$.

• These also imply an interest rate, r_{t+1}^* . Monetary policy,

$$r_{t+1}^n = r_{t+1} = \max(0, r_{t+1}^*)$$
 for each t.

• This MP is constrained efficient absent commitment power.

Equilibrium is $\left\{h_t, k_t, l_t, \hat{c}_t, c_t, i_t^h, i_t^k, \hat{y}_t, y_t\right\}_t, \left\{w_t, R_t, r_{t+1}, \Pi_t\right\}_t \text{ s.t...}$

Lemma: Equilibrium features efficient outcomes or the liquidity trap:

1 If $r_{t+1} > 0$, then $y_t = s(k_t)$, $l_t = l_t^*$ and $R_t = s'(k_t)$.

2 If $r_{t+1} = 0$, then $y_t \le s(k_t), l_t \le l_t^*$ and $R_t = R(k_t, y_t) \le s'(k_t)$.

Demand shortage reduces output, employment, and factor returns,

$${{ extsf{R}}_{t}}=\left(1-{{ au}_{t}}
ight){ extsf{F}}_{k}\left({{ extsf{k}}_{t}}, {{ extsf{l}}_{t}}
ight)$$
 and ${{ extsf{w}}_{t}}=\left(1-{{ au}_{t}}
ight){ extsf{F}}_{l}\left({{ extsf{k}}_{t}}, {{ extsf{l}}_{t}}
ight)$, where ${{ au}_{t}}\geq$ 0.

• Suppose economy starts with too much residential capital:

$$h_0 = (1+b_0) \, h^*$$
, where $b_0 > 0$.

- The economy reaches date 1 with $h_1 = h^*$ and some k_1 .
- From date 1 onwards, no liquidity trap, $r_{t+1} > 0$ for each $t \ge 1$.
- Continuation $\{c_t, k_{t+1}\}_{t=1}^{\infty}$ solves standard neoclassical system.
- Let $c_1 = C(k_1)$ denote the solution where $C(\cdot)$ is increasing.
- Next consider the equilibrium at date 0....

• The residential investment at date 0 is:

$$i_0^h = h^* - \left(1 - \delta^h\right) h_0 = \left(\delta^h - b_0\left(1 - \delta^h\right)\right) h^*.$$

Overbuilding b_0 represents a negative shock to demand.

- Equilibrium depends on investment and consumption responses.
- Let \overline{k} denote the solution to $s'(\overline{k}) \delta^k = 0$. Then, $r_1 \ge 0$ implies:

$$k_1 \leq \overline{k}$$
.

Interest rate bound implies upper bound on investment...

Consumption is similarly bounded,

$$c_{0} \leq \overline{c}_{0}$$
, where $u'(\overline{c}_{0}) = \beta u'(C(\overline{k}))$.

• So there is an upper bound on aggregate demand:

$$y_0 \leq \overline{y}_0 \equiv \overline{k} - (1 - \delta^k) k_0 + \overline{c}_0 + (\delta^h - b_0 (1 - \delta^h)) h^*.$$

• The equilibrium depends on a comparison of \overline{y}_0 and $s(k_0)...$

• $\overline{y}_0 < s(k_0)$ if and only if $b_0 > \overline{b}_0$, which gives the main result.

Proposition

(i) Suppose $b_0 \leq \overline{b}_0$. Then, efficient outcomes,

$$r_{1}\geq 0, y_{0}=s\left(k_{0}
ight)$$
 and $l_{0}=l_{0}^{*}.$

(ii) Suppose $b_0 > \overline{b}_0$. Then, liquidity trap and recession:

$$r_1=0, k_1=\overline{k}, y_0=\overline{y}_0< s\left(k_0
ight)$$
 and $l_0< l_0^st.$

Moreover, y_0 and l_0 are decreasing in overbuilding, b_0 .

· ▲ ≣ ▶ ≣ • ා Q C June 2015 19 / 34

(日) (同) (三) (三)

$$\overline{b}_{0}\equivrac{\overline{k}-\left(1-\delta^{k}
ight)k_{0}+\overline{c}_{0}+\delta^{h}h^{*}-s\left(k_{0}
ight)}{\left(1-\delta^{h}
ight)h^{*}}.$$

• Liquidity trap $(b_0 > \overline{b}_0)$ more likely if \overline{k} and \overline{c}_0 are lower.

