On the stability of money demand

Robert E. Lucas, Jr. and Juan Pablo Nicolini

discussion by Francesco Lippi (EIEF)

The 8th Bank of Portugal monetary conference on monetary economics

Lisbon, June 2015
Fact: the relation between $M1/GDP$ and r changes after the 80s breakdown mostly due to deposit (not currency). Reserves and M1 central to policy yet absent in standard macro models.
Money: difficult to analyze both in theory and in data

- what assets serve as money in practice?
 regulation and technical change matter

- in particular: NOW and MMDA (interest paying deposits) in early 1980s
 - MMDA allowed for limited checking but no limits on ATM withdrawals
 - MMDA close substitute to deposit but included in M2 (not in M1)

- relevance: e.g. M, P, Y, r relationship (and welfare)
Empirical contribution: new measure of M1

Essentially $M1_{new} = M1 + MMDA$
Related empirical analysis in Teles and Zhou (2005)

\[MZM = M1 + MMMF + MMDA \]
Model competing means of payments / deposits

\[
\max_{n, \gamma, \delta, x, c, d, a} \sum_{t=0}^{\infty} \beta^t U(x_t) \quad \text{subject to} \quad m \geq c\theta^c + d\theta^d + a\theta^a
\]

\[
nc \geq px\Omega(\gamma),
\]

\[
nd \geq px [\Omega(\delta) - \Omega(\gamma)],
\]

\[
na \geq px [1 - \Omega(\delta)].
\]

The law of motion for money balances is

\[
m' = \frac{m + T + py(1 - \phi n) - px (k^d (F(\delta) - F(\gamma)) + k^a (1 - F(\delta)) + 1) - (\theta^c - 1)c}{1 + \pi}
\]

– Key choices: 0 < \gamma < \delta, and # transactions \(n \) (\(m \) unit elasticity w.r.t. \(y \))
Model competing means of payments / deposits

\[
\max_{n, \gamma, \delta, x, c, d, a} \sum_{t=0}^{\infty} \beta^t U(x_t) \quad \text{subject to} \quad m \geq c\theta^c + d\theta^d + a\theta^a
\]

\[nc \geq px\Omega(\gamma),\]
\[nd \geq px [\Omega(\delta) - \Omega(\gamma)],\]
\[na \geq px [1 - \Omega(\delta)].\]

The law of motion for money balances is

\[
m' = \frac{m + T + py(1 - \phi n) - px (k^d (F(\delta) - F(\gamma)) + k^a (1 - F(\delta)) + 1) - (\theta^c - 1)c}{1 + \pi}
\]

- Key choices: \(0 < \gamma < \delta\), and \# transactions \(n\) (\(m\) unit elasticity w.r.t. \(y\))
- Costs: \(\phi n\), Fixed cost: \(k^d < k^a\), “reserve requirements” \(\theta^c, \theta^d, \theta^a\)
- “Opportunity cost” of \(m = c + d + a\) is \(\lambda_m = V'(m) \frac{r}{1+r}\) with \(\lambda'_m(r) > 0\)
Tradeoffs

A unit of consumption x made of purchases of different size z:

$$1 = \int_0^\infty f(z) \frac{z}{\nu} \, dz$$

- checks have fixed cost per-purchase \rightarrow convenient for large purchase

- pin down γ (cash-good threshold), n # transactions

$$\gamma \frac{1}{\nu} \left[\frac{(\theta^c - 1) + r(\theta^c - \theta^d)}{n} \right] = k^d$$

$$\frac{n^2 \phi}{(1 - \phi n)} = \frac{r\theta^a + \left[(\theta^c - 1) + r(\theta^c - \theta^d) \right] \Omega(\gamma) + r(\theta^d - \theta^a)\Omega(h(r)\gamma)}{1 + k^d (F(h(r)\gamma) - F(\gamma)) + k^a (1 - F(h(r)\gamma))}$$

resources spent on “trips” to the bank: ϕn

resources spent on banking services $k^d (F(\delta) - F(\gamma))$, $k^d (1 - F(\delta))$
Novelty is the multiplicity of bank liabilities

\[\frac{c}{(c + d + a)} = \Omega(\gamma) \]

\[\frac{d}{(d + a)} \]

