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Abstract

We analyze the problem of a bank regulator who has the power to ‘bail in’ the debt of troubled

banks, as is implied by newly designed bank resolution regimes. Allowing regulators to use their

discretion in resolving banks permits them to act on the basis of their more precise, private

information. However, regulators with discretion end up being excessively weak in order to

avoid revealing adverse information and triggering bank runs. Optimally designed resolution

regimes involve discretion whenever public news is favorable, but tie the regulator’s hands with

rules after bad news. The optimal regime can be implemented by supplementing discretionary

bail-in powers with contingent capital instruments. We show that tighter capital and liquidity

regulation, and having an effective lender of last resort, improve the efficacy of bail-in policies.
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1 Introduction

Current economic policy places strong emphasis on developing resolution regimes for failing banks.

In the crisis of 2008, governments feared that the bankruptcy of major financial institutions would

cause contagion and disrupt their provision of critical services to the real economy. Absent a

workable alternative to bankruptcy, states recapitalized banks with public money. These bail-outs

raised serious concerns about fairness and moral hazard, and in some cases they threatened fiscal

stability. The G20 leaders have since vowed to end the ‘too big to fail’ problem, and the design of

bank resolution regimes forms a key part of this agenda (G20 Leaders, 2013).

These regimes will complement bankruptcy law by giving regulators the discretion to take struggling

important banks into resolution, and to re-capitalize them through ‘bail-ins’, i.e. by writing down

debt at the expense of private creditors. One point of contention is whether discretionary bail-ins

have sufficient credibility to provide investors with certainty, and to persuade them and large banks

that the latter will no longer be deemed too big to fail. The Financial Stability Board (2011), for

example, emphasizes that resolution plans are not credible if they create a risk of ‘disruptions in

domestic or international financial markets, for example, because of lack of confidence or uncertainty

effects’ (FSB 2011, p. 32). Similarly, Bulow and Klemperer (2015) argue that ‘regulators are

reluctant to actively force a recapitalization because doing so will send a negative signal about the

bank’s current financial status, possibly exacerbating a bad situation’ (p. 6).

Such concerns about credibility suggest that some commitment to rules regarding bank resolution

might be valuable. Indeed, bank regulators have shown that they are willing to give up some

discretion: Contingent capital instruments (so-called CoCos), which write down or convert debt

according to fixed contractual rules specified in advance, are being widely issued by banks and will

count towards regulatory capital requirements in some jurisdictions (Avdjiev et al., 2013).

In this paper, we model the optimal design of bank resolution regimes, and consider the following

four questions: (1) Why might full discretion be problematic for bank resolution authorities? (2)

What are the central trade-offs in choosing between rules and discretion, and how should rules

optimally be designed? (3) How do contingent capital instruments interact with resolution regimes?
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(4) How should the design of resolution policies interact with other financial policies, such as capital

and liquidity regulation or liquidity support by a lender of last resort?

In our model, bank resolution policy is constrained by two frictions which are typical of the banking

industry: First, banks are exposed to potential illiquidity and runs by uninsured short-term credi-

tors, as in Diamond and Dybvig (1983). Second, bank regulators have access to private information

about banks’ financial health.1

As a result of these frictions, regulators with full discretion have difficulty taking as strong and

decisive an action as they would like. Discretion allows regulators to fine-tune resolution policies

based on their private information. However, due to such fine-tuning, regulatory action provides

news to the market. If the regulator ‘bails in’ a large portion of the bank’s debt, market participants

rationally infer that the bank must be under-capitalized. This revelation can trigger costly disrup-

tions such as runs by short-term creditors.2 Therefore, regulators with bad news and discretion

have incentives to act as if they had better news. In equilibrium, they conduct excessively weak

bail-in policies, leaving banks under-capitalized compared to the first best.3

Due to this excessive weakness problem, the optimal bank resolution regime generally involves

some commitment to bail-in rules. We study rules which mandate pre-specified bail-in policies

contingent on certain realizations of public news, but allow the regulator discretion after other

realizations. When choosing between rules and discretion, the central trade-off facing regulators

is between accuracy and toughness. Discretion allows fine-tuning, but it also opens the door to

excessive weakness. By contrast, rules can create a commitment to tougher policies (with more

bail-in), but they necessarily tie bail-in policies to noisy public news, thus sacrificing accuracy.
1The regulator’s private information may correspond, for example, to information gleaned in the course of con-

ducting supervisory ratings excercises, such as CAMELS in the US, which are not publicly available. More recently,
regulators have been conducting stress tests of bank balance sheets, the details of which remain largely secret. The
interaction between illiquidity and asymmetric information, which is emphasized by our theory, has been documented
empirically by Iyer et al. (2013), who show that the announcement of regulatory action in an Indian bank, which
signalled the outcome of a confidential review by the regulator, caused a substantial run by its uninsured creditors.

2In modern banking systems with deposit insurance, runs are prone to take place in wholesale credit markets, such
as repo and commercial paper, rather than on retail deposits. Wholsesale runs are discussed in detail by Shin (2009),
Gorton and Metrick (2012) and Krishnamurthy et al. (2014).

3For concreteness, in our model, we interpret the regulator’s action as the fraction of bail-inable debt to write
down. In reality, the set of regulatory actions is much broader, and our basic results can be applied more generally.
The excessive weakness associated with discretion can also be interpreted as regulators acting too late in a crisis, or
asking banks to raise an insufficient amount of capital in private markets. Our model suggests that pre-committing
to a plan of action before the regulator has any private information about the state of the troubled bank would help
to avoid these problems too.
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The optimal regime commits the regulator to a tough bail-in policy after bad public news. After

good public news, regulators should be allowed discretion. This result can be understood in terms

of the ‘toughness vs. accuracy’ tradeoff. Bad public news foreshadows bad private news, thereby

increasing the expected value of tough policies. Thus toughness is a virtue and commitment is

desirable. By contrast, good public news reduces the expected value of toughness, so regulators

care relatively more about accuracy, and it is best to retain discretion. We also characterize the

relationship between the optimal resolution regime and the quality of public information. In most

relevant cases, commitment is more valuable, and should be used to a greater extent, when public

signals are more informative. Even when discretion is problematic, it does not make sense to tie

one’s actions to a very noisy signal.

Contingent capital can exactly implement the optimal regime and substitute for explicit rule-writing.

It automatically writes down debt whenever a publicly observable indicator, such as the bank’s book

or market value, falls below a pre-specified threshold. Thus, contingent capital enforces tough write-

downs whenever public news are sufficiently bad, without affecting discretion after good news. This

replicates the optimal regime, which establishes a novel role for contingent capital in regulatory

policy.

We show that other financial policies are complementary to effective resolution if they alleviate the

threat of bank runs. First, we consider changes to banks’ balance sheets which increase liquidity

and decrease the probability of runs. Liquidity regulation, along the lines of Basel III’s Liquidity

Coverage Ratio, allows the regulator to target a measure of bank liquidity which is a sufficient

statistic for the efficacy of resolution policy. Capital regulation can have a similar effect, but it is

a blunter tool, since it does not directly target the relevant liquidity measures. Second, we study

liquidity support by a lender of last resort. A lender of last resort can cover some of banks’ liquidity

shortfall if creditors run on the bank. Anticipating this response, creditors are less likely to run in

the first place (Diamond and Dybvig (1983)). Thus the presence of an effective lender of last resort

also lends credibility to bank resolution regimes.

Our paper thus suggests that liquidity regulation and last resort lending are natural complements

to a successful bank resolution regime. In practice, there are limits to the coverage of regulation

(e.g. fears of reducing the social value of intermediation, or the political influence of financial firms)
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and to the leniency of a lender of last resort (e.g. concerns about moral hazard). We argue that

at the margin, liquidity regulation should be tougher, and lenders of last resort should lend against

wider ranges of collateral, when efficient bank resolution is an important objective.

The trade-off between rules and discretion in bank resolution in our model looks quite different to

that highlighted in macro-economic policy by Kydland and Prescott (1977) and Barro and Gordon

(1983). In those models, the central bank (or government) moves last, and is tempted to create ex

post inflation surprises to boost output. The central bank’s action is anticipated in equilibrium and

no information is revealed by its actions. In our setting, the move order is reversed - the regulator

moves and then the public react - and the central concern motivating regulatory commitment is to

avoid information revelation rather than sub-game perfection. In the monetary policy literature,

our mechanism is closer to Cukierman and Meltzer (1986), where the central bank has private

information about its objective function, and acts strategically in revealing information to the

public.

Our paper also relates to a growing literature on the design of contingent capital instruments.