Overbuilding is complementary to other demand shocks.

• Liquidity trap also more likely if k_0 higher.

Overbuilding of two types of capital is complementary.

Comparative statics with respect to durability

- To analyze durability, consider two housing capitals, h^d and h^n .
- Suppose each has target level $h^*/2$ but different durability:

$$\delta^{h^d} < \delta^{h^n}$$
, with $\left(\delta^{h^d} + \delta^{h^n}\right)/2 = \delta^h$.

Proposition

Given average overbuilding $(b_0^d + b_0^n)/2 = b_0$, the incidence of liquidity trap $1[l_t < l_t^*]$ is increasing in overbuilding of durable capital b_0^d .

• Intuition: Depreciation "erases" overbuilt capital:

$$\overline{y}_{0} = \overline{k} - (1 - \delta) k_{0} + \overline{c}_{0} + \delta^{h} h^{*} - b_{0}^{d} \left(1 - \delta^{h^{d}}\right) \frac{h^{*}}{2} - b_{0}^{n} \left(1 - \delta^{h^{n}}\right) \frac{h^{*}}{2}$$

Overbuilding durable capital (housing, structures) is bigger concern.

Dynamics and aftermath of the recession

Rate r is low in the aftermath. Not secular stagnation, but fragility.

Rognlie, Shleifer, Simsek ()

June 2015 22 / 34

Image: Image:

How about the other sectors?

- Note that overbuilding (weakly) increases k_1 and c_0 .
- Recession is confined to the residential sector.
- But the return to capital at date 0 is very low:

• This suggests capital could also fall, if it could respond...

Rognlie, Shleifer, Simsek ()

- To analyze k response, we spread decumulation over time.
- Assume, disinvestment is subject to "adjustment costs,"

$$i_t^h \ge i^h$$
 for each t , for some $i^h < \delta^h h^*$.

- Suppose *h*₀ is such that decumulation is complete in *T* periods.
- Then, the residential investment path satisfies

$$i^h_t = \begin{cases} i^h < \delta^h h^* & \text{if } t \in \{0, ..., T-1\} \\ \delta^h h^* & \text{if } t \ge T \end{cases}$$

• The rest of the equilibrium is unchanged.

- As before $h_T = h^*$ and $\{c_t, k_{t+1}\}_{t=T}^{\infty}$ is neoclassical.
- Conjecture equilibrium with liquidity trap at each t < T.
- Consumption path $\{\overline{c}_t\}_{t=0}^T$ determined by Euler and $c_T = C(\overline{k})$.
- Capital stock when the trap ends satisfies $k_T = \overline{k}$.
- We still need to characterize $\{k_t\}_{t=1}^{T-1}$...

Liquidity trap over multiple periods

• Investment at each date t - 1 equates net benefits and costs:

$$R(k_t, y_t) - \delta^k = 0.$$

• Output at each t < T determined by aggregate demand:

$$y_t = \overline{c}_t + k_{t+1} - \left(1 - \delta^k\right) k_t + i^h.$$

- We can solve these equations backwards starting with $k_T = \overline{k}$.
- The resulting path is an equilibrium as long as $y_0 < s(k_0)$.

Proposition

There exists i_2^h such that, if $i^h < i_2^h$, then investment is nonmonotonic:

$$k_0 > k_1$$
 and $k_1 < k_T = \overline{k}$.

Rognlie, Shleifer, Simsek ()

• With severe shock, investment response is nonmonotonic.

• Recovery (period 1) is asymmetric, as in the Great Recession.

- This resembles the accelerator theory (Clark, Metzler, Samuelson...)
- Linearize $R(k_t, y_t) = \delta^k$ around $(k, y) \simeq (\overline{k}, s(\overline{k}))$, to obtain:

$$k_t \simeq \alpha + \beta y_t.$$

• Assuming $\delta^k \simeq 0$, we further obtain the approximation:

$$i_t^k \simeq k_{t+1} - k_t \simeq \beta \left(y_{t+1} - y_t \right)$$
 for each $t \ge 1$.

Investment depends on changes in y_t , as in the accelerator.

