Positive Long-Run Capital Taxation: Chamley-Judd Revisited

Ludwig Straub Iván Werning

Banco de Portugal June 12, 2015

Should we tax capital income?

- Two common rationales ...
 - 1. redistribution
 - 2. reduce labor taxes \rightarrow more incentives to work
- But: efficiency costs \rightarrow distorts savings decision

Chamley-Judd: Zero tax is optimal in steady state!

• Ramsey approach:

- linear taxes on capital and labor
- full commitment
- restrictions on lump-sum transfers and consumption taxes
- Judd (1985): when used to redistribute
- Chamley (1986): when used to reduce labor taxes
- Both: zero taxes are optimal in the steady state!

• Precise intuitions?

- No complete agreement
- Somewhat elusive

Chamley-Judd is controversial

- Many questioned key assumptions
 - infinitely lived agent?
 - infinite elasticity of savings?
 - no uncertainty?
- Many wrote alternative models...
 - new dynamic public finance
 - models of bequest taxation
- Still, Chamley-Judd remains a key benchmark for zero capital tax

Mankiw et al (2009, JEP)

 "Perhaps the most prominent result from dynamic models of optimal taxation is that the taxation of capital income ought to be avoided. This result['s ...] strong underlying logic has made it the benchmark."

This paper: Logic not as strong...

- Revisit the Chamley-Judd results... using their own models
 - show proofs incomplete
 - overturn results when intertemp. elasticity of subst. (IES) < 1
 - positive capital tax in the long run
- What went wrong in a nutshell?
 - results require convergence to interior steady state for quantities and Lagrangian multipliers
 - $\rightarrow\,$ assumptions on $\mathit{endogenous}$ objects!
 - ... not necessarily satisfied

max objective

subject to

resource constraint (RC)

max objective

subject to

resource constraint (RC)

implementability condition (IC)

max objective

subject to

resource constraint (RC)

implementability condition (IC)

bounds

max objective

subject to

resource constraint (RC)

implementability condition (IC)

bounds

• Intertemporal optimality

 $\mathsf{MRT} = \mathsf{MRS}\left\{1 + \mathbf{wedge?}\right\}$

Straub and Werning (2015)

Chamley-Judd Revisited

1. Judd (1985): Capital taxation and redistribution

2. Chamley (1986): Labor and capital taxation

3. Conclusion

Judd (1985): Capital taxation and redistribution

Judd (1985): Capital taxes for redistribution

Capitalists

- own initial capital stock k₀
- live off capital income
- capital taxes

Workers

- only labor income, inelastic labor supply of 1
- lump-sum transfers
- consume hand-to-mouth

Policy instruments

- no lump-sum taxation of capitalists
- no government bonds, no consumption taxes
- full ex-ante commitment to tax policy

Model

First: Solve capitalists' problem to get IC

• Capitalists' problem

$$\max_{\{C_t,k_{t+1}\}}\sum_{t=0}^{\infty}\beta^t U(C_t)$$

$$C_t + k_{t+1} = R_t k_t$$

here: R_t after-tax interest rate

Model

First: Solve capitalists' problem to get IC

• Capitalists' problem

$$\max_{\{C_t,k_{t+1}\}}\sum_{t=0}^{\infty}\beta^t U(C_t)$$

$$C_t + k_{t+1} = R_t k_t$$

here: R_t after-tax interest rate

• First order optimality

$$U'(C_{t-1}) = \beta R_t U'(C_t)$$
$$\beta^t U'(C_t) k_{t+1} \to 0$$

Model

First: Solve capitalists' problem to get IC

Capitalists' problem

$$\max_{C_t,k_{t+1}} \sum_{t=0}^{\infty} \beta^t U(C_t)$$

$$C_t + k_{t+1} = R_t k_t$$

here: R_t after-tax interest rate

• First order optimality + budget constraint = IC

{

$$C_t + k_{t+1} = \frac{U'(C_{t-1})}{\beta U'(C_t)} k_t$$
$$\beta^t U'(C_t) k_{t+1} \to 0$$