- both cash and deposits are used even at \(r = 0 \) if \(\theta^c > 1 \)
- No demand for MMDA at \(r = 0 \)
Main results from calibration (match 1984 values)

\[
c/(c + d + a) \quad \text{and} \quad d/(d + a)
\]

Figure 5b: Currency / Demand Deposits - trend component, 1984 - 2012

Figure 5d: Demand Deposits / (Demand Deposits+MMDAs) - trend component, 1984 - 2012
Main results from calibration (match 1984 values)

\[\frac{c}{c + d + a} \]

\[\frac{d}{d + a} \]

Figure 5a: Currency / Demand Deposits, 1984 - 2012

0
0.2
0.4
0.6
0.8
1
RATIO
DATA
MODEL

Figure 5b: Currency / Demand Deposits - trend component, 1984 - 2012

0
0.2
0.4
0.6
0.8
1
RATIO
DATA
MODEL

Figure 5c: Demand Deposits / (Demand Deposits+MMDAs), 1984 - 2012

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
RATIO
DATA
MODEL

Figure 5d: Demand Deposits / (Demand Deposits+MMDAs) - trend component, 1984 - 2012

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
RATIO
DATA
MODEL

Figure 6: M1/GDP vs. Interest Rate (3-Month T-Bill), 1915 - 1935 & 1983 - 2012

\[\frac{M}{GDP} = A\frac{1+(\theta^c-1)\Omega(\gamma)}{n(r)} \]

\[\approx \frac{A}{n(r)} \]
Comments

1. some details (on interest elasticity, multipliers & transaction-costs specification)

2. on modeling M1: beyond households?

3. what did we learn?
Non-monotone $M(r)$ when both γ and n endogenous

$n(r)$ has a $1/2$ elasticity w.r.t. r for given γ and $\theta^c = 1$, like BT model.
Non-monotone $M(r)$ when both γ and n endogenous

$n(r)$ has a $1/2$ elasticity w.r.t. r for given γ and $\theta^c = 1$, like BT model

but $n(r)$ is a non-monotone function of r when $\gamma = \gamma(r, \theta^i, k^i)$
and for $\theta^c > 1$ model has satiation at $r = 0$
Non-monotone $M(r)$ when both γ and n endogenous

$n(r)$ has a $1/2$ elasticity w.r.t. r for given γ and $\theta_c = 1$, like BT model

but $n(r)$ is a non-monotone function of r when $\gamma = \gamma(r, \theta^i, k^i)$
and for $\theta_c > 1$ model has satiation at $r = 0$

$\theta_c = 1.01$

$\theta_c = 1.005$
Interest elasticity of M1 at low interest \(r < 0.01 \)

Satiation of money balances

Interest elasticity is small
M1 and Multipliers

Let \(M = a + b + c \) and remember \(m = c(r, ...)\theta^c + d(r, ...)\theta^d + a(r, ...)\theta^a \)

- model features a money multiplier:
 \[M = \mu(\theta^i, k^i, r) \ m \]

- look at the empirical performance of the multiplier!
M1 and Multipliers

Let $M = a + b + c$ and remember $m = c(r,...)\theta^c + d(r,...)\theta^d + a(r,...)\theta^a$

- model features a money multiplier :

$$M = \mu(\theta^i, k^i, r) \ m$$

- look at the empirical performance of the multiplier!

- Money M to GDP in model is

$$\frac{M}{p \ y(1 - \phi n)}$$
M1 and Multipliers

Let $M = a + b + c$ and remember $m = c(r, ...) \theta^c + d(r, ...) \theta^d + a(r, ...) \theta^a$

- model features a money multiplier:

 $M = \mu(\theta^i, k^i, r) \ m$

- look at the empirical performance of the multiplier!

