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Abstract

We propose a criterion to evaluate the empirical relevance of systemic risk measures

based on their ability to predict low quantiles of real macroeconomic aggregates. We

also propose and evaluate methodologies for constructing systemic risk indices that

capture the joint information content of a large cross-section of systemic risk measures.

We construct over 20 measures of systemic risk in the US and Europe extending across

several decades. We show that, taken individually, these measures reveal low predictive

ability for macroeconomic downturns. However, an index that parsimoniously aggre-

gates individual measures consistently performs well in forecasting downturns both

in-sample and out-of-sample.
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1 Introduction

The financial crisis of 2007-2009 prompted a profusion of newly proposed measures of sys-

temic risk. Individual measures have been explored in separate papers, but there has been no

empirical analysis comparing them as a collection.1 In this paper we have three complemen-

tary objectives for establishing an empirical understanding of the compendium of systemic

risk measures.

Our first goal is to provide a basic quantitative description of systemic risk measures.

We examine 18 previously proposed measures of systemic risk that we are able to construct

from US data, and 12 measures constructed from an international sample. In building these

measures, we use the longest possible data history, which in most cases allows us to extend

the measures to the 1960’s or earlier for the US, and to the 1970’s for international data. To

the extent that systemically risky episodes are rarely observed phenomena, our longer time

series may help provide new empirical insights over several business cycles, in contrast to the

literature’s emphasis on systemic risk behavior in the last five years. We study the extent to

which different measures comove and evaluate which measures behave as contemporaneous

indicators of distress in the financial sector and which may be viewed as leading indicators.

The empirical results show that all of these measures, besides showing a large spike

during the recent financial crisis (2007-2009), give several extreme readings during the last

century. For example, CoVaR (Adrian and Brunnermeier (2011)), which is available since

1926, shows large movements during the Great Depression as well as in 1945, 1973 and 1987.

Looking at the time series of all measures, one notices that for all but a few episodes, their

movements appear largely idiosyncratic. A broader historical context can be valuable in

identifying false positives in addition to genuine crises and, indeed, there are many instances

in which individual systemic risk measures spike in the absence of macroeconomic turmoil.

Our second objective is to provide a macroeconomic criterion for evaluating the policy-

relevance of systemic risk measures. For a systemic risk measure to be informative for

regulation or policy-making, it should be demonstrably associated with welfare. Such an

association is obviously difficult to quantify, so to empirically operationalize our criterion

we propose testing whether a given systemic risk measure has predictive power for real

economic activity.2We believe this criterion improves our understanding of systemic risk in

1Bisias et al. (2012) provide an excellent survey of systemic risk measures. Their overview is qualitative
in nature – they collect detailed definitions of their surveyed measures. Our analysis is empirical and
quantitative.

2An association with macroeconomic variables is not a necessary characteristic of a systemic risk measure
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two dimensions. First, it leads us to a much needed description of linkages between proposed

measures of financial sector stress and macroeconomic outcomes. Second, it provides a

new tool for evaluating policy relevance when selecting among a large pool of systemic risk

measures.

Guided by theories that hypothesize a non-linear link between financial sector stress

and adverse realizations of macroeconomic activity, our empirical analysis focuses on predic-

tive quantile regression to estimate the association between systemic risk and the downside

distribution of real economic outcomes. The notion that financial distress impacts real

outcomes through capital, credit and/or liquidity contraction has been developed in a rich

theoretical literature.3 Exemplified by He and Krishnamurthy (2012), these theories typi-

cally predict that the effect of distress on real outcomes is highly non-linear. The advantage

of quantile regression is that it avoids merely modeling conditional means, whose variation

may be dominated by forces distinct from systemic risk most of the time, and instead pro-

vides a more complete picture of a target macroeconomic variable’s downside conditional

distribution.