Straub and Werning (2015)

Second: Social planner's problem

$$\max \, \sum_{t=0}^\infty \beta^t \left\{ u(c_t) + \gamma U(C_t) \right\}$$

subject to

$$c_t + C_t + g + k_{t+1} \le f(k_t) + (1 - \delta)k_t \tag{RC}$$

$$C_t + k_{t+1} = \frac{U'(C_{t-1})}{\beta U'(C_t)} k_t$$
(IC)
$$\beta^t U'(C_t) k_{t+1} \to 0$$
(IC)

Second: Social planner's problem

$$\max \, \sum_{t=0}^\infty \beta^t \left\{ u(c_t) + \gamma U(C_t) \right\}$$

subject to

$$c_t + C_t + g + k_{t+1} \le f(k_t) + (1 - \delta)k_t \tag{RC}$$

$$C_t + k_{t+1} = \frac{U'(C_{t-1})}{\beta U'(C_t)} k_t \tag{IC}$$

$$\beta^t U'(C_t) k_{t+1} \to 0 \tag{IC}$$

- Want redistribution: capitalists \longrightarrow workers
 - requires sufficiently low welfare weight on capitalists γ
 - for simplicity, will sometimes take the extreme: $\gamma
 ightarrow 0$

First order conditions

• Assume
$$U(C) = C^{1-\sigma}/(1-\sigma), \sigma = 1/\text{IES}$$

 $\mu_0 = 0$
 $\mu_{t+1} = \mu_t \left(\frac{\sigma-1}{\sigma\kappa_{t+1}} + 1\right) + \frac{1}{\beta\sigma\kappa_{t+1}v_t}$
 $\underbrace{f'(k_{t+1}) + 1 - \delta}_{\text{MRT}} = \underbrace{\frac{U'(C_t)}{\beta U'(C_{t+1})}}_{\text{MRS}} \{1 + \underbrace{v_t^{-1}(v_{t+1} - v_t) + \beta v_{t+1}(\mu_{t+1} - \mu_t)}_{\text{wedge}}\}$
 $v_t = U'(C_t)/u'(c_t)$
 $\mu_t = \text{Lagr. multiplier on IC}$
 $\kappa_t = k_t/C_{t-1}$

First order conditions

• Assume
$$U(C) = C^{1-\sigma}/(1-\sigma)$$
, $\sigma = 1/IES$
 $\mu_0 = 0$
 $\mu_{t+1} = \mu_t \left(\frac{\sigma-1}{\sigma\kappa_{t+1}} + 1\right) + \frac{1}{\beta\sigma\kappa_{t+1}v_t}$
 $f'(k_{t+1}) + 1 - \delta = \underbrace{\frac{U'(C_t)}{\beta U'(C_{t+1})}}_{MRS} \{1 + \underbrace{v_t^{-1}(v_{t+1} - v_t) + \beta v_{t+1}(\mu_{t+1} - \mu_t)}_{wedge}\}$
 $v_t = U'(C_t)/u'(c_t)$
 $\mu_t = Lagr. multiplier on IC$
 $\kappa_t = k_t/C_{t-1}$

Judd (1985) studies interior steady state for allocation + multipliers
 ⇒ wedge = 0. Zero capital tax!

Straub and Werning (2015)

`

Chamley-Judd Revisited

First order conditions

• Assume
$$U(C) = C^{1-\sigma}/(1-\sigma), \sigma = 1/\text{IES}$$

 $\mu_0 = 0$
 $\mu_{t+1} = \mu_t \left(\frac{\sigma-1}{\sigma\kappa_{t+1}} + 1\right) + \frac{1}{\beta\sigma\kappa_{t+1}v_t}$
 $f'(k_{t+1}) + 1 - \delta = \underbrace{\frac{U'(C_t)}{\beta U'(C_{t+1})}}_{\text{MRS}} \{1 + \underbrace{v_t^{-1}(v_{t+1} - v_t) + \beta v_{t+1}(\mu_{t+1} - \mu_t)}_{\text{wedge}}\}$
 $v_t = U'(C_t)/u'(c_t)$
 $\mu_t = \text{Lagr. multiplier on IC}$
 $\kappa_t = k_t/C_{t-1}$

Judd (1985) studies interior steady state for allocation + multipliers
 ⇒ wedge = 0. Zero capital tax! or not ?