Flannery (2005) was the first to propose ‘reverse convertible debentures’, which resemble today’s

CoCos. The subsequent literature has focused on the problem of multiple equilibria with market-

based triggers (Hillion and Vermaelen 2004, Sundaresan and Wang 2014), alternative designs which

overcome this problem (Pennacchi et al. 2013, Bulow and Klemperer 2015), and the impact of

contingent capital on incentives and the value of the firm (Pennacchi 2010, Martynova and Perotti

2012, Albul et al. 2013). Flannery (2013) provides an excellent survey. Our paper is a complement

to this literature. We take a step back from the details of contingent capital design and ask whether

regulators would want to encourage any of these instruments, all of which commit the bank to

debt write-downs or conversion into equity as a function of publicly-available information, rather

than allowing the regulator to exercise discretion when the need for de-leveraging arises. Moreover,

our analysis of contingent capital helps to motivate some of the key questions addressed by this

literature. We show that the optimal resolution regime can in principle be implemented with

contingent capital contracts, but only if these contracts can (i) avoid feedback effects and death

spirals, and if (ii) their conversion is credibly beyond the regulator’s control. Both issues have been

central concerns in contingent capital design.
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The paper is structured as follows: Section 2 describes our model of bank resolution. Section 3

describes equilibria when regulators have discretion, and Section 4 analyzes the optimal resolution

regime when commitment is possible. Section 5 discusses the implementation of optimal regimes

with contingent capital contracts. Section 6 analyzes complementarities between resolution regimes

and other financial policies. Section 8 concludes and elaborates on policy implications. The Ap-

pendix contains all proofs not given in the text.

2 The model

The model has two dates, t ∈ {1, 2} and a single bank, which is subject to intervention by a

regulator at date 1. At date 1, the bank has the following balance sheet.4 Its liabilities are

short-term, uninsured debt with face value D, and long-term ‘bail-inable’ bonds with face value

B. Short-term debt are held by a unit mass of identical, risk-neutral creditors. We assume that

short-term creditors have (absolute) priority over long-term creditors in case of insolvency. The

bank’s assets are long-term risky investments, which pay a random cash flow V at date 2, with

support [v, v] ⊂ R.

The regulator observes the realization V = v at date 1, and at the same time the public observes

a signal S with support [s, s] ⊂ R. The distribution of V given S is F (v|s), and a high S is ‘good

news’ about V in the sense of first-order stochastic dominance:

∂F (v|s)
∂s

< 0. (1)

After observing V the regulator may bail in a ∈ [0, B] long-term bonds.5 Bailing in means writing

down the debt, so that the owners of bonds do not get paid, or converting it into equity, so that

they get paid in shares. After the bail-in, the face value of outstanding long-term bonds is B − a.
4For now, we treat the bank’s balance sheet as given at date 1. In Section 6 we will come back to this and discuss

the issues that our analysis will raise for the regulation of the composition of the bank’s assets and liabilities at a
potential date 0, and in particular, point out the complementarity of balance sheet regulation with bail-in policies.

5Current policy proposals suggest that resolution authorities will first bail in bonds which were designated as
‘bail-inable’ at the point of issuance. If there are long-term bonds which cannot be bailed in, one could restrict the
regulator’s action to a ∈ [0, B′] for B′ < B, without affecting our results.
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The public observes a, and uses it along with the signal S to infer the regulator’s information.

Let β(v|a, s) be the distribution of v given public information, and let Eβ[V |a, s] =
´ v
v vdβ(v|a, s)

denote its conditional expectation.

After observing a, short-term creditors decide whether to ‘withdraw’ their debt, demanding an

immediate repayment at date 1, or to roll over until date 2. We focus on the case where only news

about the bank drives withdrawals, and short-term creditors withdraw late if they are indifferent.

For this reason, we assume that short-term creditors incur a small non-pecuniary cost χ > 0 if they

withdraw early.6

Assets can be sold into a competitive market. There is a pool of risk-neutral outside buyers who

can acquire assets and extract value λV , where 0 < λ < 1. The outside buyers observe only public

information, i.e. the signal S and the regulatory action a, and therefore the market value of assets

at date 1 is p = λEβ[V |a, s]. When a fraction φ of short-term creditors withdraws early (at date 1),

the bank needs to sell a fraction σ = min {1, φD/p} to meet withdrawals. If σ = 1, then the bank

runs out of assets and is insolvent at date 1.7

2.1 Welfare

The regulator seeks to maximize social welfare,8 which is the sum of two components. First, asset

sales to outside buyers cause a deadweight loss, since outside buyers extract less value from assets

than banks can. This loss is given by (1 − λ)σv, where σ is the fraction of assets sold to outside

buyers, as discussed above.

Second, welfare depends on the bank’s equity capital at date 2, which is E(a, v) = v+ a− (D+B).

In particular, we assume that welfare (not including the deadweight cost of asset sales) is

U(E(a, v)),
6Equivalently, one could assume that short-term debt earns a non-zero interest between dates 1 and 2.
7In Section 6, we will allow the bank to hold cash that could be used to meet some withdrawals. For simplicity, in

this Section, we focus on the case with neither cash holdings nor withdrawals for liquidity reasons.
8Similar conclusions will follow if the regulator does not set equity to maximize social welfare, but nevertheless has

a utility function which first increases and then decreases in the leverage of the bank. In particular, the regulator is
likely to find that discretion leads to weaker action ex post than he would consider desirable ex ante.
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where the function U(E) is strictly concave and twice differentiable in E. In other words, we assume

that social welfare first increases and then decreases in the level of bank capital. This is consistent

with a large literature on bank capital structure, which we discuss in Subsection 2.3. The ideal level

of bank capital is E? , defined by U ′(E?) = 0.

Combining the two components, social welfare is

W = U(E(a, v))− (1− λ)σv.

Below, we consider how equilibrium withdrawals from the bank, and therefore asset sales σ, depend

on the regulator’s action a and the information it reveals to the public. However, it is instructive

to first consider what the regulator would do in the absence of any liquidity problems. In this case,

his ideal action is

a?(v) =



0 if E? ≤ v − (D +B),

E? +D +B − v if v −D < E? < v − (D +B),

B if v −D ≤ E?.

We focus on the interesting case where regulators with different news v have different ideal bail-in

policies a?(v). To this end, we assume that a?(v) 6= a?(v′) for some v and v′, which is equivalent to

U ′(v − (D +B)) ≥ 0 ≥ U ′(v −D), (2)

with at least one strict inequality.

2.2 Withdrawals and bank runs

We now describe the withdrawal game between the bank’s short-term creditors. Each short-term

creditor decides whether to withdraw early (at date 1) or late (at date 2). They will withdraw early
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if doing so reduces the chance of losing money when the bank defaults. We assume that

v ≥ D > λv. (3)

This first part of this assumption implies that there is enough value in the bank to repay short-term

creditors even with the worst possible realization of V (although it may or may not be solvent

overall, taking into account outstanding long term bonds). The second part of the assumption

implies, however, there is not necessarily enough value to repay the short-term creditors at date 1

if a run occurs and the asset value realization is low. This part of the assumption makes the bank

vulnerable to runs in the face of bad news. Assumption (3) ensures that bank runs are driven by

self-fulfilling concerns about liquidity as in Diamond and Dybvig (1983), but not by concerns about

solvency. The implications of solvency-driven bank runs are discussed in Subsection 2.3.

Equilibrium in the withdrawal game depends on whether the total liquidation value of assets p ex-

ceeds the claims of short-term creditors D. When p ≥ D, the unique equilibrium has no withdrawal

with φ = 0. The bank is never insolvent at t = 1, and the value of its remaining assets at t = 2 will

be v(1−φD)/p. Hence late withdrawers will be repaid in full if and only if v(1−φD/p) ≥ (1−φ)D.

This is guaranteed because p ≥ D (by assumption) and v ≥ v ≥ D (by the lower bound in (3)).

Therefore, short-term creditors get paid in full, no matter when they withdraw, and it is a dominant

strategy to withdraw late to avoid the cost χ.

When p < D, there are multiple equilibria. If everybody withdraws early (φ = 1), the bank is

insolvent at date 1. Early withdrawers get paid p each, and late withdrawers get nothing. As long

as χ is sufficiently small, nobody has an incentive to withdraw late, and the bank run scenario φ = 1

is an equilibrium. If everybody withdraws late (φ = 0), the bank remains solvent and can pay back

all short-term creditors in full at because its assets will be worth at least v ≥ D. Then nobody has

an incentive to withdraw early, and φ = 0 is also an equilibrium. Finally, there is a third, unstable,

equilibrium with 0 < φ < 1 and partial liquidation of the bank’s assets.

For tractability, we assume that with multiple equilibria, one of the stable equilibria is picked based

on the realization of independent sunspots. In particular, suppose that the bank run φ = 1 is played
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with probability π > 0, and φ = 0 is played with probability 1 − π. The global games approach

of Goldstein and Pauzner (2005) could, in principle, be used to endogenize π. We work with an

exogenous π in order to obtain a more tractable characterization of regulatory trade-offs.

A run is therefore possible, and occurs with probability π, if and only if p = λEβ[V |a, s] < D. When

this is satisfied, runs induce an expected social cost of κ(v) = π(1− λ)v. We assume that this cost

is large, in the sense that a regulator prefers taking the ‘wrong’ bail-in action to triggering a run:

κ(v) > U(v + a− (D +B))− U(v + a′ − (D +B)) for all a, a′, v. (4)

We further assume that runs cannot be triggered by the public signal alone,

λE[V |s] ≥ D. (5)

This restriction allows us to focus on the case of interest, which is where regulatory action itself

might create runs by revealing information. The lowest asset value that can be revealed without

triggering a potential run is vD = D/λ. Finally, we assume that in the marginal state v = vD, the

regulator prefers a complete bail-in to inaction:

U(vD −D) > U(vD − (D +B)). (6)

2.3 Remarks on the model setup

Alternative interpretations of regulatory intervention. While we present the case of bail-

ins motivated by the desire to raise the level of bank equity, our qualitative results are much more

general. In the Appendix, we consider a general function U(a, v), which gives the regulator’s utility

as a function of his action a and the bank’s asset value v. In that setup, all our results hold as

long as the regulator’s utility is concave in a, and satisfies the condition ∂2U/∂a∂v < 0, so that the

marginal benefit of intervention is lower when the regulator has good news.