In our US sample, we attempt to forecast quantiles of economic activity, measured by

the Chicago Fed National Activity Index (CFNAI) and its subcomponents, using individual

systemic risk measures. We find that few measures possess predictive power for adverse re-

alizations of macro aggregates. Those that do work tend to work for some macro aggregates

but not for others. Nearly all measures tend to miss the large negative downturn caused by

the recent financial crisis. Exceptions include measures of financial sector equity volatility

(realized volatility and turbulence) and the TED spread, both of which display moderate

predictive success. We then extend our analysis to international data, evaluating how well

different measures of systemic risk forecast quantiles of unemployment and industrial pro-

duction growth outside the US. Consistent with results obtained for the US, we find that

very few measures possess significant predictive power for large negative macro shocks.

Our third objective connects the previous two aspects of our analysis and asks whether

data reduction techniques, which aggregate information about systemic risk that may be

dispersed across a large number of measures, offer an improvement in the ability to detect

per se. Surely, the ability to measure financial sector stress is relevant for a wide range of economic pursuits,
even if that stress were to never impact real outcomes. We argue that an association between systemic risk
measures and the macroeconomy is crucial when considering its role for policy.

3See, for example, Bernanke and Gertler (1989), Kiyotaki and Moore (1997), Bernanke, Gertler and
Gilchrist (1999), Brunnermeier and Sannikov (2010), Gertler and Kiyotaki (2010), Mendoza (2010), He and
Krishnamurthy (2012).
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an association between systemic risk measures and the macroeconomy. We pose the fol-

lowing problem. Suppose all systemic risk measures are imperfectly measured versions of

a true, unobserved systemic risk factor. Furthermore, suppose that future low quantiles of

macroeconomic outcome distributions are especially dependent upon the unobserved factor.

How may we identify this true latent factor that is associated with measured financial sector

systemic risk and also predicts downside risk in the real economy?

We provide two solutions to this problem. The first approach, which we call principal

components quantile regression (PCQR), is a two step procedure that first reduces the panel

of systemic risk measures to a small number of factors via principal component analysis,

and then uses these factors to predict macro quantiles. This first stage dimension reduction

extracts common information that is spread over a number of mis-measured predictors.

This effectively averages out the idiosyncratic errors of individual series when the number

of predictors is large, zeroing in on the true underlying systemic risk factor. We prove that

this approach generates consistent quantile forecasts when the cross section of systemic risk

measures is driven by the same factors influencing low quantiles of the target macro series.4

Suppose, instead, that systemic risk measures are driven not only by variables asso-

ciated with adverse macro outcomes, but also by other common factors that may be inde-

pendent of the real economy. If these additional common factors are a dominant source of

variation among predictor variables, then they will manifest in the extracted principal com-

ponents and result in a misspecified quantile regression for the macroeconomic target. This

situation is considered by Kelly and Pruitt (2012), who argue that PCA-based forecasts can

suffer severe small sample difficulties when there are prominent “target-irrelevant” factors

driving the cross section of predictors. For least squares, Kelly and Pruitt show that this

difficulty can be overcome using the method of partial least squares (PLS; Wold (1975)).

We extend PLS to the quantile regression setting in a method called partial quantile

regression (PQR), which is our second solution to the many-predictor quantile regression

problem. PQR is a three stage estimation technique. The first stage runs separate uni-

variate quantile regressions of the target variable on each predictor in the panel. The sec-

ond stage builds a weighted average of predictors where the first-stage quantile coefficients

serve as weights. This average places larger emphasis on the best quantile predictors, and

4The use of PCA to aggregate information among a large number of predictor variables is well-understood
for least squares forecasting (see Stock and Watson (2002) and Bai and Ng (2006)), and the use of PCA
factors as dependent variables in quantile regression has been proposed by Ando and Tsay (2011). To the
best of our knowledge, this paper is the first to derive the asymptotic properties of quantile regressions using
principal component factors.
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de-emphasizes those with low univariate predictive ability. The final step runs a quantile

regression of the macro target variable on the second-stage average of predictors.

