INTERMEDIATION AND VOLUNTARY EXPOSURE TO COUNTERPARTY RISK

Maryam Farboodi

6th Banco de Portugal Conference on Financial Intermediation

July 2015

MOTIVATION

- Degree of interconnectedness among financial institution
 - Systemic risk and contagion
 - Too-connected-to-fail
 - Bailout and regulation

MOTIVATION

- Degree of interconnectedness among financial institution
 - Systemic risk and contagion
 - Too-connected-to-fail
 - Bailout and regulation
- Bank incentives to form connections in the first place
 - Vice Chairman FRB Donald Kohn (Senate testimony, 6/2008) "[...] Supervisors must also be even more keenly aware of the manner in which those relationships within and among markets and market participants can change over time [...]"
 - What is too-connected?

This Paper

 $\bullet\,$ Study the endogenous formation of linkages among financial institutions as a network

This Paper

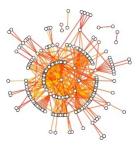
- \bullet Study the endogenous formation of linkages among financial institutions as a network
 - Which types of networks endogenously arise?
 - Do they qualitatively match the patterns we observe?
 - **2** Are some more efficient than others?
 - **③** Are there policies to improve equilibrium efficiency?

FRAMEWORK

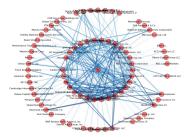
- Dispersed set of small savers
- Set of randomly distributed entrepreneurs
 - Stochastic investment opportunities

Framework

- Dispersed set of small savers
- Set of randomly distributed entrepreneurs
 - Stochastic investment opportunities
- Incomplete markets
 - Savers need banks to invest on their behalf
 - Savers matched with some banks
 - Entrepreneurs matched with some other banks


Framework

- Dispersed set of small savers
- Set of randomly distributed entrepreneurs
 - Stochastic investment opportunities
- Incomplete markets
 - Savers need banks to invest on their behalf
 - Savers matched with some banks
 - Entrepreneurs matched with some other banks
- Segmented financial market
 - Some banks invest and some lend to investing banks


FRAMEWORK

- Dispersed set of small savers
- Set of randomly distributed entrepreneurs
 - Stochastic investment opportunities
- Incomplete markets
 - Savers need banks to invest on their behalf
 - Savers matched with some banks
 - Entrepreneurs matched with some other banks
- Segmented financial market
 - Some banks invest and some lend to investing banks
- Restriction on inter-bank contracts
 - Market incompleteness preserved among banks

- Equilibria:
 - Type 1: *core-periphery* equilibrium
 - Set of highly connected banks at core
 - Excessive exposure to counterparty risk

[Bech and Atalay 2010]

[Di Maggio, Kermani and Song 2014]

- Equilibria:
 - Type 1: *core-periphery* equilibrium
 - Set of highly connected banks at core
 - Excessive exposure to counterparty risk
 - Type 2: under-investment equilibrium
 - Savings trapped in a subset of banks

- Equilibria:
 - Type 1: *core-periphery* equilibrium
 - Set of highly connected banks at core
 - Excessive exposure to counterparty risk
 - Type 2: under-investment equilibrium
 - Savings trapped in a subset of banks
- Efficiency
 - Centralized clearing house

- Equilibria:
 - Type 1: *core-periphery* equilibrium
 - Set of highly connected banks at core
 - Excessive exposure to counterparty risk
 - Type 2: under-investment equilibrium
 - Savings trapped in a subset of banks
- Efficiency
 - Centralized clearing house
- Policy
 - Introduction of centralized clearing house
 - Limit on number of counterparties

OUTLINE

2 INTER-BANK NETWORK

Model

Environment

- Three dates: t = 0, 1, 2
- Two type of banks (\mathbb{N})
 - NI: banks who can never invest
 - Raise one unit from a continuum of households (debt)
 - Each household matched to a single bank
 - *I*: banks who can invest
 - Potential to make risky investment
 - Borrow on the inter-bank market
- Value of other businesses for each bank: V_j
 - Non-pledgable
 - Lost in case of default
- Risk neutrality, no discounting