The general specification U(a, v) not only offers a robust analysis of bail-in policy, but also shows
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that our model is open to many alternative interpretations. For instance, one could also interpret

a as the time at which the regulator intervenes, in a model where regulators with bad private

news prefer to intervene earlier than regulators with good private news. Alternatively, a can also

be interpreted not as a bail-in action, but as the quanitity and timing with which the regulator

requires banks to raise new equity in the market.

Our analysis below shows that regulators with discretion and bad news undertake excessively weak

bail-ins to avoid bank runs, and can therefore benefit from a commitment device. This intuition

can also be applied to alternative interpretations: If a is the timing of intervention, then regulators

with discretion might act too late; if a is a required equity injection, they might require a smaller

or later equity injection than would be optimal.

Alternative interactions between beliefs and welfare. We present a model where adverse

public beliefs are socially costly because they trigger illiquidity-driven bank runs. This case is

particularly tractable, but we would expect our results on rules and discretion to hold in other

settings. For example, instead of focusing on banks’ legacy assets, one could imagine that adverse

public beliefs increase the bank’s cost of external finance at date 1, and therefore inhibit additional

lending to the real economy.

Within our model, Assumption (3) allows us to focus on illiquidity-driven bank runs. The advantage

of doing so is that we obtain a clean interaction between public beliefs and bank runs: Runs are

possible if and only if p = λEβ[V |a, s] < D, and this condition only depends on the conditional

expectation of V . With solvency concerns, short-term creditors would worry about the date 2 value

of bank assets, and the entire conditional distribution of V would play a role in the withdrawal

game. However, the interaction between beliefs and welfare would be qualitatively similar.

Social welfare and bank equity. We work with a general specification of social welfare as a

function of bank equity, restricted only by Assumption (2). The first inequality in (2) implies

that welfare is increasing in bank equity when equity is low. This seems uncontroversial: A large

literature following Holmstrom and Tirole (1997) demonstrates that badly capitalized banks can

cause credit rationing and macroeconomic distortions. Alternatively, banks’ incentives to gamble

for resurrection (Hellmann et al., 2000) or deadweight costs of bank default would also yield a social
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welfare function which suffers when banks are badly capitalized.

The second inequality in (2) implies that welfare can be reduced by excessive recapitalizations when

banks are healthy. Dang et al. (2014) and Gorton and Winton (2014) argue that bank equity is more

information-sensitive than debt, and therefore introduces asymmetric information costs when it is

too high. Moreover, Calomiris and Kahn (1991) and Diamond and Rajan (2000) develop theories

where debt, by acting as a hard claim, disciplines bank managers. These theories can be used to

motivate our assumption: Beyond a certain point, more bank equity becomes socially costly.9

Illiquidity. The potential illiquidity of banks is central to our model. In particular, Assumption

(3) states that short-term debt liabilities are large, relative to the amount cash the bank can raise at

date 1 by liquidating its assets. This raises two potential concerns. First, if banks were required to

hold sufficient equity capital ex ante, debt liabilities would be small relative to risky assets. Second,

if there were a lender of last resort which could provide liquidity support, banks would not need to

liquidate assets to raise cash. We are sympathetic to these arguments. Indeed, Section 7 formally

shows that last resort lending and bank regulation are complementary to bail-in policy, precisely

because they alleviate the threat of runs.

We effectively model a world in which these policies are imperfect, so that runs are still a potential

outcome. This is a reasonable restriction: As discussed above, very high levels of bank equity may

not be optimal. In practice, the toughness of capital regulation is further constrained by the political

clout of the financial industry (Admati and Hellwig, 2014). Equally, perfect liquidity support by a

lender of last resort is not desirable since it crowds out banks’ private incentives to properly manage

liquidity.

Priority of short-term creditors. We impose that short-term creditors have priority over long-

term creditors (the holders of bail-inable debt B) when the bank is insolvent at date 2. This is an

optimal arrangement. If short-term creditors were to rank pari passu with long term debt at date

2, then the bank would be more prone to runs and regulatory actions would be correspondingly

weaker in equilibrium. This observation validates recent regulatory attempts to restructure banks

to ensure that short-term debt is structurally senior to most long-term debt.
9As the strongest proponents for higher levels of bank capital, Admati and Hellwig (2014), advocate that banks

fund between 20% and 30% of investments with equity. Even this view is consistent with our assumptions in principle.
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3 Equilibrium with discretion

If the regulator has discretion to freely choose a, then he is playing a signalling game with creditors.

In particular, creditors use a to infer information about V , since regulators with different values

of V prefer to choose different a. When λEβ[V |a, s] < D, potential runs create a social loss κ(v).

Therefore, in choosing a, the regulator must consider the informational effect of a and the cost of

runs as well as its direct payoff. His effective objective function is

W (a, v, s, β) = U(v + a− (D +B))− κ(v)× 1(λEβ[V |a, s] < D),

where 1(.) denotes the indicator function. We now examine the equilibria of the regulatory signalling

game, considering separately each realization of the public signal s.10

Definition 1. An equilibrium with discretion in state s ∈ [s, s] is a bail-in rule α(v, s) ∈ [0, 1] and

beliefs β(v|a, s) such that

• The bail-in rule α(v, s) solves maxa∈[0,1]W (a, v, s, β).

• Beliefs are consistent with Bayes’ rule when possible.

3.1 Runs, minimal pooling and incentive compatibility

We can narrow down the properties of equilibria with discretion, which we collect in Lemma 1

below. First, runs do not occur on the equilibrium path. If they did, then the types of regulators

which faced runs would deviate to an action which avoided a run (by equation (4)). This contradicts

equilibrium, unless the regulator faces a run regardless of his action. But this last scenario requires

overly pessimistic public beliefs. The proof of Lemma 1 shows that such beliefs are not consistent

with Bayesian updating.

Second, equilibria feature minimal pooling. Regulators with very bad news (v close to v) must

not reveal themselves to the public. If they did, they would open the door to runs, because the
10Definition 1 focuses on pure strategies. It is easy to see that the regulator is never indifferent between two actions,

by the strict concavity of U and Assumption (4).
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perceived liquidation value of assets would be too low to repay short-term creditors. Therefore they

will pool with regulators with better signals to avoid runs. Runs are avoided only if regulators play

the same action whenever v is below a threshold vp(s), which is defined implicitly by9s

λE[V |s, V ≤ vp(s)] = D. (7)

Intuitively, this condition states that if the public learns that V is belowvp(s), as it does when all

regulators with V ≤ vp(s) play the same action, a run will just be avoided.

Finally, regulators’ equilibrium actions are incentive compatible. To rule out profitable deviations,

each type of regulator must prefer his equilibrium action to those of other types. Lemma 1 sum-

marizes our results and further characterizes incentive compatibility.

Lemma 1. In any equilibrium with discretion in state s, the bail-in rule α and beliefs β satisfy the

following conditions:

• No runs: λEβ[V |α(v, s), s] ≥ D for all v.

• Minimal pooling: α(v, s) = α(v, s) for all v ≤ vp(s).

• Incentive compatibility: α(v, s) is weakly decreasing in v and therefore differentiable in v

almost everywhere. Where it is differentiable, it is either flat, ∂α(v,s)
∂v = 0, or coincides with

the ideal action, α(v, s) = a?(v). Moreover, if α(v, s) is discontinuous at v, then the regulator

is indifferent between α+(v, s) = limt↓v α(t, s) and α−(v, s) = limt↑v α(t, s).

Figure 1 illustrates the incentive compatibility conditions in Lemma 1. Panel (a) shows an equilib-

rium with continuous actions (fixing a public signal s). There is a pooling region where α(v, s) is

flat and a separation region where it coincides with the ideal action a?(v). Panel (b) shows a dis-

continuous case, where α(v, s) rises above a?(v) and then jumps below it. Panel (b) also shows how

separation and pooling regions can alternate. Moreover, both panels exhibit the minimal pooling

result. In each case, the first pooling region, which starts at v, must extend at least to the threshold

vp(s).11

11This signalling game is different from standard models such as Spence (1973), since no cash transfers are made
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Figure 1: Equilibrium bail-in actions.
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(a) Continuous case
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(b) Discontinuous case

3.2 Equilibrium selection

There are multiple equilibria with discretion. In fact, any action rule satisfying the conditions of

Lemma 1 can be sustained by sufficiently severe off-equilibrium beliefs, which trigger a run whenever

the regulator deviates from equilibrium play. This complicates the analysis of rules versus discretion.

We take a two-step approach. First, we rule out certain equilibria using an equilibrium selection

criterion. Then, we give discretion the benefit of the doubt by comparing rules to the ‘best’ surviving

equilibrium with discretion.

As a first step, we adapt the Cho and Kreps (1987) intuitive criterion to our context to discipline

off-equilibrium beliefs. For an off-equilibrium action a0 ∈ {a : α(v, s) 6= a ∀v}, define

σ(a0, s) = {v : W (a0, v, s, β) ≥W (α(v, s), v, s, β)}

as the set of signals for which the regulator would consider deviating. In the language of Cho and

between the informed and uninformed players. Thus, our incentive compatibility conditions are as in Melumad and
Shibano (1991) and Martimort and Semenov (2006), who analyze a screening problem without transfers.
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Kreps, this is the set of signals for which a0 is not equilibrium-dominated.