We prove that PQR produces consistent quantile forecasts, even when there are per-

vasive, target-irrelevant factors among systemic risk measures.5 The key difference between

PQR and PCQR is their method of dimension reduction. PQR condenses the predictors

according to their quantile covariation with the forecast target, thus choosing a linear com-

bination of predictors that is optimal for quantile forecasting. On the other hand, PCA

condenses the cross section according to covariance within the predictors, disregarding how

closely each predictor relates to the target. Taking the forecast target into account in the

dimension reduction stage allows PQR to isolate target-relevant factors and disregard any

common factors that are ineffective in forecasting.6 Both solutions, PCQR and PQR, may

be viewed as procedures for condensing large numbers of measures into a leading systemic

risk indicator.

Aggregating information across various measures of systemic risk significantly improves

macroeconomic quantile predictions, not only in-sample but also out-of-sample, compared

to univariate quantile forecasts or multiple quantile regression. The improvement is visible

in the prediction of multiple post-war downturns observed, including the recent financial

crisis. Based on out-of-sample forecasts for the 20th percentile of CFNAI one quarter ahead,

PQR achieves an improvement of 9% relative to the historical quantile benchmark. For

employment (EUH) or consumption (PH) subcomponents of the CFNAI, the gains are 10%

and 13%, respectively.

Principal components forecasts also perform well when at least two factors are ex-

tracted and used to forecast the CFNAI 20th percentile. Like PQR, these improve over the

benchmark forecast by 9%. A single PCQR factor also outperforms the benchmark model

but insignificantly so. Interestingly, neither PCQR nor PQR consistently outperforms the

benchmark in median forecasts of CFNAI. We thus conclude that systemic risk measures are

specifically informative for prediction the downside distribution of real activity, though only

5We consider two versions of PQR. The first, which is a direct quantile regression analogue of PLS, is
biased due to errors-in-variables in first-stage quantile regressions. We propose a minor modification for
the first stage that uses orthogonal quantile regression (He and Liang (2000) and Liang and Li (2009)) to
correct errors-in-variables bias. This version, which we refer to as cPQR (“consistent PQR”), is consistent
and asymptotically normal. Our empirical tests show that macro quantile forecasts based on PQR are
qualitatively identical, and numerically very similar, to those using cPQR. We continue to consider PQR
throughout our analysis since it is less computationally intensive, and easily implementable using any software
package that includes quantile regression. In contrast, cPQR must be programmed manually.

6Dodge and Whittaker (2009) propose a version of PQR, though provide no analysis of its properties.
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when many systemic risk measures are aggregated using our proposed dimension reduction

methods. Lastly, we run quantile predictive tests for industrial production growth in the UK

and Europe. These results are consistent with the US tests. At the 20th percentile, PQR

and PCQR (using two PC factors) achieve improvements of 8% and 10%, respectively, over

the historical quantile benchmark.

The remainder of the paper proceeds as follows. Section 2 defines and provides a

quantitative description of the set of systemic risk measures that we are able to construct

for the US and Europe. In Section 3, we examine the power of these measures for predicting

low quantiles of real macroeconomic aggregates using standard univariate and multivariate

quantile regression. In Section 4, we define PCQR and PQR and prove their attractive

asymptotic properties. We then demonstrate empirically how these methods can be used

to form leading systemic risk indicators with robust predictive power for macroeconomic

downside risk.

2 A Quantitative Survey of Systemic Risk Measures

This section outlines our construction of systemic risk measures that have been proposed in

the literature, extending the time series as far back as possible (sometimes to the 1920’s).

We also construct as many measures as possible for Europe and the UK. In this section

we analyze static and dynamic relationships between the systemic risk measures, including

a decomposition of variance for among measures and a Granger causality analysis of their

lead/lag relationships.

2.1 Data Sources for the Systemic Risk Measures

US measures are based on data for financial institutions from CRSP and COMPUSTAT.

We construct measures for Europe (EU) by pooling together data on financial institutions of

France, Germany, Italy and Spain, the largest continental European countries at the center

of the recent financial crisis. Financial institution returns data for European countries are

from Datastream.7

7Datastream data requires cleaning. We apply the following filters. 1) When a firm’s data series ends
with a string of zeros, the zeros are converted to missing, since this likely corresponds to a firm exiting the
dataset. 2) To ensure that we use liquid securities, we require firms to have non-zero returns for at least one
third of the days that they are in the sample, and we require at least three years of non-zero returns in total.
3) We winsorize positive returns at 100% to eliminate large outliers that are likely to be recording errors.
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2.2 Overview of Measures

A recent survey by Bisias et al. (2012) does an excellent job categorizing and collecting

systemic risk measures. We build from that survey to construct our measures of systemic

risk. Below we provide a brief overview of the measures that we build, grouped by their

defining features. We refer readers to Appendix A and to Bisias et al. for further details.