Straub and Werning (2015)

`

Log case: Like a NGM

Simple special case: σ = 1, U(C) = log C
 ⇒ constant savings rate β

IC

$$C_t = rac{1-eta}{eta}k_{t+1}$$

• IC \rightsquigarrow RC in planning problem

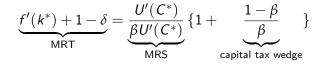
$$\max \sum_{t=0}^{\infty} \beta^t u(c_t)$$

$$c_t + \frac{1}{\beta}k_{t+1} + g \le f(k_t) + (1-\delta)k_t$$

• Like a neoclassical growth model, with higher cost of capital!

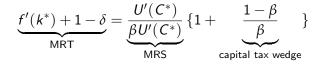
Log case: Like a NGM

- Unique interior steady state
- FOC at steady state



Log case: Like a NGM

- Unique interior steady state
- FOC at steady state



- Lansing (1999): Specific to $\sigma = 1$, "knife-edged"
- Reinhorn (2002): Because μ_t does not converge
- This paper: Not specific to $\sigma = 1!$ Positive capital taxation for all $\sigma \ge 1!$

Contradiction with $\sigma > 1$

• Assume int. steady state for quantities

$$\mu_{0} = 0$$

$$\mu_{t+1} = \mu_{t} \underbrace{\left(\frac{\sigma - 1}{\sigma \kappa_{t+1}} + 1\right)}_{\rightarrow \text{ const } > 1} + \underbrace{\frac{1}{\beta \sigma \kappa_{t+1} v_{t}}}_{\rightarrow \text{ const } > 0}$$

Contradiction with $\sigma > 1$

• Assume int. steady state for quantities

$$\mu_{0} = 0$$

$$\mu_{t+1} = \mu_{t} \underbrace{\left(\frac{\sigma - 1}{\sigma \kappa_{t+1}} + 1\right)}_{\rightarrow \text{ const } > 1} + \underbrace{\frac{1}{\beta \sigma \kappa_{t+1} v_{t}}}_{\rightarrow \text{ const } > 0}$$

$$\underbrace{f'(k_{t+1}) + 1 - \delta}_{\text{MRT} \rightarrow \text{ const}} = \underbrace{\frac{U'(C_{t})}{\beta U'(C_{t+1})}}_{\text{MRS} \rightarrow \text{ const}} \left\{1 + \underbrace{v_{t}^{-1}(v_{t+1} - v_{t}) + \beta v_{t+1}(\mu_{t+1} - \mu_{t})}_{\text{wedge} \rightarrow \infty}\right\}$$

- 1st + 2nd FOC $\Rightarrow \mu_t$ explodes exponentially
- 3rd FOC \Rightarrow contradiction

Positive long run capital taxation

- Result #1: If σ > 1, the optimal allocation cannot be converging to the zero capital tax steady state
 - ... or in fact, any other interior steady state

Positive long run capital taxation

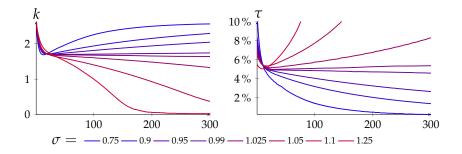
- Result #1: If σ > 1, the optimal allocation cannot be converging to the zero capital tax steady state
 - ... or in fact, any other interior steady state
- **Result #2:** If $\sigma > 1$, the optimal allocation satisfies

$$c_t \to 0$$
 $k_t \searrow k_g$ $tax = 1 - \frac{R_t}{R_t^*} \to \mathcal{T}_g > 0$

