A MODEL OF SECULAR STAGNATION

Gauti B. Eggertsson and Neil R. Mehrotra

Brown University

Portugal June, 2015

SECULAR STAGNATION HYPOTHESIS

I wonder if a set of older ideas ... under the phrase secular stagnation are not profoundly important in understanding Japan's experience, and may not be without relevance to America's experience — Lawrence Summers

Original hypothesis:

- Alvin Hansen (1938)
- Reduction in population growth and investment opportunities
- Concerns about insufficient demand ended with WWII and subsequent baby boom

Secular stagnation resurrected:

- Lawrence Summers (2013)
- Highly persistent decline in the natural rate of interest
- Chronically binding zero lower bound

WHY ARE WE SO CONFIDENT INTEREST RATES WILL RISE SOON?

Interest rates in the US during the Great Depression:

- Started falling in 1929
- Reached zero in 1933
- Interest rates only started increasing in 1947

Started dropping in Japan in 1994:

Remains at zero today

Why are we so confident interest rates are increasing in the next few years? Wanted: A model that allows for long-lasting slumps.

SHORTCOMINGS OF SOME EXISTING MODELS

Representative agent models:

$$r_{ss} = \frac{1}{\beta}$$

- Real interest rate must be positive in steady state
- Households problem not well defined if $\beta \ge 1$
- ZLB driven by temporary shocks to discount rate (Eggertsson and Woodford (2003))

Patient-impatient agent models:

- Steady state typically pinned down by the discount factor of the representative saver (Eggertsson and Krugman (2012))
- Deleveraging only has temporary effect

QUESTIONS

Question 1

Can we formalize the idea of secular stagnation?

Question 2

- "What facts, exactly, is this meant to capture"
- Answer:
- (i) Resources are underutilized ("unemployment").
- (ii) Short-term risk-free nominal interest rates are at zero and the CB want to cut them more.
- (iii) This situation can last for an arbitrarily long time.

OUTLINE FOR PRESENTATION

1. Model

(1958) OLG endowment economy without capital – Negative short-term real interest rate can be triggered by:

- Deleveraging shock
- Slowdown in population growth
- Increase in income inequality
- Fall in relative price of investment
- Endogenous production-Stagnation steady state
 - Permanently binding zero lower bound
 - Low inflation or deflation
 - Permanent shortfall in output from potential
- 2. Policy options
- 3. Capital
- 4. Conclusions

ECONOMIC ENVIRONMENT

ENDOWMENT ECONOMY

- ▶ Time: *t* = 0, 1, 2, ...
- ► Goods: consumption good (*c*)
- Agents: 3-generations: $i \in \{y, m, o\}$
- Assets: riskless bonds (Bⁱ)
- Technology: exogenous borrowing constraint D

HOUSEHOLDS

Objective function:

$$\max_{C_{t,'}^{y}C_{t+1}^{m},C_{t+2}^{0}} U = \mathbb{E}_{t} \left\{ \log \left(C_{t}^{y} \right) + \beta \log \left(C_{t+1}^{m} \right) + \beta^{2} \log \left(C_{t+2}^{0} \right) \right\}$$

Budget constraints:

(

$$C_t^y = B_t^y$$

$$C_{t+1}^m = Y_{t+1}^m - (1+r_t)B_t^y + B_{t+1}^m$$

$$C_{t+2}^o = Y_{t+2}^o - (1+r_{t+1})B_{t+1}^m$$

$$(1+r_t)B_t^i \le D_t$$

CONSUMPTION AND SAVING

Credit-constrained youngest generation:

$$C_t^y = B_t^y = \frac{D_t}{1 + r_t}$$

Saving by the middle generation:

$$\frac{1}{C_t^m} = \beta \mathbb{E}_t \frac{1+r_t}{C_{t+1}^o}$$

Spending by the old:

$$C_t^o = Y_t^o - (1 + r_{t-1})B_{t-1}^m$$

DETERMINATION OF THE REAL INTEREST RATE

Asset market equilibrium:

$$N_t B_t^y = -N_{t-1} B_t^m$$
$$(1+g_t) B_t^y = -B_t^m$$

Demand and supply of loans:

$$\begin{split} L_t^d &= \frac{1 + g_t}{1 + r_t} D_t \\ L_t^s &= \frac{\beta}{1 + \beta} \left(Y_t^m - D_{t-1} \right) - \frac{1}{1 + \beta} \frac{Y_{t+1}^o}{1 + r_t} \end{split}$$