RISKY TECHNOLOGY

- Date 1
 - At each I, investment opportunity arrives with iid probability q
 - Active investing bank: $I \in \mathbb{I}_R$
 - Initial investment made
- Date 2
 - Per-unit iid return across investing banks \tilde{R}

$$\tilde{R} = \begin{cases} R & \text{with probability } p \\ 0 & \text{otherwise} \end{cases}$$

• Scalable

FINANCIAL NETWORK

• Market incompleteness

- Loans made after banks get investment opportunities
- Relationship must be established before the realization of investment opportunities Evidence
 - Potential lending relationship (E)
- All contracts are debt

• Financial network $G = (\mathbb{N}, E)$

• Collection of banks and their lending relationships

FEASIBILITY

- Minimum size constraint
 - Minimum size on date one loans is 1
 - Lender must honor the promise ("conditionally")
- Feasibility

DIVISION OF SURPLUS

- Banks borrow and lend to invest
- Not competitive
- Surplus division
 - Surplus allocation depends on endogenous network structure
 - Intermediators get positive share
 - Rents cannot be negotiated away
- Inherent rent seeking behavior

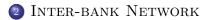
TIMING

• Date 0

- Funding raised from households
- Network forms: banks establish potential lending relationships (Subject to feasibility)
- Date 1
 - Risky investment opportunities arrive
 - Loans made
- Date 2
 - Return realized
 - Debt paid back
 - Bank fails and loses V_j if unable to pay back obligation

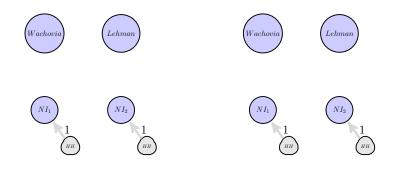
Equilibrium Concept: Group Stability

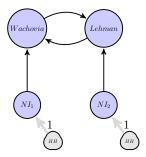
• Group Stable

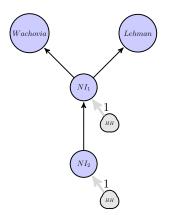

- Generalization of pairwise stable, Jackson and Wolinsky (1996)
- Strong Nash equilibrium for a network framework
- Intuition: Not blocked by any coalition of players

• Blocking Coalition

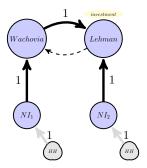
- Coalition of banks, who can jointly deviate
- Bilateral deviation: add links
- Unilateral deviation: break links
- Every member of coalition strictly better off after deviation

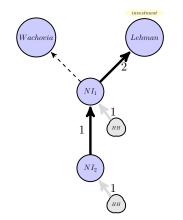

OUTLINE

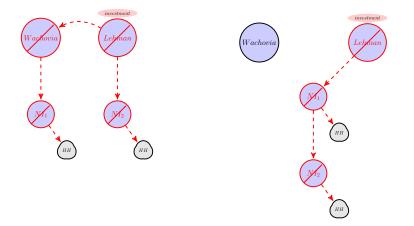




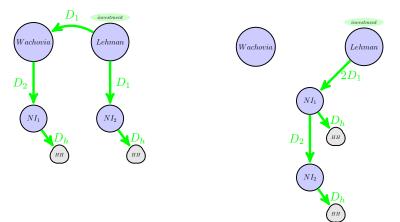
EXAMPLE (t=0)



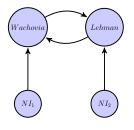

EXAMPLE (t = 0)



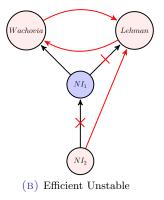
Example (t = 1): Only Lehman has Investment



EXAMPLE (t=2): PROJECT FAILS



Example (t=2): Project Succeeds



- $D_1 > D_2$: Return to lender
- $p(D_1 D_2) \leq (1 p)V_I$: Intermediation spread versus cost of failure

STABILITY VERSUS EFFICIENCY

• $\frac{\text{Intermediation Rent}}{\text{Cost of Failure}} > Z$

MISALIGNED INCENTIVES

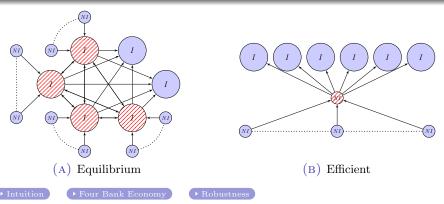
- Efficiency: scale of investment versus loss in the event of failure
 - Efficient Intermediator: imposes minimal extra cost of failure
- Individual incentives: return versus loss of failure
 - Intermediation spread versus cost of default

Redistribution

Social Loss

- Equilibrium Intermediator: offers highest rate of return
- Does he minimize the cost?