Generally, Perfect Bayesian Equilibrium requires that the informed party has no incentive to deviate

from their prescribed strategy for given beliefs of the uninformed players. The Cho-Kreps criterion

additionally requires that she has no incentive to deviate for any beliefs which attach zero probability

to equilibrium-dominated behavior.

In our context, the intuitive criterion rules out equilibria which are sustained by an unreasonable

threat of runs. In particular, if there is a bail-in policy to which only regulators with good news would

want to deviate, it does not seem credible that creditors should run when that policy materializes.

It is easy to see that Cho and Kreps’ original definition is equivalent to the following version in our

model:

Definition 2. An equilibrium with discretion in state s survives the intuitive criterion if there is

no off-equilibrium action a0 such that:

1. For some signal v0, the regulator strictly prefers a0 to his equilibrium action in the absence

of a run:

U(v + a0 − (D +B)) > W (α(v, s), v, s, β).

2. For all beliefs γ with Prγ [V ∈ σ(a0, s)] = 1, we have

λEγ [V |a0, V ∈ σ(a0, s)] ≥ D,

so that a run would be avoided if creditors attached zero probability to types for which a0 is

equilibrium dominated.

The intuitive criterion does not select a unique equilibrium in our model. However, it does allow us

to place meaningful restrictions on possible bail-in actions.

Recall that vD = D/λ is the lowest level of asset values which can be revealed without triggering

a run. Suppose we can find an off-equilibrium action a′ such that some regulators would strictly

prefer a′ to their equilibrium action, and only regulators with signals above vD would deviate to
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a′. Then, the equilibrium cannot survive the intuitive criterion, since beliefs which are confined

to V ≥ vD can never trigger a run. This reasoning allows us to narrow down equilibrium play

considerably. Figure 2 illustrates the process of elimination.

First, we can rule out discontinuous bail-in actions, as in panel (a) of the figure. If there is a

downward jump in equilibrium, then for the marginal signal v̂1, the regulator must be indifferent

between his actions before and after the jump, a−1 and a+
1 . Only types close to v̂1 would want to

deviate to a′ = a+
1 + ε for small ε > 0. By the minimal pooling requirement of Lemma 1, we have

v̂1 ≥ vp(s) > vD. Thus, only types above vD would deviate to a′ for small ε, and according to our

previous reasoning, the candidate equilibrium does not survive the intuitive criterion.

Second, we can put a restriction on bail-in when the regulator has the best possible signal. The idea

is illustrated in panel (b) of Figure 2. Suppose that α(v, s) > a?(s). Then there is either pooling

for the highest signals followed by separation for slightly lower signals (dashed line), or complete

pooling (solid line). In the dashed case, only regulators with high signals want to deviate to actions

below α(v, s). In the solid case, by our assumption in (6), a regulator with signal vD or below has no

incentive to deviate to a′ ' 0. In both cases, the candidate equilibrium fails to survive the intuitive

criterion.

Combining the above arguments, surviving equilibria must be structured as in panel (c) of the

figure. They either involve complete pooling on an action below a?(s), or an initial pooling region

followed by separation. In the second case, Lemma 1 implies that the initial pooling region must

extend at least up to vp(s), and that in the separation region, actions must coincide with the ideal

action a?(v).

Proposition 1. In any equilibrium surviving the intuitive criterion, the bail-in rule α satisfies

α(v, s) = min{a?(v), a′}

for some a′ ≤ a?(vp(s)).

This proposition demonstrates why discretion may be a problem. In surviving equilibria, no reg-

ulator takes an action above a?(vp(s)), the ideal action of the ‘minimal pooling type’ vp(s). It is
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Figure 2: Applying the intuitive criterion.
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(c) Surviving equilibria

clear that regulators with worse news (v < vp(s)) would like to take tougher actions. However, they

cannot do so for fear of triggering runs. As a result, the equilibrium with discretion exhibits exces-

sive weakness when the regulator has bad news. In this situation, the regulator needs to ‘pretend’

to have better news, pool with higher types, and take weaker actions than he would like, in order
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to avoid a run.

As discussed in Section 2, the regulator’s action a can be given a broader interpretation. First, a

could stand for the timing of regulatory intervention in a failing bank. Then, Proposition 1 implies

that regulators tend to react too late when banks are in trouble – another type of excessive weakness.

Second, a could stand for a regulatory requesting that the bank raise capital on the private market.

Proposition 1 then reveals an incentive to ask for insufficient recapitalizations, driven by the desire

to ‘pool’ with types who have better news.

What is the highest utility the regulator can achieve with discretion? By inspection of Figure 2,

panel (c), it is clear that the best surviving equilibrium is the one with the smallest pooling region:

Shrinking the pooling region increases the utility of regulators who now obtain separation, and

leaves the utility of the ‘poolers’ unchanged.

Corollary 1. For all realizations of the regulator’s private information v, the highest payoff in

a surviving equilibrium is achieved when a′ = a?(vp(s)). Hence, the highest expected payoff in a

surviving equilibrium, conditional on public information s, is

Ū(s) = E[U(v + min{a?(v), a?(vp(s))} − (D +B))|s]. (8)

Our graphical illustrations are drawn such that the ideal action a?(v) is strictly decreasing. This is

not the case in general. It is possible, for example, that regulators with bad news (low v) wish to

conduct the maximal possible bail-in, a?(v) = B. In this case, discretion need not induce excessive

weakness. If all regulators with news v ≤ vp(s) wish to conduct the maximal policy a?(v) = B,

then the ideal action already satisfies the minimal pooling requirement, and there is a surviving

equilibrium in which the regulator plays a?(v) for all realizations of v. In what follows, we focus on

the more interesting case where discretion induces excessive weakness. Therefore, we impose the

parametric restriction that a?(vp(s)) < B, or equivalently

U ′(vp(s)−D) < 0. (9)
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In this case, the payoff in the best surviving equilibrium, as characterized in (8), simplifies to

Ū(s) = E[U(E? −max{vp(s)− v, 0})|s], (10)

where E? is the preferred level of bank capital. This gives an intuitive characterization of the loss

from discretion. The regulator achieves his preferred level of bank capital when he has good news

(v > vp(s)). However, when he has bad news, he conducts an excessively weak bail-in, and bank

capital ends up below its preferred level at E? − (vp(s)− v).

To summarize, we have established that discretion leads to excessive weakness. We now turn to the

implications for optimal policy, and in particular, for the trade-off between rules and discretion.

4 Optimal regimes and contingent capital

Suppose that the regulator is able to tie his hands before any information is revealed. He can

credibly promise to take a certain action A(s), regardless of his private information, when the

public signal is s. An optimal rule lays out for which public signals the regulator will pre-commit

to a particular action, and which action he will commit to in each case. The timing of events is now

as follows:

• Date 0: The regulator announces a commitment set C ⊂ [s, s] of realizations of the public

signal, and commitment actions A(s) ∈ [0, B] for each s ∈ C.12

• Date 1: The public signal s is observed by everybody, and the private signal v is simultaneously

observed by the regulator.

• The regulator takes the bail-in action a. His choices depend on whether the public signal lies

in the commitment set (s ∈ C) or not:

– If s ∈ C, then the regulator is forced to take the commitment action a = A(s).
12An alternative sequence is to have the regulator announce his commitment at date 1, either before or after he

observes s. This will yield equivalent results. The only essential assumption is that a commitment is made before v
is observed by the regulator, since this allows him to avoid the signalling problem associated with discretion.
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– If s /∈ C, then the regulator has discretion to choose a ∈ [0, B], and plays the discretion

game analyzed in Section 3. We give discretion the benefit of the doubt

• Date 2: Assets mature and social welfare is realized.

For states without commitment (s /∈ C), we give discretion the benefit of the doubt by considering

the surviving equilibrium with discretion which yields the highest expected payoff Ū(s). By contrast,

commitment to A(s) gives the regulator an expected payoff of E[U(v +A(s)− (D+B))|s] in state

s ∈ C. Importantly, a committed regulator need not worry about runs. His actions, being contingent

only on public information, will not reveal any private information, and public information alone

does not trigger runs by our assumption in (5).

4.1 Optimal rules

In writing an optimal rule, the regulator decides for which subsets of states s to write a commitment,

and which actions to commit to in those states, to maximize his expected utility.

Definition 3. An optimal rule is a commitment set C? ⊂ [s, s] and a commitment action A?(s) for

each s ∈ C?, which solve the problem

max
C∈2[w,w],(A(s))s∈C

E[U(v +A(s)− (D +B))× 1(s ∈ C) + Ū(s)× 1(s /∈ C)] (11)

In choosing whether to make a commitment in state s, the regulator compares the value of playing

the discretion game, Ū(s), to the expected payoff from playing a fixed action A, which is E[U(v +

a− (D +B))|s]. The value of commitment to A is therefore

V C(s) = maxA E[U(v +A− (D +B))|s]. (12)

The optimal rule is as follows: If V C(s) < Ū(s), then the regulator is better off playing the discretion

game. Otherwise, then he chooses to commit to A?(s) = arg maxAE[U(v +A− (D +B))|s].
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The trade-off between commitment and discretion is illustrated in Figure 3. The regulator would

never commit to a weak action A0 < a′ (the lower bold line). This commitment takes the regulator

further away from the ideal action a?(v) than he would be in the discretion equilibrium (the bold

dashed line), regardless of his private information v. Intuitively, since discretion induces excessive

weakness, commitment to a weak action only makes things worse.