DETERMINATION OF THE REAL INTEREST RATE

Expression for the real interest rate (perfect foresight):

$$1 + r_t = \frac{1 + \beta}{\beta} \frac{(1 + g_t)D_t}{Y_t^m - D_{t-1}} + \frac{1}{\beta} \frac{Y_{t+1}^o}{Y_t^m - D_{t-1}}$$

Determinants of the real interest rate:

- Tighter collateral constraint reduces the real interest rate
- Lower rate of population growth reduces the real interest rate
- Higher middle age income reduces real interest rate
- Higher old income increases real interest rate

EFFECT OF A DELEVERAGING SHOCK

Impact effect:

- ► Collateral constraint tightens from *D_h* to *D_l*
- Reduction in the loan demand and fall in real rate
- Akin to Eggertsson and Krugman (2012)

Delayed effect:

- Next period, a shift out in loan supply
- Further reduction in real interest rate
- Novel effect from Eggertsson and Krugman (2012)
- Potentially powerful propagation mechanism

EFFECT OF A DELEVERAGING SHOCK

INCOME INEQUALITY

Does inequality affect the real interest rate?

- Our result due to generational inequality that triggers borrowing and lending
- What about inequality within a given cohort?

Generalization of endowment process:

- High-type households with high income in middle period
- Low-type households with low income in middle period
- Both types receive same income in last period

INCOME INEQUALITY AND REAL INTEREST RATE

Credit constrained middle income:

- Fraction η_s of middle income households are credit constrained
- True for low enough income in middle generation and high enough income in retirement
- Fraction 1 η_s lend to both young and constrained middle-generation households

Expression for the real interest rate:

$$1 + r_{t} = \frac{1 + \beta}{\beta} \frac{(1 + g_{t} + \eta_{s}) D_{t}}{(1 - \eta_{s}) \left(Y_{t}^{m,h} - D_{t-1}\right)} + \frac{1}{\beta \left(1 - \eta_{s}\right)} \frac{Y_{t+1}^{o}}{\left(Y_{t}^{m,h} - D_{t-1}\right)}$$

PRICE LEVEL DETERMINATION: WOODFORD'S CASHLESS LIMIT

Euler equation for nominal bonds:

$$\frac{1}{C_t^m} = \beta \mathbb{E}_t \frac{1}{C_{t+1}^o} (1+i_t) \frac{P_t}{P_{t+1}}$$
$$i_t \ge 0$$

The ZLB implies a bound on steady state inflation:

$$\bar{\Pi} \ge \frac{1}{1+r}$$

- If steady state real rate is negative then steady state inflation must be positive
- No steady state with zero inflation
- But what happens when prices are NOT flexible and the central bank does not tolerate inflation?

OUTLINE FOR PRESENTATION

1. Model

- Endowment economy
- Endogenous production
- 2. Monetary and fiscal policy
- 3. Capital
- 4. Conclusions

ENDOGENOUS PRODUCTION

There are N_{t-1} firms with production function

$$Y_t = L_t^{\alpha}$$

- Labor only factor of production (capital coming up)
- Firms take prices and wages as given

Labor supply:

- Constant inelastic labor supply from households
- Assume only middle-generation household supplies labor
- Possibility of unemployment due to wage rigidity

AGGREGATE SUPPLY - FULL EMPLOYMENT Output and labor demand:

$$Y_t = L_t^{\alpha}$$
$$\frac{W_t}{P_t} = \alpha L_t^{\alpha - 1}$$

Labor supply:

$$L_t = \overline{L}$$

- Implies a constant market clearing real wage $\overline{W} = \alpha \overline{L}^{\alpha-1}$
- Implies a constant full-employment level of output: $Y^f = \overline{L}^{\alpha}$
- Again, analogous to the endowment economy, steady state has to be consistent $\overline{\Pi} \ge \frac{1}{1+r}$.