OUTLINE



GENERAL RESULT

Theorem

When intermediation rents are sufficiently high, there is a family of equilibria that consist of a subset of I banks at the core, forming a digraph. Each I bank at the core borrows from a subset of NI banks, and lends to every I bank outside the core. These equilibria are all inefficient.

Policy

- Central Clearing Party (CCP)
 - Prevents exposure to counterparty risk among banks with investment opportunity
 - Fully funds all the projects

- Cap on Number of Counterparties a bank can lend to
 - Increases the length of intermediation chains
 - Shifts the composition of equilibrium family towards larger cores
 - Larger loss in the event of melt down

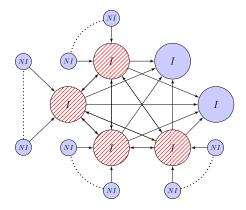
▶ Equilibrium

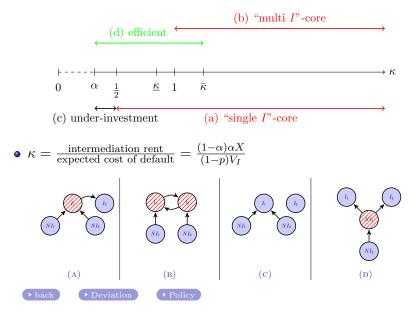
CONCLUSION

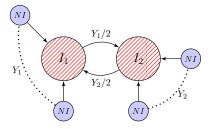
• Endogenous formation of financial network has implications

- Overall structure of inter-bank network
 - Core-periphery
- Inter-bank exposures
 - High gross and low net exposure among banks with risky investment at the core
- Efficiency
 - Excessive exposure to counterpart risk
 - Inefficient intermediation (and dis-intermediation)
- Policy Implications
 - Central clearing house
 - Cap on number of counterparties
 - Future work: Information Asymmetry

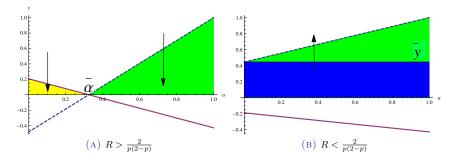
INTUITION


• Joint deviation


INTUITION


• No joint deviation to networks with I banks at the core

ECONOMY WITH FOUR BANKS REVISITED



Assets	Liabilities	Assets	Liabilities
$\frac{Y_1+Y_2}{2}\tilde{R}$	Y_1D_{11}	$\frac{Y_1+Y_2}{2}\tilde{R}$	Y_2D_{22}
$\frac{Y_1-Y_2}{2}D_{21}$			$\frac{Y_1 - Y_2}{2}D_{21}$
(A) Net Lender (I_1)		(B) Net Borrower (I_2)	

• $Y_1 > Y_2$ • $y = \frac{Y_2}{Y_1}, \ 0 < y \le 1$

• Net lender

EXPOSURE TO COUNTERPARTY RISK IN THE FINANCIAL CRISIS

- September 15: Lehman filed for bankruptcy
- First wave: holders of unsecured CP and lenders in tri-party repo
 - Wachovia (Evergreens Investment)
 - Reserve Management Company (Reserve Primary Fund)