However, commitment to a tough action A1 > a′ (the upper bold line) may be valuable. This

commitment benefits the regulator by taking him closer to the ideal action whenever a low enough

v is realized, but hurts him when high a high v is realized. When v is low, the excessive weakness

with discretion hurts the regulator, and he would like to commit to being tough.

Figure 3: Candidate commitment actions.
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a′
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It follows that commitment to a high action like A1 is valuable when public news s is sufficiently bad.

Adverse public news imply that low realizations of v are likely, which is precisely when commitment

benefits the regulator. The following proposition formalizes this intuition.

Proposition 2. Suppose V C(s) > Ū(s). Then, the optimal commitment set C? takes the shape

C? = [s, s?) or C? = [s, s?] for some s? ≥ s. The optimal commitment actions solve A?(s) =

arg maxA V C(A, s), and are decreasing in s (and strictly decreasing whenever A?(s) < 1).

This clearly illustrates the trade-off between commitment and discretion as a trade-off between
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toughness and accuracy. With discretion, the threat of runs leads to excessively weak bail-in policies,

as regulators attempt to avoid revealing very bad news. The benefit of commitment is the ability

to be tough when news are bad. The cost of commitment is that the regulator cannot adapt his

action, even when he ends up with good news.

When the economic outlook based on public news is poor, regulators anticipate bad private news as

well and therefore a greater need for tough bail-in policies. In this case, the benefits of commitment

outweigh the costs. Commitment allows regulators to be tough without provoking runs. Conversely,

when public news suggests that the economic outlook is good, regulators also anticipate good private

news. In this case, the costs of commitment outweigh its benefits. The threat of runs is remote,

and the excessive weakness induced by discretion is unlikely to affect the regulator. Therefore, the

regulator prefers discretion. As a result, the regulator optimally writes rules which tie his hands

whenever the economic outlook, as measured by public news, falls below a threshold s?.13

4.2 Optimal rules and the quality of public information

The value of commitment depends on the quality of public information. When the regulator gives

up discretion, he is forced to ignore his private information and acts only on public signals. At first

glance, a noisy public signal should therefore reduce the value of commitment by decreasing the

accuracy of bail-in policies. For instance, regulators might worry that commitment based on market

prices, e.g. through contingent capital, would subject policy to the whims of market sentiment. We

show that this is true in a practically relevant region of the parameter space, but that the general

effect is more nuanced.

We model a deterioration in the quality of public information as follows: Suppose that instead of

S, the public observe a signal Ŝ with support [s, s] which is less informative than S in the sense of

Blackwell (1953). Letting h(s|v) and ĥ(s|v) denote the conditional densities of S and Ŝ, the two

signals are related by

ĥ(ŝ|v) =
sˆ
s

m(ŝ, s)h(s|v)ds (13)

13Note that the threshold s? is the state in which the regulator is indifferent between discretion and commitment.
Therefore, it does not matter whether it is included in the commitment set or not.
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where m is a ‘garbling function’ satisfying
´ s
s m(ŝ, s)dŝ = 1.

Suppose that Ŝ is observed instead of S. The regulator continues to decide between discretion and

commitment for each realization s. Is commitment less valuable given a noisy realization Ŝ = s

than given a precise realization S = s? Perhaps surprisingly, the effect is ambiguous.

Recall that commitment to tough actions benefits the regulator when he has bad news (low v) and

hurts him if he faces good news (high v). First, consider a low realization of the public signal, close

to s. Noisy bad news is less meaningful than precise bad news, so the distribution of V given Ŝ = s

is more optimistic than its distribution given S = s, in the sense of first-order stochastic dominance.

Hence, the noise shifts probability mostly towards high v, where commitment is harmful, and the

value of commitment falls. Second, consider a high realization of the public signal, close to s. In this

case, noise makes the conditional distribution more pessimistic, probability shifts mostly towards

low v, and commitment becomes more valuable.

Since noise affects the value of commitment in an ambiguous way, its effect on the optimal rule is

also ambiguous.

Proposition 3. Suppose the public signal becomes Ŝ instead of S. Then the optimal commitment

set C? = [s, s?) shrinks if s? is close to s, and expands if s? is close to s. Moreover, the optimal

commitment action A?(s) falls if s ∈ C? is close to s, and rises if s ∈ C? is close to s.

In reality, regulators would want to execute tough resolution policies only when banks are close

to failure. Hence, the empirically relevant case is perhaps where s? is close to s. In this scenario,

Proposition 3 shows that when the quality of public information deteriorates, a more cautious

approach to rules-based resolution is warranted, in two dimensions. On the one hand, discretion

becomes relatively more attractive, and the regulator should only commit for very bad news (the

commitment set shrinks). On the other hand, in those states where he does commit, the rules

should mandate a weaker response (the commitment actions fall).

When optimal rules are implemented with contingent capital, and if s? is close to s, noisier public

information means that (i) less contingent debt should be issued, and (ii) the triggers on contingent

capital should be set at a lower level. If the regulator worries about large deviations of market
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prices from fundamentals, for example, contingent capital with market-based triggers is naturally a

less attractive option, even when it acts as a commitment device.

5 Contingent capital as a commitment device

Suppose that some long-term bonds are issued as contingent capital. The bank writes contracts

with its investors which specify that long-term bonds with face value φ(s) will be written down or

converted into equity when public news s arrives.14

By specifying contingent capital in this way, we are making some implicit assumptions. First,

we continue to treat the distribution of the public signal S, which plays the role of a trigger,

as exogenous. In the case of a market-based trigger, this is a bad approximation in situations

where conversion itself strongly affects prices. In other words, we assume that contingent debt

is designed to prevent the strong feedback effects or ‘death spirals’ discussed by Sundaresan and

Wang (2014). Second, we assume that the regulator has no direct influence over the realization of

S. This is not guaranteed. For example, Bulow and Klemperer (2013) argue that the conversion of

contingent convertibles with regulatory capital (i.e. book equity) triggers may not be credible, since

regulators can affect measured regulatory capital by deciding when to require banks to write down

non-performing assets.

Contracts used in practice trigger conversion whenever a publicly observable indicator falls below

a certain threshold. If news get worse, the amount of debt converted always increases or stays the

same in these structures. For the sake of realism, we therefore restrict φ(s) to be decreasing in s.

The relevant conversions can then be implemented by ensuring that a fraction φ(s) of bonds have

triggers greater than or equal to s.

The regulator’s preferences are as before, but he cannot reverse the conversion of contingent capital.

Hence, even when he acts with discretion, he faces the additional constraint a ≥ φ(s). We show that

this constraint creates sufficient commitment to implement the optimal rule. Given a contingent
14 Avdjiev et al. (2013) show that conversion-based contracts dominated the initial wave of issuance in 2009, but

that more recently, the split between conversion and principal write-down CoCos has been roughly half-half.
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debt structure φ(s), an equilibrium with discretion and the intuitive criterion are defined as before,

except that the regulator must choose a ∈ [φ(s), B].

Definition 4. A contingent debt structure is a decreasing function φ(s). A contingent debt struc-

ture φ implements the optimal rule if there exists equilibria with discretion for each s which survive

the intuitive criterion and in which the regulator’s utility achieves the maximized value of problem

(11).

The natural candidate is a contingent debt structure which enforces the actions that the regulator

would optimally commit to, i.e. φ(s) = A?(s) for states in the commitment set s ∈ C?. Moreover, in

states where commitment is not valuable, we would like contingent debt not to restrict her discretion,

i.e. φ(s) = 0 for s /∈ C?. The characterization of the optimal rule in Proposition 2 immediately

shows that the candidate φ(s) is a decreasing function, so that it qualifies as a contingent debt

structure.

We need to check that φ(s) induces a discretion equilibrium for each state s which (i) gives the

regulator the same utility as the optimal rule, and (ii) survives the intuitive criterion.

Figure 4: Equilibrium with contingent debt.
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In states without commitment (s ∈ C?), φ(s) = 0, and the set of surviving equilibria is trivially the

same as with the optimal rule. In states with commitment, the regulator would play A?(s) = φ(s)
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for sure under the optimal rule. We must verify that there is a surviving pooling equilibrium such

that α(v, s) = φ(s) for all v. These actions are sustained in equilibrium by having the public believe

that v is very low whenever they see an action other than φ(s). Figure 4 illustrates why such beliefs

are reasonable in the sense of the intuitive criterion. Given that φ(s) worth of debt must convert,

the only feasible off-equilibrium actions are a′ > φ(s). If a run could be avoided, a regulator with

the worst news v would always want to deviate to a higher action a′, since this would bring him

closer to his ideal action a?(v). Hence, it is not unreasonable for the public to believe that v is low

when a deviation is observed, and the equilibrium survives the intuitive criterion accordingly.

The optimal rule is implemented by the contingent debt structure

φ(s) = A?(s)× 1(s ∈ C?).

This result illustrates a novel role for contingent capital in financial policy. Contingent capital hard-

wires the conversion of debt upon bad public news. This ties the regulator’s hands in a helpful way.

