Quantifying Confidence by Angeletos, Collard and Dellas

Discussion by Kristoffer Nimark Cornell University

June 11, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quantifying Confidence

Set up: Business cycle model

- Monopolistic competition in intermediate goods sector
- Endogenous capital

Confidence shocks

 Reduced form way of capturing differences between first and higher order expectations

Main results: Confidence shocks can help explain observed co-movement between hours worked, consumption and investment

- Permanent TFP + Confidence shocks fit unconditional moments better than other 2-shock combinations
- Mechanism have robust implications: Confidence shocks induce similar dynamics in flexible and sticky-price models

Model Mechanics I

The key equation is the optimal output decision of a firm

$$y_{it} = g_a E_{it} a_t + g_y E_{it} y_t + o.t.$$

where a_t is log of productivity (i.e. TFP).

Strategic complementarity from "terms-of-trade" effect:

▶ When other firms produce more, real price of good *i* increases So far, all is standard.

Model Mechanics II

All firms know that other firms face the same output optimality condition

$$y_{it} = g_a E_{it} a_t + g_y E_{it} y_t + o.t.$$

All firms observe productivity perfectly

$$E_{it}a_t = a_t$$

but second order beliefs are not model consistent

$$E_{it}E_{jt}a_t = a_t + \xi_t$$

where $\xi_t = \rho \xi_{t-1} + \zeta_t$. Expected aggregate output then given by

$$E_{it}y_t = g_a(a_t + \xi_t) + g_y E_{it}E_{jt}y_t + o.t.$$

A positive ξ thus leads to an increase in output (and co-movement) since wealth effect is small when $0 \le \rho \le 1$

Higher order predictions errors

The confidence shock ξ_t is a shock to agents' second order prediction error

$$\underbrace{E_{it}[a_t - E_{jt}a_t]}_{= \xi_t} = \xi_t$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2nd order prediction error

and an unrestricted AR(1) process.

Higher order predictions errors

In a (noisy) rational expectations setting:

- 1. Covar $(E_{it}[a_t E_{jt}a_t], a_t E_{jt}a_t) > 0$
- 2. $Var(E_{it}[a_t E_{jt}a_t]) < Var(a_t E_{jt}a_t)$
- 3. (Higher order) prediction errors orthogonal to public information in real time, i.e.

$$E\left[E_{it}[a_t-E_{jt}a_t]\mid\Omega_t^p\right]=0$$

where Ω_t^p is the intersection of all firms' information sets in period t

What are the costs and benefits of not imposing these restrictions?

Costs and benefits of beliefs short cut

Costs: A less disciplined exercise

 More free parameters, fewer restrictions on dynamics from theory

Benefits: A less disciplined exercise

Observed fluctuations are persistent and predictable

Why not embrace your relative freedom?

How much of the business cycle is orthogonal to the history of publicly available information?

Noise, confidence, undue optimism, animal spirits: The Future

Can we find less model-dependent evidence?

 Enders, Kleeman and Mueller (2015) present SVAR based evidence on the effects of undue optimism/pessimism shocks

What generates the noise/optimism/confidence shocks?

Can we build a theory of why and when firms and households overestimate productivity/output?