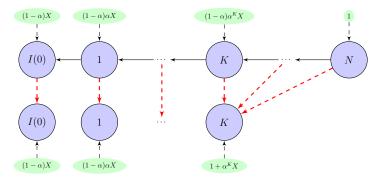
EXPOSURE TO COUNTERPARTY RISK IN THE FINANCIAL CRISIS

- September 15: Lehman filed for bankruptcy
- First wave: holders of unsecured CP and lenders in tri-party repo
 - Wachovia (Evergreens Investment)
 - Reserve Management Company (Reserve Primary Fund)
- Havenrock
 - IKB ABCP conduit (Rhineland): RMBS and CDO investment
 - CaLyon: liquidity backstop; FGIC: senior credit risk protection
- CDO crashed → FGIC unable to honor guarantee → CaLyon significant credit loss → capital injection by French government

STYLIZED FACTS

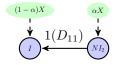
• Liability structure among banks looks like a core-periphery graph

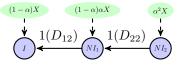
- Federal funds market
- International inter-bank markets
 - Germany, Austria, Netherlands, Brazil
- Municipal bond market
- OTC derivative exposures
 - Dealer: High gross and small net positions
 - Aggregate trade quantity:
 - Dealer-to-dealer: $\sim 60\%$
 - Customer-to-dealer: $\sim 40\%$
 - Customer-to-customer: <1%



GENERAL RULE FOR DIVISION OF SURPLUS

- Every member of intermediation chain gets strictly positive share
- Elimination of each intermediary
 - Weakly increase every other bank's share (along the chain)
 - Strictly increase lender's share
- Anonymous and depends only on the chain
- Special case (α -rule)
 - Each bank only cares about distance to final borrower


General α -Rule



- j < K gets $(1 \alpha)\alpha^j X$
- K gets $1 + \alpha^K X$
- Shares only depend on distance from final borrower
- Face value of debt set to reflect shares
 - $D_j D_k$ = intermediation spread between k and j

DATE 1: PAYOFF EXAMPLE

• X = pR - 1: expected net surplus of investing one unit

•
$$D_1 = D_{11} = D_{12} = \frac{\alpha X + 1}{p}$$

• $D_2 = D_{22} = \frac{\alpha^2 X + 1}{p}$

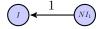
• Intermediation spread = $D_1 - D_2$

• Expected intermediation rent = $p(D_1 - D_2) = \alpha(1 - \alpha)X$

LONG TERM RELATIONSHIP LENDING

• Theory

- Switching costs
- Monitoring costs: costly information acquisition
- Empirical evidence
 - $\bullet\,$ Fed fund market: %60 of inter-bank borrowing comes from the same lender over one month
 - Hedge funds: maintain at most two prime brokers and rarely switch



DISABLING DIVERSIFICATION

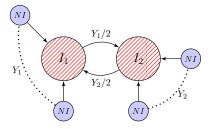
- *j* has multiple active commitments
 - All of its funding allocated randomly to exactly one of them
- An I bank with an active investment opportunity
 - Invests only in own project

Efficient Direct Lending

• Efficiency

$$pR - 1 > (1 - p)(V_I + V_{NI})$$

• Borrower and lender participation constraint

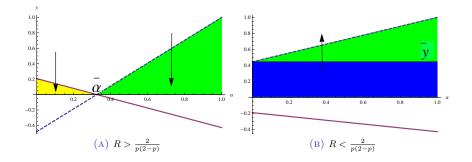

$$(1 - \alpha)(pR - 1) > (1 - p)V_I$$

 $\alpha(pR - 1) > (1 - p)V_{NI}$

▶ Bank Maximization

Robustness

- Division of surplus
 - Partial renegotiation and side payments as long as not fully competitive
 - Default cost taken into account
- Market incompleteness
 - No minimum size constraint but loans made prior to realization of investment opportunities
- Correlated returns


 \blacktriangleright General Result

Assets	Liabilities	Assets	Liabilities
$\frac{Y_1+Y_2}{2}\tilde{R}$	Y_1D_{11}	$\frac{Y_1+Y_2}{2}\tilde{R}$	Y_2D_{22}
$\frac{Y_1-Y_2}{2}D_{21}$			$\frac{Y_1 - Y_2}{2}D_{21}$
(A) Net Lender (I_1)		(B) Net Borrower (I_2)	

• $Y_1 > Y_2$ • $y = \frac{Y_2}{Y_1}, \ 0 < y \le 1$

• Net lender