When public news is bad, commitment to tough bail-in actions is valuable, since the threat of runs

and the excessive weakness associated with discretion are imminent. In these states, the conversion

of contingent debt provides quasi-commitment by mandating a tough bail-in policy beyond the

regulator’s control. When public news is good, discretion is preferable. Since contingent capital

does not convert in these states, discretion is preserved exactly when it is most valuable.

In our implementation, the regulator has the option to take the bank into resolution and conduct

further bail-ins (a > φ(s)), even when some conversion of the contingent debt has been mandated.

Contingent debt contracts in practice often have this feature: There is a trigger based on market or

accounting information, but the regulator always has the option to intervene, even when the trigger

has not been hit. It is interesting to note that in our implementation, this additional ‘regulatory

trigger’ is not used. The regulator would only want to conduct an additional bail-in when he has

very bad news. But doing so would reveal bad news to the public, triggering a run.

Hence, the regulator optimally refrains from pulling the additional regulatory trigger. Do regulatory

triggers add any value at all? In a richer model, this may still be the case. For example, consider a

setting where the public signal S is observable, but only a noisier version Ŝ is privately contractible.
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Then commitment via contingent capital contracts is only possible based on Ŝ. However, the

regulator will wish to react by using additional regulatory triggers when the public news S is worse

than its contractible part Ŝ. Moreover, he will not hesitate to do so, because S is publicly known

and acting upon it will not trigger runs.

Our results show that it can be helpful for banks to have a contingent capital structure designed

according to the regulator’s tastes. If there are externalities associated with bank distress, this

structure will differ from banks’ private preference. A step towards aligning the incentives of banks

and regulators is to have contingent debt count towards regulatory capital requirements, as they

currently do in Europe. However, there is no guarantee that this would align incentives exactly.

Thus, a combination of contingent debt and hard-wired rules may be needed to achieve the right

type of commitment.

We show that under our assumptions, the optimal rule can be exactly implemented by contingent

capital structures. Thus, we suggest a novel role for contingent capital as a commitment device.

Moreover, the assumptions we make to achieve implementation provide guidance on the design

of contingent capital contracts and the choice of the trigger signal S. In particular, it should

be the case that these contracts (i) do not lead to strong feedback effects and (ii) are based on

triggers which are credibly beyond the regulator’s control. Proposals for such designs are given

by Hart and Zingales (2011), Bulow and Klemperer (2013), and Pennacchi et al. (2013), among

others. Moreover, Proposition 3 in the last section implies that triggers should not be too noisy.

This implies a potential trade-off between the use of market and book values in contingent capital

design: Market values are more credibly beyond the control of the regulator than book values, but

might also be considered noisier.

Note in addition, that one reason that practitioners give for banks’ desire to issue CoCos is that

they offers investors a way to avoid the risks associated with regulatory discretion over bail-ins.

If investors are uncertain about the regulator’s preferences, this can introduce additional risk for

the buyers of bonds which may be deemed bail-inable. In our model, regulators’ preferences are

known and benevolent, but there will nevertheless be uncertainty associated with discretion because

investors are not privy to the regulator’s private information. Commitment has the virtue of avoiding
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not only excessive weakness, but also the risk associated with predicting the regulator’s signal on

the basis of public information.

6 The bank’s balance sheet and ex ante regulation

So far, we have taken the bank’s balance sheet as a primitive, determined exogenously at some

prior date (date 0, say). This section examines how changes in the date 0 balance sheet affect

the problems associated with discretion and the optimal rule. This exercise will point to ex ante

policies, such as liquidity and capital regulation at date 0, which will allow bail-in policy to become

more effective. Thus, we show that the ex ante liquidity and capital requirements of Basel III should

be seen as complementary to the design of ex post resolution regimes.

The parameters of the bank’s balance sheet in the baseline model are its short-term debt D, and

its long-term bonds B. In this section, we also allow the bank to hold C units of riskless cash.

Moreover, we allow the exposure to risky assets to be scaleable. Assuming that one unit of risky

investment, undertaken at date 0, yields exposure to the risky cash flow V we have studied so far,

let X be the amount invested in risky assets at date 0, which yields exposure to a risky cash flow

of XV at date 1.

In order to determine the effect of balance sheet changes on the optimal rule, and eventually on the

regulator’s maximized utility, we consider the regulator’s utility under discretion and rules.

When the regulator has discretion in state s, changes in the bank’s balance sheet increase utility if

they alleviate the regulator’s incentives for excessive weakness. In terms of our graphical analysis,

e.g. in panel (c) of Figure 2, such changes benefit the regulator if they reduce the threshold signal

vp(s) and the size of the minimal pooling region. Recalling (10), the maximal utility in discretion

is equal to Ū(s) = E[U(E? −max{vp(s)− v, 0})|s], so it depends on the bank’s balance sheet only

indirectly through the threshold vp(s).

In the model with cash holdings, we need to slightly modify the definition of vp(s): When the public

learns that V ≤ vp(s), it believes that the liquidation value of the bank’s assets, i.e. of its cash and
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its risky assets, is just enough to cover its short-term debt liabilities. Thus, vp(s) in a model with

cash holdings is defined by C + λE[XV |V ≤ vp(s), s] = D, or equivalently

E[V |V ≤ vp(s), s] = D − C
λX

. (14)

Since the left-hand side of this equation is strictly increasing in vp(s), it follows that a change in

the balance sheet reduces vp(s) – and increases utility under discretion – if and only if it reduces

the ratio

∆ ≡ D − C
λX

. (15)

The ratio ∆ is a natural measure of illiquidity. The numerator measures the bank’s liquidity

shortfall, i.e. the difference between short-term liabilities and cash reserves. The denominator λX

measures the number of risky assets available for liquidation, accounting for the discount at which

they must be sold.

In states s where the regulator chooses to commit, his utility is equal to

V C(s) = max
a

E[U(v + a− (D +B))|s], (16)

which depends on capital structure only through the term D+B, the bank’s total outstanding debt.

By the envelope theorem, we have

dV C(s)
d(D +B) = −E[U ′(v +A?(s)− (D +B))|s] = 0,

where A?(s) is the maximizer in (16), and the second equality follows from the regulator’s first-order

condition. Thus, we find that changes in the bank’s balance sheet affect the value of discretion only

via the ratio ∆, and leave the value of commitment unchanged.

Proposition 4. The ratio ∆ defined in (15) is a sufficient statistic for the response of the optimal

rule to changes in the bank’s balance sheet. If ∆ increases, the optimal commitment set C?expands,

and the regulator’s maximized expected utility decreases. If ∆ decreases, the optimal commitment

set C? shrinks, and the regulator’s maximized expected utility increases.
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An increase in ∆ makes the bank less liquid. This strengthens the threat of runs and increases the

regulator’s incentives to take weak actions. As a result, discretion becomes more problematic and

he reacts by commiting over a larger range of states. Other things equal, this change makes the

regulator worse off. The opposite happens when ∆ decreases and the bank becomes more liquid.

We now discuss how, in practice, liquidity and capital regulation can influence ∆.

6.1 Liquidity regulation

Under the rules of Basel III, banks must ensure that their liquidity coverage ratio (LCR) does not

fall below 1. The liquidity coverage ratio is calculated as the ratio of high quality liquid assets to

net cash outflows, where the outflows are taken from a hypothetical 30-day stress scenario. High

quality liquid assets are a weighted average of assets of the form C + wlX, where wl < 1 is a

coefficient measuring the liquidity of non-cash assets.15 Net cash outflows are a weighted average of

liabilities. In particular, the Basel proposal puts a weight of 1 on short-term debt, i.e. it is assumed

that short-term debt is withdrawn completely in the stress scenario. If long-term debt may not

be withdrawn (as is the case for sufficiently long maturities), net cash outflows in our notation are

simply equal to D, and the LCR requirement is (C + wlX)/D ≥ 1, which is equivalent to

∆ = D − C
λX

≤ wl
λ
.

If this requirement is binding, a regulator controlling the LCR can directly influence the ratio ∆ by

adjusting the liquidity weight on risky assets wl. By Proposition 4, this ratio is the only quantity

that matters for the effectiveness of bail-in policy. It follows that Basel III’s liquidity regulation is a

very natural complement to bank resolution regimes. We do not model the determinants of optimal

liquidity regulation, which is influenced by many factors, such as the cost of reduced maturity

transformation by banks ex ante (Walther, 2015). However, our analysis demonstrates that at the

margin, tough liquidity regulation becomes more desirable when illiquidity has an adverse impact

on the efficacy of bank resolution.
15For simplicity, we concentrate on the case with one non-cash asset. However, a similar argument would apply for

any number of non-cash asset classes, in which case high quality liquid assets would be C +
∑

wliXi for some vector
of weights (wli).

31



6.2 Capital regulation

Capital regulation requires the ratio of bank equity to risk-weighted assets to be above a certain

threshold κ. In our setting, a capital requirement at date 0 would constrain the bank’s balance

sheet to satisfy
X − (D +B)

wrX
≥ κ, (17)

where wr > 0 is a risk weight. The capital requirement can be rearranged to

D +B

X
≤ 1− κwr.

While liquidity regulation was able to directly target the ratio ∆, which is important for bank

resolution, capital regulation is a blunter tool. Tightening capital regulation, by raising κ or wr,

forces the bank to reduce the ratio (D + B)/X. How this measure correlates with ∆ is difficult to

say without an explicit model of bank choices at date 0, which is beyond the scope of our paper.