DOWNWARD NOMINAL WAGE RIGIDITY

Partial wage adjustment:

$$W_t = \max \left\{ \tilde{W}_t, W^{flex}
ight\}$$

where $\tilde{W}_t = \gamma W_{t-1} + (1 - \gamma) W^{flex}$

Wage rigidity and unemployment:

- \tilde{W}_t is a wage norm
- $W^{flex} = P_t \alpha \bar{L}^{\alpha-1}$ is the market clearing wage.
- If real wages exceed market clearing level, employment is rationed
- Unemployment: $U_t = \overline{L} L_t$
- Similar assumption in Kocherlakota (2013) and Schmitt-Grohe and Uribe (2013)

THE GOVERNMENT

Government sets inflation at $\Pi = \Pi^*$. It can always achieve this target except if it implies negative i_t .

 $\Pi_t = \Pi^*$ and $i_t \ge 0$.

If $\Pi_t = \Pi^*$ imples $i_t < 0$ then

 $i_t = 0$ and $\Pi_t < \Pi^*$

Implementation?

$$1 + i_t = \max(1, (1 + i^*)(\frac{\Pi_t}{\Pi^*})^{\phi_{\pi}})$$

ANALYZING THE MODEL

Will analyze the steady state of the model

- ► A constant solution for (Π, Y, *i*, *r*) that solves the equations of the model
- Reflect a permanent recession (or not).
- Will look suspiciously similar to a old fashion IS/LM model. Bug, feature?
- Key weakness: Wage setting is reduced form. Have done Calvo prices, and other variations. Most important thing: Long-run tradeoff between inflation and output.

PROPOSITION 1: CHARACTERIZATION

The steady state of the model is four numbers (Y, Π, i, r) that satisfy:

$$Y = \frac{(1+\beta)(1+g)}{\beta} \frac{D}{1+r} + D$$
 (1)

$$1+r = \frac{1+i}{\Pi} \tag{2}$$

$$\Pi = \Pi^* \text{ or } i = 0 \text{ AND } \Pi < \Pi^*$$
(3)

$$Y = \begin{cases} Y^{f} & \text{if } \Pi \ge 1\\ Y^{f} \left(\frac{1-\frac{\gamma}{\Pi}}{1-\gamma}\right)^{\frac{\alpha}{1-\alpha}} & \text{otherwise} \end{cases}$$
(4)

DEFINITIONS

Definition The natural level of output is (Friedman (1968))

$$Y^f \equiv \bar{L}^{\alpha}$$

Definition The natural rate of interest is (Wicksell (1998))

$$1 + r^f \equiv \frac{(1+\beta)(1+g)}{\beta} \frac{D}{Y^f - D}$$

Assumption $\Pi^* \geq 1$

LEMMA ON POSSIBILITIES

Given our assumed policy commitment: There are three possibilities, label them Cases I, II and III.

- Case I (normal equilibrium) $\Pi = \Pi^* i > 0$.
- ► Case II (full employment ZLB) $\Pi \neq \Pi^*$, $\Pi^* > \Pi > 1$, i = 0.
- Case III (secular stagnation) $\Pi \neq \Pi^*, \Pi < 1, i = 0.$

LEMMA ON CHARACTERIZATION

• In Case I: $\Pi = \Pi^*$

$$Y = Y^{f}, 1 + r = 1 + r^{f}, 1 + i = (1 + r^{f})\Pi^{*}$$

• In Case II: $\Pi^* > \Pi > 1$

$$Y = Y^{f}, 1 + r = 1 + r^{f}, \Pi = (1 + r^{f})^{-1}, i = 0$$

• In Case III: $\Pi < 1$.