•
$$k_g$$
 = lowest feasible steady state capital stock,
 $\frac{1}{\beta}k_g + g = f(k_g) + (1 - \delta)k_g$

state space

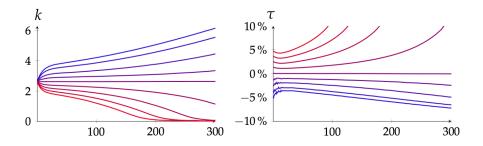
Capital and taxes for various IES's



Intuition

- Intuition: Affect capitalists' savings through anticipatory effects
 - start with constant tax
 - try to raise savings temporarily
 - $\sigma < 1 \Rightarrow$ promise low future taxes
 - $\sigma > 1 \Rightarrow$ promise high future taxes
- Explains the **optimal slopes** for capital taxes

Robustness: $\gamma > 0$



Robustness: General savings functions

- Capitalists save $S(I_t, R_{t+1}, R_{t+2}, ...)$
- Assume S weakly decreases in future interest rates (e.g. IES < 1)
- **Result #3:** Optimal tax rates **cannot** converge to zero (or anything negative)

Chamley (1986): Labor and capital taxation

Non-binding tax bounds and Theorem 1

Chamley (1986): Taxing capital to reduce labor taxes

Model overview

- *representative* agent, with *elastic* labor supply
- no lump-sum taxes, no consumption taxes
- bounds on capital taxes
- unrestricted government debt

Chamley's (1986) main results

- 1. General recursive Koopmans utility: zero capital tax in steady state
- 2. Separable isoelastic utility: same + transitional dynamics

Chamley (1986), Theorem 1: Recursive preferences

$$\max_{\{c,n\}} V(c_0, n_0, c_1, n_1, \ldots)$$

$$c_t + g + k_{t+1} \le f(k_t, n_t) + (1 - \delta)k_t \tag{RC}$$

$$\sum_{t=0}^{\infty} \frac{1}{R_1 \cdots R_t} \left(c_t - w_t n_t \right) = R_0 k_0 + R_0^b b_0 \tag{IC}$$

$$\frac{V_{ct}}{V_{c,t+1}} = R_t \ge 1 \tag{IC}$$

Chamley (1986), Theorem 1: Recursive preferences

$$\max_{\{c,n\}} V(c_0, n_0, c_1, n_1, \ldots)$$

$$c_t + g + k_{t+1} \le f(k_t, n_t) + (1 - \delta)k_t \tag{RC}$$

$$\sum_{t=0}^{\infty} \left(V_{ct} c_t + V_{nt} n_t \right) = V_{c0} \left\{ R_0 k_0 + R_0^b b_0 \right\}$$
(IC)

$$\frac{V_{ct}}{V_{c,t+1}} = R_t \ge 1$$
 (tax bounds)

$$\max_{\{c,n\}} V(c_0, n_0, c_1, n_1, ...)$$

$$c_t + g + k_{t+1} \le f(k_t, n_t) + (1 - \delta)k_t \qquad (RC)$$

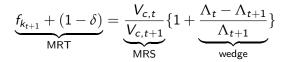
$$\sum_{t=0}^{\infty} (V_{ct}c_t + V_{nt}n_t) = V_{c0} \left\{ R_0 k_0 + R_0^b b_0 \right\} \qquad (IC)$$

$$V_{ct} \ge V_{c,t+1} \qquad (tax bounds)$$

t

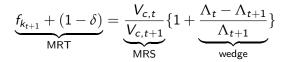
- Let $V_{ct}\Lambda_t$ be the multiplier on the time $t \ \mathsf{RC}$
- Then, FOC for capital is

- Let $V_{ct}\Lambda_t$ be the multiplier on the time $t \ \mathsf{RC}$
- Then, FOC for capital is



- Chamley (1986, Theorem 1): Suppose allocation + multipliers converge to positive steady state
 - in particular: $\Lambda_t \to \Lambda > 0$
 - Then, tax is zero in the long run, $au_t
 ightarrow 0$
- Similar result in Judd (1999).