However, for well-behaved preferences, a bank which is forced to reduce (D+B)/X is likely to push

on both margins, i.e. reduce both short-term debt D/X and long-term debt B/X, relative to risky

assets. This will lead to a reduction in ∆ = (D−C)/λX, unless the decrease in D/X is offset by a

bigger decrease in the cash ratio C/X. It would be difficult to write a model in which a bank’s cash

holdings, which are not constrained by (17), respond more a tightening of the capital requirement

than short-term debt, which is constrained by (17). Moreover, reserve requirements place a lower

bound on C/X in practice, so that the offsetting effect is unlikely to dominate.

Taking these arguments together, a tightening in the cpaital requirement is likely to reduce ∆,

increase the bank’s liquidity, and increase the utility of the bail-in regulator we have studied.

However, the transmission channel is less clear-cut than with liquidity requirements, which were

able to target ∆ directly. Liquidity regulation appears a more natural candidate for complementing

bank resolution regimes in our setting, where regulator weakness in bailing-in is driven by fear of

liquidity-draining bank runs.
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7 The lender of last resort

We have worked under the assumption that liquidity support by lenders of last resort is insufficient

to eliminate the threat of runs. The motivation for this assumption is as discussed in Section 2:

Instituting a very lenient lender of last resort may not be optimal due to moral hazard concerns,

and empirical reality features binding limits on liquidity support, such as collateral requirements.

In this section, we show that partial liquidity support is complementary to bail-in policy.

Suppose that at date 1, a lender of last resort is willing to grant the bank a loan L per unit of risky

asset investment. For simplicity, we suppose that the maximal loan L does not react to public or

private information, and that the lender of last resort does not act strategically. These feedbacks

would introduce an additional fixed point problem to the model, but as long as the coverage of

liquidity support is imperfect, the qualitative effects with feedback will be similar. Moreover, the

lender of last resort can only take on a fraction η of the bank’s assets as collateral. This might

reflect pre-determined rules about acceptable collateral.

If the bank sells a fraction z of its risky assets, it obtains λE[V |a, s]z in the market, and it can

borrow max{1− z, η}L from the lender of last resort. Thus, the maximum amount of liquidity the

bank can obtain at date 1 is

max
z

[λE[V |a, s]z + max{1− z, η}L]

= λE[V |a, s] + ηmax{L− λE[V |a, s], 0} (18)

The expression is easy to interpret. Selling assets on the market brings λE[V |a, s]. Suppose that per

risky asset, the loan available from the lender of last resort exceeds the amount that it can be sold

for, i.e. L > λE[V |a, s]. Then the bank raises the most liquidity by using the lender of last resort,

up to the maximum possible extent η. This further increases liquidity by ηmax{L−λE[V |a, s], 0}.

Repeating the analysis of the withdrawal game in Section 2 reveals that bank runs become a

possibility when the expression in (18) is strictly less than outstanding short-term debt D. Suppose
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that this is the case when the public learn the worst possible news, i.e.

λv + ηmax{L− λv, 0} < D. (19)

Then, by to the argument of Section 3, discretionary bail-in policies will induce excessive weakness

for regulators who observe V ≤ vp(s), where the pooling threshold vp(s) is defined by

E [V |V ≤ vp(s), s] =


D−ηL
λ(1−η) , if L ≥ D

D
λ , if L < D.

The first case, L ≥ D, corresponds to one where the lender of last resort would be able to rescue

any bank if η = 1, i.e. if it accepted all projects as collateral. Under the restriction (19), the

threshold vp(s) is decreasing in η. Therefore, in the region where the lender of last resort is strong

in principle but constrained by collateral requirements, loosening the collateral requirement will

reduce the regulator’s incentives to be excessively weak in his bail-in policy. Intuitively, a more

lenient lender of last resort reduces the threat of bank runs, and as a result the regulator will worry

less about revealing bad news when conducting bail-in policies.

By a parallel argument to Proposition 4, it follows that in this parametric region, loosening the

lender of last resort’s collateral requirement is complementary to bank resolution policy. We do not

model the other trade-offs involved in setting collateral requirements, such as concerns about moral

hazard. But at the margin, liquidity support by lenders of last resort should be more generous when

effective bank resolution is considered an important policy objective.

8 Conclusion

We have built a signaling model in which bank regulators have information about the financial

condition of banks which investors do not have. We have shown that in the presence of such

information, effective bank resolution can be inhibited by regulatory authorities’ incentives to be

excessively weak. In our model, regulators may prefer to leave banks under-capitalized, because
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undertaking a tough re-capitalization before it is expected would reveal regulators’ pessimistic

outlook, and so could spook investors and lead to adverse consequences such as bank runs. More

generally, whenever regulators are believed to have private information, signaling concerns will limit

the regulator’s willingness to step in early or take other tough action to resolve banks.

The implication of our result is that it is always desirable for the regulator to use some amount of

commitment to limit discretion ex post in a crisis, even if this means tying regulation to a more

noisy, publicly observable, source of information. Commitment is most valuable after bad public

news, since such events foreshadow the need for tough resolution policy. We show that optimally

designed contingent capital issues by banks (e.g. CoCos) can help implement such a commitment.

Our theory has three broad implications for resolution policy, and for financial policy in general.

First, allowing regulators discretion in resolution regimes is not always a virtue. It is widely agreed

that resolution authorities should put in place plans for bail-ins in systemically important banks.

But our paper goes further in pointing out that it is very important that these plans are made

binding after adverse public news, for example after severe declines in banks’ market or book values,

in order to avoid the excessive weakness problem that arises from signaling. Second, regulators

should welcome the use of properly designed contingent capital contracts, which recapitalize failing

banks automatically. Finally, bank resolution and ‘going concern’ policies such as the regulation of

banks’ balance sheets and last resort lending, should not be considered separate activities. Because

they ease the ‘run constraint’ on the regulatory release of information, going concern policies help

improve the credibility of plans to write-down or convert bank debt in a crisis. Thus, there is a

natural and important complementarity between going-concern policies and the effective design of

resolution regimes.
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APPENDIX

Unless otherwise stated, proofs are given for the general case where the regulator’s utility (in the

absence of a run) is U(a, v), where U(a, v) is twice differentiable, strictly concave in a and satisfies

the submodularity condition
∂2U(a, v)
∂a∂v

< 0 (20)

The exposition in the text corresponds to the special case where (abusing notation slightly),

U(a, v) = U(v + a− (D +B)).

Proof of Lemma 1

1. No runs. Let ρ(a, s) = 1(λEβ[V |a, s] < D). Suppose some type v′ faces a run in equilibrium,

ρ(α(v′, s), s) = 1. Then a run must occur regardless of the regulator’s action, ρ(a, s) = 1 for all a,

because otherwise, assumption (4) implies that type v′ would deviate to an action that does not

trigger a run. Then the regulator’s action maximize U(a, v)− κ(v), implying α(v, s) = a?(v) for all

v. Let v′′ = inf{v : a?(v) = a?(v)}. Bayes’ rule and assumption (3) give

Eβ[V |α(v, s), s] = E[V |V ≥ v′′, s] ≥ E[V |s] ≥ D.

Thus type v cannot face a run, a contradiction.

2. Minimal pooling. Suppose not. Assume that equilibrium actions are weakly decreasing in v, as

will be established in part 3. Then α(v, s) > α(vp(s), s). Let v′ = sup{v : α(v, s) = α(v, s)}. Then

Bayes’ rule and assumption (3) give Eβ[V |α(v, s), s] = E[V |V ∈ [v, v′]] < D. Thus type v must face

a run, contradicting the result in part 1.

3. Incentive compatibility. In equilibrium, each type must prefer his action to anybody else’s:

U(α(v, s), v) ≥ U(α(v′, s)v) for all v′ 6= v (21)
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Suppose α(v, s) is not weakly decreasing in v so that for some v′ > v we have α(v′, s) > α(v, s). Let

a = α(v, s) and a′ = α(v′, s). Condition (21) implies U(a′, v′) − U(a, v′) ≥ 0 ≥ U(a′, v) − U(a, v).

But by the submodularity condition (20) and a′ > a, we have

∂

∂t
U(a′, t)− U(a, t) < 0

implying U(a′, v′)− U(a, v′) < U(a′, v)− U(a, v), a contradiction.

When α(v, s) is differentiable at v, the function U(α(v′, s), s) differentiable in v′ at v = v′. The

incentive condition (21) then implies the first-order condition

∂U(α(v, s), v)
∂a

∂α(v, s)
∂v

= 0.

Thus either ∂α(v,s)
∂v = 0 or ∂U(α(v,s),v)

∂a = 0. The latter case gives α(v, s) = a?(v) as required.

When α(v, s) is discontinuous at v, then suppose U(α+(v, s), s) > U(α−(v, s), s). By continuity of

U , for small enough ε, there exists a type v− ε who prefers action α+(v, s) to his own, contradicting

equilibrium. If U(α+(v, s), s) < U(α−(v, s), s) the contradiction follows for some type v + ε. Thus

U(α+(v, s), s) = U(α−(v, s), s) as required.

Proof of Proposition 1

We prove the proposition in two steps. First, we show that α(v, s) is continuous in v in any surviving

equilibrium. Second, we show that the highest type never bails in more than his preferred action:

α(v, s) ≤ a?(v).

