Discussion of Straub & Werning's Positive Long Run Capital Taxation: Chamley-Judd Revisited

V. V. Chari

University of Minnesota and Federal Reserve Bank of Minneapolis

June 11, 2015

1/20

What This Paper Could Be Interpreted to Say

 Taxes on capital income of the kind seen in developed economies are optimal in standard macro models.

What This Paper Could Be Interpreted to Say

- Taxes on capital income of the kind seen in developed economies are optimal in standard macro models.
- Chamley is wrong!

What This Paper Could Be Interpreted to Say

 Taxes on capital income of the kind seen in developed economies are optimal in standard macro models.

- Chamley is wrong!
- Judd is wrong!

How I Read the Paper

- In a standard macro model,
 - With well-functioning markets
 - · With only taxes on labor and capital income
 - With an upper bound on capital taxes
- Optimal taxation implies either
 - Capital taxes are zero after a transition phase at the upper bound, or
 - Capital taxes are at their upper bound forever.
- Which occurs depends on the size of the initial debt.

How I Read the Paper

- Very nice technical contribution
- Would like to see some quantitative exercises
- Not really a justification for current tax systems

Static Public Finance Environment

- I households
- Commodities x = (c₁, ..., c_N, n₁, ..., n_M, K)
 - *c_i*: consumption goods
 - n_j: types of labor
 - K: primary inputs (land or initial capital)
- Technology:

$$f(c_1 + g_1, ..., c_N + g_N, n_1, ..., n_M, K) = 0$$
 [RF]

(ロ) (部) (E) (E) (E) (000)

• Preferences: $u^i(x^i)$

Competitive Equilibrium

• Policy:
$$\pi = (\tau_{c_i}, \tau_{n_j}, \tau_K)$$

Household problem (HH):

 $\max u^i(x^i)$

s.t.

$$\sum_{i=1}^{N} p_i(1+ au_{c_i})c_i \leq \sum_{j=1}^{M} w_j(1- au_{n_j})n_j + r(1- au_{\mathcal{K}})\mathcal{K}$$

• CE is allocation, prices, policies that solves HH and is resource feasible.

Complete and Incomplete Tax Systems

CE allocation must satisfy IC

$$\sum_{i=1}^{N} c_i u_{c_i} + \sum_{j=1}^{M} n_i u_{n_j} = (1 - \tau_K) F_k K$$
(1)

- If no restrictions on taxes, any CE allocation satisfying IC and RF can be implemented as CE.
- Will call such tax systems complete
- Will call tax systems without this property incomplete

The Ramsey Problem

• Choose x, τ_K to solve

$$\max \sum \lambda^{i} u^{i}(x^{i})$$

$$\sum_{i=1}^{N} c_{i} u_{c_{i}} + \sum_{j=1}^{M} n_{i} u_{n_{j}} = (1 - \tau_{K}) F_{k} K$$

$$f(c_{1} + g_{1}, ..., c_{N} + g_{N}, n_{1}, ..., n_{M}, K) = 0$$

8 / 20

• Clearly optimal to set $\tau_{\mathcal{K}} = 1$.

The Intermediate Goods Result

• With a complete tax system, Ramsey problem is equivalent to

$$\max \sum \lambda^i u^i(x^i)$$

s.t.

 $\begin{aligned} & \textit{IC} \\ & p \cdot y \leq p \cdot y^* \end{aligned}$

• That is, given a price vector *p*, production efficiency is optimal.

Uniform Commodity Taxation

- If preferences are homothetic over a subset of consumption goods and separable from all labor,
 - Optimal to tax subset at uniform rate
- Corollary of intermediate goods result.

Applying to Macro Models

- Assume taxes on consumption η_t , labor τ_{n_t} , and capital income τ_{k_t} .
- Initial tax rates are given.

• Preferences:
$$\sum \beta^t [u(c_t) - v(n_t)]$$
, where $u(c_t) = \frac{c_t^{1-\sigma}}{1-\sigma}$

• IC now becomes

$$\sum \beta^t \left[c_t u'(c_t) - n_t v'(n_t) \right] = \frac{u'(c_0)}{1 + \eta_0} \left[(1 - \tau_{k_0}) (F_{k_0} - \delta) + b_0 \right]$$

•
$$w(c_t, n_t) = u(c_t) - v(n_t) + \lambda [c_t u'(c_t) - n_t v'(n_t)]$$
 for $t \ge 1$.