Initial capital stock important: Investment at date 0,

$$i_0^k \simeq k_1 - k_0 \simeq \alpha + \beta y_1 - k_0.$$

- Unlike future dates, y_0 and k_0 are **inversely related**.
- Accelerator qualified for the earlier phase of the recession.

Liquidity trap (constrained r_t) important. Otherwise dampening.

Rational expectations vs. backward-looking expectations of y_t .

- We focus on policies for controlling investment.
- Consider version with $u(c_0) v_0(l_0)$ at (only) date 0.
- Output, $y_0 = F(k_0, l_0)$ and labor wedge, $1 \tau_0 = \frac{v'_0(l_0)}{u'(c_0)F_l(k_0, l_0)}$.
- Lemma: If $b_0 > \overline{b}_0^{sep}$ (and no adj. cost), then recession with

 $r_1 = 0, au_0 > 0, y_0 = \overline{y}_0 < y_0^*$, and $R_0 = (1 - au_0) F_k(k_0, l_0) < R_0^*$.

- Start with ex-post (recession-management) policies at date 0.
- Then introduce date -1 and investigate ex-ante policies.

Ex-post policies: Slowing down investment

- Should the planner stimulate *h* investment at date 0?
- Agents' value from raising $h_1 \geq h^*$ is $u'(c_0)\left(rac{1-\delta^h}{1+r_1}-1
 ight) < 0.$
- Constrained planner that sets $h_1 \ge h^*$. Marginal value:

$$u'(c_0)\left(\left(1-\delta^h\right)-\underbrace{(1-\tau_0)}_{\text{planner's cost of capital}}+\underbrace{\frac{dc_0}{dh_1}\tau_0}_{\text{additional benefit}}\right)$$

Slow down disinvestment, $h_1 > h^*$, when $\tau_0 > \tilde{\tau}_0$ (i.e., $b_0 > \tilde{b}_0$).

• Lower cost of capital, due to aggregate demand externality.

- Consider date -1 with two states $\{H, L\}$ for date 0.
- L is the same as before, H features higher target $(1 + \lambda^H) h^*$.
- Start with, $h_{-1} = (1 + \lambda^H) h^*$ and $k_{-1} = k^*$. Believe $\pi^H \in (0, 1)$.
- Equilibrium features $h_0 = \left(1 + \lambda^H
 ight) h^*$ and k_0 determined by,

$$u'(c_{-1}) = \beta \left(\begin{array}{c} \pi^{H} \left(R_{0}^{H} + 1 - \delta^{k} \right) u'(c_{0}^{H}) \\ + \left(1 - \pi^{H} \right) \left(R_{0}^{L} + 1 - \delta^{k} \right) u'(c_{0}^{L}) \end{array} \right).$$

• Lemma: If $\lambda^{H} > \overline{b}_{0}^{sep}(k^{*})$ and $\pi^{H} \in (\overline{\pi}, 1)$, then liquidity trap in L.

Ex-ante: Restricting investment

- Constrained planner that sets h_0, k_0 . Chooses $h_{0,pl} = (1 + \lambda^H) h^*$.
- Chooses k_0 by solving ex-ante planning problem. Determined by:

$$u'(c_{-1}) = \beta \left(\begin{array}{c} \pi^{H} \left(R_{0}^{H} + 1 - \delta^{k} \right) u'(c_{0}^{H}) \\ + \left(1 - \pi^{H} \right) \left(R_{0}^{L} + \underbrace{\left(1 - \tau_{0} \right) \left(1 - \delta^{k} \right)}_{\text{discounting durable part}} \right) u'(c_{0}^{L}) \end{array} \right)$$

Restrict ex-ante investment, $k_{0,pl} < k_0$, which yields $\tau_0 > \tau_{0,pl} > 0$.

• Postpone building to state *L*. Aggregate demand externality.

Broad lesson: Substitute investment to demand-deficient dates.

- Model of **investment hangover**, with Austrian&Keynesian features.
- Overbuilding induces reallocation of resources to other sectors.
- Liquidity trap limits reallocation and creates Keynesian recession.
- Investment (accelerator) and consumption (multiplier) can fall.
- Investment (plus output & consumption) recovers before housing.
- Private investment choices inefficient due to demand externalities.

Applications beyond the Great Recession:

- Overbuilding of other sectors: Railroads, industrial plant/structures...
- Constraints on the interest rate for other reasons: Currency unions...