Table ?? shows the time periods for which each measure is available in the US, the UK and

Europe.

Aggregated Versions of Institution-Specific Measures These measures are constructed

primarily to capture the contribution to systemic risk of individual institutions. In particu-

lar, they capture the relation between the distress of each individual firm and the distress of

the whole system.

To produce the time series of the aggregated version of each measure, we start by con-

structing the institution-specific measure separately for the 20 largest financial institutions

using a rolling estimation window. We then aggregate the individual measures by taking a

simple cross-sectional equal-weighted average at each point in time for the twenty largest fi-

nancial institutions at the time the measure is calculated. We only construct the aggregated

version if we have data for at least 10 financial institutions, so that the resulting measure

meaningfully captures distress in the financial system as opposed to distress of one or few

individual banks for which we have data. Generally, the motivation for aggregating individ-

ual measures is to capture periods in which the largest financial institutions pose a threat

to the stability of the financial system.

These measures include Covar and ∆Covar from Adrian and Brunnermeier (2011),

MES and SES (or Sysrisk) from Acharya, Pedersen, Philippon and Richardson (2010),

and SRISK, a version of the marginal expected shortfall proposed by Brownlees and Engle

(2011).

Comovement and Contagion A second set of measures capture the degree of comove-

ment among financial institutions’ equity returns. Again, we construct them using a rolling

estimation window, using the set of largest 20 financial institutions (but requiring the pres-

ence of at least 10). We consider the Absorption Ratio (AR) described by Kritzman et al.

(2010), that captures the fraction of the variance of many returns explained by the first K

principal components, the Dynamic Causality Index (DCI) from Billio et al. (2012), captur-
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ing the degree of interconnectedness by looking at the number of Granger causality relations

between returns, and the International Spillover Index from Diebold and Yilmaz (2009).

Instability and volatility of the system Other measures directly look at the aggregate

volatility and instability of the financial system or the stock market as a whole. We com-

pute aggregate Realized Volatility, aggregate Book Leverage and Market Leverage,

Size Concentration, the Herfindhal index of the size distribution of financial firms, and

Turbulence, a measure of excess volatility in financial markets.

Liquidity and credit measures The last set of measures we consider relate to liquidity

and credit conditions in financial markets: AIM (the Amihud 2002 liquidity measure, ag-

gregated across financial firms), the TED spread, the Default spread (difference between

BAA bond yields and the treasury), and the Term spread, the slope of the yield curve.

Measures Not Covered Due to data constraints we have not been able to include mea-

sures that use

1. Linkages between financial institutions (such as interbank loans or derivative positions)

2. Contingent claims analysis

3. Stress tests

4. Measures based on CDS data (since we don’t have a long enough time series).

2.3 Comovement

Figure ?? plots the monthly time series of select measures from 1926 on for the US.8 First, all

measures spiked during the recent financial crisis, which is not surprising given that many of

these measures were proposed following the start of the crisis. Many systemic risk measures

experience abnormally high levels in earlier periods, often reaching similar levels as during the

crisis. During the oil crisis and high uncertainty of the early and mid 1970’s, financial sector

market leverage and return turbulence spike. Generally, all the measures display substantial

variability, and occasionally experience high levels during non-recessionary episodes. This

8For readability, the plotted measures are standardized to have the same variance (hence no y-axis labels
are shown) and we only a show a subset of the series we study.
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can be interpreted in two ways. One interpretation is that these measures are simply noisy.

Many of the spikes that do not seem to correspond to periods of particularly high financial

stress might be considered “false positives”. Another interpretation is that these measures

sometimes capture stress in the financial system that does not result in full-blown financial

crises either because policy and regulatory responses diffused the instability or the system

stabilized itself. Another interpretation is that crises develop only when many systemic risk

measures are simultaneously elevated, as during the recent crisis.