Applying to Macro Models

• Ramsey problem implies

$$w_{c_t} = \beta w_{c_t+1} [F_{k_{t+1}} - \delta + 1]$$

- Since w_{c_t} proportional to u_{c_t}
- No distortion from period 1 on
- May require high taxes on capital income or high consumption taxes in period 1.

Where Did Chamley Go Wrong

- Assume no consumption taxes
- Assume $\tau_{k_t} \leq 1$ for all t.
- Then get additional constraint

$$u_{c_t} \geq \beta u_{c_{t+1}}, \quad \forall t$$

13 / 20

Chamley's Problem

$$V(b_0) = \max \int_0^\infty e^{-\rho t} [u(c_t) - v(n_t)]$$
$$\dot{c}_t \ge -\frac{\rho}{\sigma} c_t$$
$$c_t + g_t + \dot{k}_t = f(k_t, n_t) - \delta k_t$$
$$\int_0^\infty e^{-\rho t} [c_t u'(c_t) - n_t v'(n_t)] \ge u'(c_0)(k_0 + b_0)$$

s.t.

Key First Order Conditions

•
$$\dot{\eta}_t - \rho \eta_t = \eta_t \frac{\rho}{\sigma} + \lambda_t - (1 + \mu(1 - \delta))u'(c_t)$$

•
$$\dot{\lambda}_t = (\rho - (F_k - \delta))\lambda_t.$$

• Claim: Suppose $\eta_t = 0, t \in [T, T + \epsilon)$, then $\eta_t = 0, \forall t \ge T$.

15 / 20

•
$$\lambda_t = (1 + \mu(1 - \delta))u'(c_t), t \in [T, T + \epsilon).$$

• So $\dot{\eta}_t = 0$ at $t = T + \epsilon$.

• So
$$\eta_t = 0, \ \forall t \geq T$$
.

Straub & Werning's First Insight

- Suppose $\sigma > 1$.
- Then if $T < \infty$, $1 + \mu(1 \sigma) > 0$, so μ bounded from above by $\frac{1}{\sigma 1}$.

(ロ) (部) (E) (E) (E) (000 (000))

16 / 20

• So $V'(b_0) = -\mu u'(c_0)$ is bounded below.

Straub & Werning's Second Insight

 Let V_∞(b₀) be utility associated with solution assuming constraint binds forever, so

$$c_t = c_0 e^{-\frac{\rho}{\sigma}t}.$$

$$V_{\infty}(b_0) = \max_{c_0} u(c_0) rac{\sigma}{
ho} - ilde{V}(c_0)$$

s.t.

$$c_0rac{\sigma}{
ho}-c_0^\sigma(1+ au_c) ilde{V}(c_0)\geq k_0+b_0$$

• Can show
$$V'_\infty(b_0) o -\infty$$

- So for large b_0 , $V'(b_0)
 ightarrow -\infty$
- Contradiction!

◆□ → < 部 → < 差 → < 差 → 差 < う Q (~ 17/20

Judd and All That

- Capitalists and workers
- Suppose workers have no capital, but can save or borrow.
- Two IC constraints

$$\sum \beta^{t} [c_{t}^{w} u_{w}'(c_{t}^{w}) - n_{t}^{w} v_{w}'(n_{t}^{w})] = 0$$
$$\sum \beta^{t} [c_{t}^{c} u_{c}'(c_{t}^{c}) - n_{t}^{c} v_{c}'(n_{t}^{c})] = u'(c_{0}^{c})(k_{t} + b_{t})$$

18 / 20

• Problem essentially identical to Chamley

Judd and All That

- Suppose workers cannot save or borrow.
- Now get countable infinity of IC

$$c_t^w u_w'(c_t^w) - n_t^w v_w'(n_t^w) = 0, \ \forall t$$

• Now we have to worry about whether multipliers converge.

Bottomline

- Theory tells us: if markets work well and consumption, labor, and capital taxes are available,
 - Do not distort production efficiency;
 - That is, do not distort intertemporal margins.
- Developed economies have access to all three.
- So good policy advice is: do not distort intertemporal margins.