In both steps, we show that a candidate equilibrium violating the proposed condition does not

survive the intuitive criterion. To do this, we find an off-equilibrium action a0 such that types

belowvD = D/λ would never to a0, and that some type above vD strictly prefers a0 to his equilibrium

action. For such an action, and for all beliefs γ with Prγ [S ∈ σ(a0, s)] = 1, we have λEγ [V |a0, V ∈

σ(a0, s)] ≥ D, so that the equilibrium does not survive the intuitive criterion.
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1. Continuity of α(v, s). Take any equilibrium where α(v, s) has a discontinuity at some v. By

Lemma 1, we have v ≥ vp(s) (minimal pooling), and type v is indifferent between the actions before

and after the jump (incentive compatibility). Consider the off-equilibrium action a0 = α−(v, s) + ε.

Only types above v−δ(ε) would deviate to a0, where δ(ε)→ 0 as ε→ 0. Since v ≥ vp(s) > vD, only

types above vD would deviate to a0 when ε is small. Finally, note that for all ε > 0, there exists a

type v + δ̂(ε) who strictly prefers a0 to his equilibrium action.

2. Highest type’s action satisfies α(v, s) ≤ a?(v). Take any equilibrium with α(v, s) > a?(v), and

let v′ = min{v : α(v, s) = α(v, s)} be the lowest type who takes the same action as v. There are

two possible cases: complete pooling with v′ = v, or partial separation with v′ ≥ vp(s).

Case (i): v′ = v. All types take action the same pooling action a′. When this action is lower than

the ideal action of type vD, i.e. a′ ≤ a?(D), then it is also lower than the ideal action of any type

below. Thus only types above vD would deviate to the off-equilibrium action a0 = a?(v), and type

v strictly prefers a0 to his equilibrium action.

When a′ > a?(D), then we have U(α(D, s), D) > U(1, D) > U(0, D) by assumption (6). It follows

from the submodularity condition (20) that no types below vD would deviate to the off-equilibrium

action a0 = 0. If type v wants to deviate to this action, i.e. U(0, v) > U(a′, v), then we are done.

Otherwise, define a′′ as the action that makes her indifferent: U(a′′, v) = U(a′, v). Take an off-

equilibrium action a0 = a′′ − ε, where ε > 0, which type v strictly prefers to his equilibrium action.

Only types above v − δ(ε) would deviate to a0, where δ(ε)→ 0 as ε→ 0. Thus only types above D

would deviate to a0 when ε is small.

Case (ii): v′ ≥ vp(s). By Lemma 1 (incentive compatibility) and continuity, every type below v ≤ v′

takes an equilibrium action which is weakly below his preferred action a?(v). Thus only types above

v′ would deviate to an off-equilibrium action a0 ∈ (a?(v), α(v, s)), and type v strictly prefers such

an a0 to his equilibrium action, which completes the proof.
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Proof of Proposition 2

We show that it the essentially unique optimal commitment set is either empty or an interval

C? = [s, s?]. The characterization of the optimal commitment action in the second case follow

immediately, and the proof of Proposition 5 demonstrates that A?(s) is decreasing in s.

In an optimal rule, the regulator must commit in almost all states s for which the value of com-

mitment V C(s) is greater than Ū(s), and retain discretion in almost all others. Using the defini-

tion of V C(s) in (12) and the characterization of Ū(s) in (8), and defining J(a, v) = U(a, v) −

U(min{a?(v), a?(vp(s)), v), we have V C(s) − Ū(s) = maxaE[J(a, v)|s]. It is easy to see that

J(a, v) < 0 for all a < a?(vp(s)). Hence, the regulator must commit whenever the effective value of

commitment, defined as

EV C(s) = max
a≥a?(vp(s))

E[J(a, v)|s] (22)

is positive. For all a ≥ a?(vp(s)), J(a, v) is strictly decreasing in v. By the assumption of first-order

stochastic dominance in (1) and the argument of Rothschild and Stiglitz (1974), it follows that

EV C(s) is strictly decreasing in s.

If V C(s) > U(s), then EV C(s) > 0, and by continuity of U , there exists a s? such that EV C(s) ≥ 0

for all s ≤ s?and EV C(s) < 0 for all s > s? (if s? < s). Thus, the regulator must commit for almost

all s ∈ [s, s?], and retain discretion for almost all other s, as required.

Proof of Proposition 3

Denote the effective value of commitment, as defined in (22), by EV C(s) if S is observed and

by ˆEV C(s) if Ŝ is observed. First, we show that ˆEV C(s) < EV C(s) and ˆEV C(s) > EV C(s).

Second, we show that there exists a slow > s such that (i) the commitment threshold s? decreases

if s? ≤ slow and (ii) the optimal commitment action A?(s) falls for all s ≤ slow. Conversely, there

exists a shigh < s such that (i) the commitment threshold s? falls if s? ≥ shigh and (ii) the optimal

commitment action A?(s) falls for all shigh ≤ s ≤ s? if s? > shigh.

1. ˆEV C(s) < EV C(s) and ˆEV C(s) > EV C(s). Let hV (v), hS(s) and hŜ(ŝ) denote the marginal

42



densities of V , S and Ŝ. By Bayes’ rule and the garbling condition (13), we have

ĝ(v|ŝ) = f̂(s|v)hV (v)
hŜ(ŝ) = hV (v)

hŜ(ŝ)

sˆ
s

m(ŝ, s)f(s|v)ds

=
sˆ
s

k(ŝ, s)g(v|s)ds

for all ŝ ∈ [s, s], where k(ŝ, s) = hS(s)
hŜ(ŝ)m(ŝ, s). Integrating both sides over v ∈ [v, v], we have

´ s
s k(ŝ, s)ds = 1. Now integrating over v ∈ [v, v′], we have Ĝ(v′|ŝ) =

´ s
s k(ŝ, s)G(v′|s)ds. It follows

from (1) that G(v′|s) < Ĝ(v′|ŝ) < G(v′|s) for all ŝ. Thus the distribution of V given Ŝ = s first-

order stochastically dominates its distribution given S = s, and the distribution of V given Ŝ = s

is dominated by its distribution given S = s. Repeating the argument of Proposition 2 implies the

proposed inequalities.

2. Existence of slow and shigh. We show the existence of slow. The proof for shigh is analogous.

From the analysis above, and by continuity, there is a s′ > s such that ˆEV C(s) < EV C(s) for all

s ≤ s′. Note that the original optimal commitment threshold solves EV C(s?) = 0. If s? ≤ s′, then

ˆEV C(s?) < 0. By the argument of Proposition 2, ˆEV C(s) is increasing in s, and therefore, the

new optimal commitment threshold, which solves ˆEV C(ŝ?) = 0, must lie below s?.

The original optimal commitment action A?(s) solves E[ ∂∂aU(c?(s), v)|S = s] = 0. By the sub-

modularity condition (20), ∂
∂aU(a, v) is decreasing in v. Using the result on first-order stochastic

dominance above, it follows that E[ ∂∂aU(a, v)|S = s] > E[ ∂∂aU(a, v)|Ŝ = s], implying

E[ ∂
∂a
U(A?(s), v)|Ŝ = s] < 0.

Thus the optimal commitment action given the lowest signal, which solves

E[ ∂
∂a
U(Â?(s), v)|Ŝ = s] = 0,

must lie below c?(s). By continuity, there exists a s′′ > s such that Â?(s) < A?(s) for all s ≤ s′′ for

which an optimal commitment action is defined.
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Combining the arguments above, we can set slow = min{s′, s′′}, which has the desired properties.

Proof of Proposition 5

First, we verify that the proposed function φ(s) = A?(s) × 1(s ∈ C?) is non-increasing in s and

qualifies as a contingent debt structure. Second, we show that it implements the optimal rule.

1. φ(s) is non-increasing. By Proposition 2, we have φ(s) = 0 for all s or

φ(s) =


A?(s), s ≤ s?

0, s > s?

for some s?, where c?(s) satisfies the first-order condition ∂
∂aE[U(c?(s), v)|s] = 0. By the submod-

ularity condition (20), ∂
∂aU(a, v) is decreasing in v. Using the assumption of first-order stochastic

dominance in (1) and the argument of Rothschild and Stiglitz (1974), it follows that ∂
∂aE[U(a, v)|s] =

0 is decreasing in s for all a. By concavity of U , it follows that c?(s) is decreasing in s. Hence φ(s)

is non-increasing everywhere (but with a potential jump discontinuity at s?).

2. φ(s) implements the optimal rule. For s /∈ C?, the game is identical to that without contingent

debt, and it is immediate from Proposition 1 that an equilibrium with the desired properties exists.

For s ∈ C, we consider the pooling equilibrium with α(v, s) = φ(s), and show that it survives

the intuitive criterion. The only feasible off-equilibrium actions have a0 > φ(s). The gain from

deviating from φ(s) to a0 for type v is U(a0, v)− U(φ(s), v). By the submodularity condition, this

gain is highest for type v. Thus whenever any type prefers a0 to his equilibrium action, type v

prefers it too. Thus whenever σ(a0, s) is non-empty, there is a belief γ, which places all mass on

v ∈ σ(a0, s), such that λEγ [V |a0, V ∈ σ(a0, s)] = v < D, and the equilibrium survives the intuitive

criterion.
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