- Money M to GDP in model is

 \[
 \frac{M}{p \ y(1 - \phi n)} = \left\{ \begin{array}{l}
 \frac{M}{p x} \\
 eq. 13
 \end{array} \right. \frac{x}{p \ y(1 - \phi n)}
 \]
M1 and Multipliers

Let $M = a + b + c$ and remember $m = c(r, ...) \theta^c + d(r, ...) \theta^d + a(r, ...) \theta^a$

- model features a money multiplier:
 \[M = \mu(\theta^i, k^i, r) \ m \]

- look at the empirical performance of the multiplier!

- Money M to GDP in model is
 \[\frac{M}{p y(1 - \phi_n)} = \frac{M}{p x} \]
 \[\frac{x}{p y(1 - \phi_n)} = \frac{M}{p x} \]
 (1 \ - \ transaction \ service)
Dissociated transaction costs: $\phi_i \rightarrow n_i$?

model assumes once ϕ is “paid” c, d, a are rebalanced

hence n the same for all instruments
Dissociated transaction costs: $\phi_i \rightarrow n_i$?

model assumes once ϕ is “paid” c, d, a are rebalanced

hence n the same for all instruments

In data (Italy, 2002) transaction frequency varies across assets:

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>median</th>
</tr>
</thead>
<tbody>
<tr>
<td># currency transactions (from d to c)</td>
<td>22 (60 w. ATM)</td>
<td>12 (48 w. ATM)</td>
</tr>
<tr>
<td># deposits transactions (from Wealth to d)</td>
<td>14 (+12 Auto)</td>
<td>2 (+12 Auto)</td>
</tr>
</tbody>
</table>

Source Italian households survey data (Bank of Italy)
Sectoral breakdown of $M1$: HH and (non-fin) Firms

M1 and cash plus checking of firms and households
(1982 Dollars)

Notes: M1 is from the Federal Reserve Board of Governors Release H.6 at the end of the period. Firm cash+checking is from the Flow of Funds L.102(A): Nonfinancial business; checkable deposits and currency; asset. Household cash+checking is from the Flow of Funds L.101(A): Households and nonprofit organizations; checkable deposits and currency; asset. All data is not seasonally adjusted and deflated using CPI (CPIAUCNS) from the BLS.

money demand by firms almost as important as money demand by households
Why do we care about a “stable” $M/P = L(r, y)$?

▶ “Giving colorful names to statistical relationships is not a substitute for economic theory”
Why do we care about a “stable” $M/P = L(r, y)$?

- “Giving colorful names to statistical relationships is not a substitute for economic theory”
 - theory of $L(r, y)$ is key to quantify costs of anticipated inflation
Why do we care about a “stable” $M/P = L(r, y)$?

- “Giving colorful names to statistical relationships is not a substitute for economic theory”
- theory of $L(r, y)$ is key to quantify costs of anticipated inflation
- Lucas-Nicolini might serve that role (cost: GDP wasted in cash management)

........ all the ingredients for coherent welfare analysis are there . . . use them?
What did we learn?

Why do we care about a “stable” \(M/P = L(r, y) \)?

- “Giving colorful names to statistical relationships is not a substitute for economic theory”
- Theory of \(L(r, y) \) is key to quantify costs of anticipated inflation
- Lucas-Nicolini might serve that role (cost: GDP wasted in cash management)
- all the ingredients for coherent welfare analysis are there . . . use them?

- A test of our ability to understand (account for) data we observe
 - My work with Alvarez on BT data + model
Why do we care about a “stable” $M/P = L(r, y)$?

- “Giving colorful names to statistical relationships is not a substitute for economic theory.”

- Theory of $L(r, y)$ is key to quantify costs of anticipated inflation.

- Lucas-Nicolini might serve that role (cost: GDP wasted in cash management).

 all the ingredients for coherent welfare analysis are there . . . use them?

- A test of our ability to understand (account for) data we observe.

 - My work with Alvarez on BT data + model.

- Fine tuning control of reserves, M, P, y, r?

 - Great motivation but not fully developed.
Conclusions

Very useful measurement

Simple clean theoretical model to think through data

Several implications can be expanded and refined I look forward to it!