$$Y - Y^{f} = \psi \left(\frac{1}{1+r} - \frac{1}{1+r^{f}} \right), i = 0$$
$$Y = Y^{f} \left(\frac{1 - \frac{\gamma}{\Pi}}{1-\gamma} \right)^{\frac{\alpha}{1-\alpha}}$$
$$1 + r = \frac{1}{\Pi}$$

where
$$\psi \equiv rac{(1+eta)(1+g)}{eta} D > 0$$

PROPOSITIONS

- ▶ Prop 1: Suppose $r^f > 0$, $\Pi^* = 1$. Then, there exists a normal equilibrium (Case I) with $\Pi = 1$, $r = i = r^f$, $Y = Y^f$.
- Prop 2: Suppose r^f < 0, Π* = 1. Then a normal equilibrium does not exist.
- Prop 3: Suppose r^f < 0 and Π* = 1. Then there exists a secular stagnation equilibrium (Case III). This is the unique equilibrium in this case.</p>

FULL EMPLOYMENT STEADY STATE

Parameter Values

EFFECT OF A D SHOCK

PROPERTIES OF THE STAGNATION STEADY STATE

Long slump:

- Binding zero lower bound so long as natural rate is negative
- Deflation raises real wages above market-clearing level
- Output persistently below full-employment level

Existence and stability:

- Secular stagnation steady state exists so long as $\gamma > 0$
- Prop 4: If Π* = 1, secular stagnation steady state is determinate. (There is a unique bounded solution local to ss)
- Contrast to deflation steady state emphasized in Benhabib, Schmitt-Grohe and Uribe (2001)
- Can do comparative statics!

MECHANISM OF ADJUSTMENT BACK TO FULL EMPLOYMENT

Financial shock

- Reverts back to original level, you get back to where you started
- Observation: Policy been going into the opposite direction.

Wages become more flexible

- Works in the wrong direction: Paradox of flexibility
- Output drops by more as wages become more flexible.
- Same result if you add more forward looking behavior in wage setting: More deflation, bigger drop in output.

Labor participation decreases

- ▶ Reduces *W*^{*flex*} and increases output.
- ▶ But reduces *Y^f*: Paradox of toil.

INCREASING WAGE FLEXIBILITY

REDUCTION IN LABOR SUPPLY (HYSTERESIS)

MONETARY POLICY RESPONSES

Forward guidance:

- Extended commitment to keep nominal rates low?
- Ineffective if households/firms expect rates to remain low indefinitely

Raising the inflation target:

- For sufficiently high inflation target, full employment steady state exists
- Timidity trap (Krugman (2014))
- Multiple determinate steady states
- Monetary policy not as powerful as in earlier models because no way to exclude secular stagnation

RAISING THE INFLATION TARGET

Proposition

Suppose $r^{f} < 0$ and $\Pi^{*} > \frac{1}{1+r^{f}}$. Then three equilibria in the model are possible - all three cases from the Lemma on possibilities.

RAISING THE INFLATION TARGET

EXPANSIONARY FISCAL POLICY

FISCAL POLICY

Fiscal policy and the real interest rate:

$$L_t^d = \frac{1 + g_t}{1 + r_t} D_t + B_t^g$$

$$L_t^s = \frac{\beta}{1 + \beta} \left(Y_t^m - D_{t-1} - T_t^m \right) - \frac{1}{1 + \beta} \frac{Y_{t+1}^o - T_{t+1}^o}{1 + r_t}$$

Government budget constraint:

$$B_t^g + T_t^y (1 + g_t) + T_t^m + \frac{1}{1 + g_{t-1}} T_t^o = G_t + \frac{1 + r_t}{1 + g_{t-1}} B_{t-1}^g$$

Fiscal instruments:

$$G_t, B_t^g, T_t^y, T_t^m, T_t^o$$

TEMPORARY INCREASE IN PUBLIC DEBT

Under constant population and set $G_t = T_t^y = B_{t-1}^g = 0$:

$$T_t^m = -B_t^g$$
$$T_{t+1}^o = (1+r_t) B_t^g$$

Implications for natural rate:

- Loan demand and loan supply effects cancel out
- Temporary increases in public debt ineffective in raising real rate
- Temporary monetary expansion equivalent to temporary expansion in public debt at the zero lower bound
- Effect of an increase in public debt depends on beliefs about future fiscal policy