- Let $V_{ct}\Lambda_t$ be the multiplier on the time $t \ \mathsf{RC}$
- Then, FOC for capital is



- Chamley (1986, Theorem 1): Suppose allocation + multipliers converge to positive steady state
 - in particular: $\Lambda_t \to \Lambda > 0$
 - Then, tax is zero in the long run, $au_t
 ightarrow 0$
- Similar result in Judd (1999).
- Λ_t is endogenous! ... assuming the result?

Chamley (1986), Theorem 1: Our "Even if ..." result

• Write utility as

$$V_t = W(U_t, V_{t+1})$$

Chamley (1986), Theorem 1: Our "Even if ..." result

Write utility in steady state as

$$V = W(U, V) \Rightarrow V = \overline{V}(U)$$

Chamley (1986), Theorem 1: Our "Even if ..." result

• Write utility in steady state as

$$V = W(U, V) \Rightarrow V = \overline{V}(U)$$

• Steady state discount factor

$$\overline{\beta}(U) = W_V(U, \overline{V}(U))$$

Chamley (1986), Theorem 1: Our "Even if ..." result

• Write utility in steady state as

$$V = W(U, V) \Rightarrow V = \overline{V}(U)$$

• Steady state discount factor

$$\overline{\beta}(U) = W_V(U, \overline{V}(U))$$

• Result #5: $\overline{eta}'(U)
eq 0$ and "everything converges", then either

- 1. private assets = 0, or,
- 2. labor taxes = 0
- Symmetry between labor and capital taxes

Chamley (1986), Theorem 2: Separable isoelastic utility

$$\max \int_{0}^{\infty} e^{-\rho t} \left\{ \frac{c^{1-\sigma}}{1-\sigma} - \phi \frac{n^{1+\zeta}}{1+\zeta} \right\} dt$$

$$c_{t} + g + \dot{k}_{t} \leq f(k_{t}, n_{t}) - \delta k_{t} \qquad (\text{RC})$$

$$\int_{0}^{\infty} e^{-\rho t} \left(u_{ct}c_{t} + u_{nt}n_{t} \right) = u_{c0} \left(k_{0} + b_{0} \right) \qquad (\text{IC})$$

$$\frac{c}{c} \ge -\frac{\rho}{\sigma}$$
 (IC)

Chamley (1986), Theorem 2: Separable isoelastic utility

• Chamley (1986, Theorem 2): $\exists T < \infty$

- capital tax $au_t = 1$ for t < T
- capital tax $au_t = 0$ for t > T

• But: why can T not be infinite?

Chamley (1986), Theorem 2: Separable isoelastic utility

- Chamley (1986, Theorem 2): $\exists T < \infty$
 - capital tax $au_t = 1$ for t < T
 - capital tax $au_t = 0$ for t > T
- But: why can T not be infinite?
 - Chamley's (1986) proof: "the bounds cannot be binding forever or marginal utility would grow to infinity, which is absurd..."
- Next: This might actually happen ...

Positive long run capital taxation for $\sigma > 1$

- Result #5: Take σ > 1. Pick any initial capital k₀. Then when initial public debt is large enough, capital taxes are 1 forever, i.e. T = ∞.
 - capital taxation to reduce disincentives of labor taxes
- Can construct specific analytically tractable examples (see paper)
- Proof idea: Essentially show that $\Lambda_t
 ightarrow 0$ is possible in

$$\underbrace{\mathbf{f}_{\mathbf{k}_{t+1}} + (1 - \delta)}_{\mathsf{MRT}} = \underbrace{\frac{V_{\mathbf{c},t}}{V_{\mathbf{c},t+1}}}_{\mathsf{MRS}} \{1 + \underbrace{\frac{\Lambda_t - \Lambda_{t+1}}{\Lambda_{t+1}}}_{\mathsf{wedge}} \}$$