PERMANENT INCREASE IN PUBLIC DEBT

Consider steady state following fiscal rule:

$$T^{o} = \beta (1+r) T^{m}$$

$$L^{d} = \frac{1+g}{1+r} D + B^{g}$$

$$L^{s} = \frac{\beta}{1+\beta} (Y^{m} - D) - \frac{1}{1+\beta} \frac{Y^{o}}{1+r}$$

Implications for natural rate:

- Changes in taxation have no effects on loan supply
- Permanent rise in public debt always raises the real rate
- Equivalent to helicopter drop at the zero lower bound
- We have not modeled here possible tradeoff: Default premia, probability of exiting ss and face higher interest rates, etc

GOVERNMENT PURCHASES MULTIPLIER

Slope of the AD and AS curves:

$$\psi = \frac{1+\beta}{\beta} (1+g) D$$
$$\kappa = \frac{1-\alpha}{\alpha} \frac{1-\gamma}{\gamma}$$

Purchases multiplier at the zero lower bound:

Financing	Multiplier	Value
Increase in public debt	$\frac{1+eta}{eta} \frac{1}{1-\kappa\psi}$	> 2
Tax on young generation	0	0
Tax on middle generation	$\frac{1}{1-\kappa\psi}$	> 1
Tax on old generation	$-\frac{1+g}{\beta}\frac{1}{1-\kappa\psi}$	< 0

HOUSEHOLDS

Objective function:

$$\max_{C_{t,t}^{y}, C_{t+1}^{m}, C_{t+2}^{o}} U = \mathbb{E}_{t} \left\{ \log \left(C_{t}^{y} \right) + \beta \log \left(C_{t+1}^{m} \right) + \beta^{2} \log \left(C_{t+2}^{o} \right) \right\}$$

Budget constraints:

$$C_t^y = B_t^y$$

$$C_{t+1}^m + p_{t+1}^k K_{t+1} + (1+r_t) B_t^y = w_{t+1} L_{t+1} + r_{t+1}^k K_{t+1} + B_{t+1}^m$$

$$C_{t+2}^o + (1+r_{t+1}) B_{t+1}^m = p_{t+2}^k (1-\delta) K_{t+1}$$

Dynamic Efficiency

CHARACTERIZATION

Capital supply (perfect foresight):

$$\left(p_t^k - r_t^k\right) \frac{1}{C_t^m} = \beta p_{t+1}^k \left(1 - \delta\right) \frac{1}{C_{t+1}^o}$$

Loan supply and demand:

$$L_{t}^{d} = \frac{1 + g_{t}}{1 + r_{t}} D_{t}$$
$$L_{t}^{s} = \frac{\beta}{1 + \beta} \left(Y_{t} - D_{t-1} \right) - \frac{\beta}{1 + \beta} \left(p_{t}^{k} + p_{t+1}^{k} \frac{1 - \delta}{\beta \left(1 + r_{t} \right)} \right) K_{t}$$

CAPITAL AND SECULAR STAGNATION

Rental rate and real interest rate:

$$r_t^k = p_t^k - p_{t+1}^k \frac{1-\delta}{1+r_t} \ge 0$$
$$r_{ss} \ge -\delta$$

 Negative real rate now constrained by fact that rental rate must be positive

Relative price of capital goods:

- Decline in relative price of capital goods
- Need less savings to build the same capital stock
- -> downward pressure on the real interest rate.
- Global decline in price of capital goods (Karabarbounis and Neiman, 2014)

EFFECT OF A SHOCK TO PRICE OF CAPITAL GOODS

PARADOX OF THRIFT

EFFECT OF A DISCOUNT RATE SHOCK

CONCLUSIONS

Policy implications:

- Higher inflation target needed
- Limits to forward guidance
- Role for fiscal policy
- ► In absence of policy, not an obvious mechanism for adjustment.
- Pay as you go social security, increase retirement age

Key takeaways:

- NOT that we will stay in a slump forever
- Slump of arbitrary duration
- OLG framework to model interest rates