Proof idea

$$\max \int_0^\infty e^{-\rho t} \left\{ \frac{c^{1-\sigma}}{1-\sigma} - \phi \frac{n^{1+\zeta}}{1+\zeta} \right\} dt$$

$$c_t + g + k_t \le f(k_t, n_t) - \delta k_t \qquad (\lambda_t)$$

$$\int_0^\infty e^{-\rho t} \left(u_{ct} c_t + u_{nt} n_t \right) \ge u_{c0} (k_0 + b_0) \tag{(\mu)}$$

$$\dot{c}_t \ge -rac{
ho}{\sigma} c_t \qquad (\eta_t)$$

- $b_0 \uparrow \Rightarrow$ need to tax more \Rightarrow IC tighter $\Rightarrow \mu \uparrow$
- In fact: As b_0 approaches highest feasible debt level \overline{b} , $\mu \nearrow +\infty$
- Now pick $\sigma > 1$ and suff. high b_0 (hence high μ), and prove $T = \infty$

Proof idea (2)

• Consider FOC for consumption

$$\dot{\eta}_t - \rho \eta_t = \eta_t \frac{\rho}{\sigma} + \lambda_t - (1 - \mu(\sigma - 1)) u_{ct}$$

where tax bound $au_t = \overline{ au}$ binds if $\eta_t < 0$

• Note that if $T<\infty \Rightarrow \eta_t=\dot{\eta}_t=0 \ \forall t>T$, implying for such t

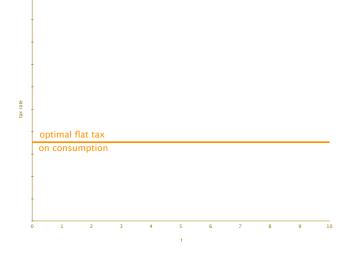
$$\underbrace{\lambda_t}_{\geq 0} = \underbrace{(1 - \mu(\sigma - 1))}_{\text{possibly} < 0!} \underbrace{u_{ct}}_{> 0}$$

- This is impossible if $\sigma > 1$ and μ sufficiently large!
- Hence indefinite capital taxation, $T = \infty$, is optimal in those cases

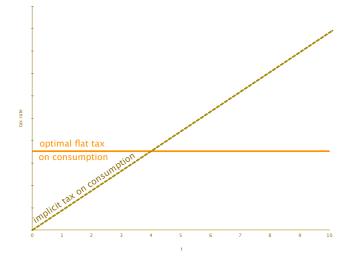
Side note: Are long-run capital taxes "infinitely distortionary"?

- Diamond-Mirrlees: const. consumption taxes are optimal
- Here: bounds on capital taxation in every period
 - not a Diamond-Mirrlees economy for any cons. bundle $\{c_s\}_{s>t}$
 - ... no reason for const. consumption taxes in the long run

• Flat optimal consumption tax path without any capital tax bound



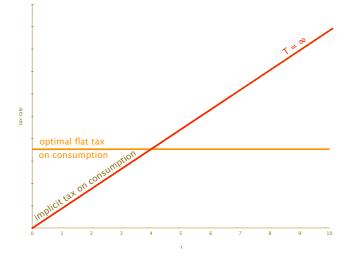
• Capital tax bound is equivalent to restriction on consumption taxes



• For example, one could pick a consumption tax path like this...



• ... but it might well turn out that $T = \infty$ is actually optimal here



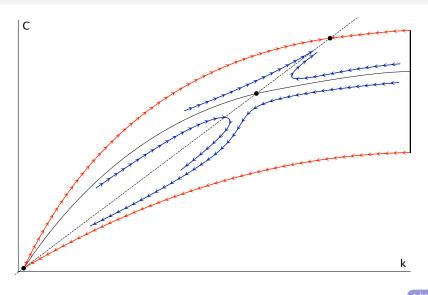
Conclusion

Takeaways

- Revisited Chamley-Judd
- IES > 1: zero long run capital tax
- IES < 1: can have **positive long-run capital taxation**
- Ever-increasing consumption taxes not nec. infinitely distortionary
- Methodological: Assumptions on endogenous multipliers not nec. valid

Backup Slides

Judd (1985) state space



Lisbon, June 2015 37 / 35