Table ?? shows the correlations among the different measures for the US, and Table

?? shows the correlations for the UK and Europe. Most correlations are quite low. Only

small groups of measures comove strongly. For example, turbulence, realized volatility, and

the TED spread are relatively highly correlated. Similarly, CoVaR, ∆CoVaR, MES and

the absorption ratio tend to comove. The other measures display low or even negative

correlations with each other. This, once again, suggests that these measures are capturing

different aspects of the state of the financial system or are measured with substantial noise.

To provide a further description of comovement, we perform a variance decomposition.

We standardize all measures so that they have equal variance, and calculate the principal

components of the standardize measures. We then report the fraction of each measure’s

variance attributable to each principal component. In Table ?? we report this decomposition

up to the fifth principal component for the US, the UK and Europe, starting in 1984 when

we have the largest number of measures available. In this sample the first PC accounts for

40% of the variance across all measures, with each of the next four PCs capturing roughly

10% of total variation.

2.4 Dynamics

Given that measures of systemic risk are sometimes interpreted as contemporaneous measures

of stress in the financial system, and sometimes as leading indicators of systemic risk, we

turn next to explore the lead-lag relations between these variables. For each pair of variables,

we conduct two-way Granger causality tests (Granger (1969)). Table ?? reports the number

of other variables that each measure causes (left column) or is caused by (right column) in

a Granger sense, for the US, the UK and Europe.

Two results emerge from the table. First, only about half the variables are linked by

Granger causality relations. This is not a criticism of the measures, it is merely descriptive.

Among the measures for which we find significant relations, some tend to Granger cause
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other variables more often than the reverse. These can be interpreted as leading indicators

of systemic distress, and include the absorption ratio, turbulence, ∆CoVaR and realized

volatility. Other variables, instead, tend to lag in measuring systemic risk, like the Term

Spread, SysRisk and DCI. These variables might be better suited in capturing the actual

occurrence of systemic risk during periods of distress than in forecasting incidents. These

relations seem to be consistent across countries.

In sum, the empirical comparison of systemic risk measures shows that the landscape

is quite heterogeneous, both for the US and internationally. Small groups of measures tend

to move in a similar way, but overall the links – both contemporaneous and in the time series

– between this large set of measures seem to be relatively weak. As mentioned above, this

can be interpreted either as a sign of noise in these measures, or as an indication that these

measures capture different aspects of systemic risk. Without a clear criterion to judge the

effectiveness of measures for systemic risk measurement, introduced in the next section, we

would not be able to disentangle these two possibilities.

3 Systemic Risk and the Real Economy

In this section, we propose a reduced form approach to modeling the relationship between

financial sector distress and lower quantiles of real economic outcomes. This focuses on the

downside risk associated with financial crises, which we argue is a useful criterion for deter-

mining a systemic risk measure’s suitability for input into decisions for policy or regulation.

The cost to our reduced form is an inability to identify “fundamental” shocks or specific

mechanisms as in a structural model. The benefits of reduced forms include potentially

less severe specification mistakes, the ability to identify new empirical relations to inform

future theory, and to develop an understanding of systemic risk in the absence of theory.

Hansen (2012) provides an excellent overview of advantages to systemic risk modeling with

and without the structure of theory.

Motivated by the need to capture potentially non-linear dynamics between systemic

risk and the downside distribution of macroeconomic variables, we directly model lower

quantiles of real outcomes. Before describing our analysis in detail, we provide a short

review of quantiles and quantile regression.
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3.1 Quantile Regression

Denote the target variable by yt+1, this is a scalar real macroeconomic variable whose quan-

tiles we wish to forecast. The τ th quantile of yt+1 is its inverse probability distribution

function, denoted

Qτ (yt+1) = inf{y : P (yt+1 < y) ≥ τ}.

The quantile function may alternatively be represented as the solution to an optimization

problem

Qτ (yt+1) = arg inf
q
E[ρτ (yt+1 − q)]

where ρτ (x) = x(τ − xIx<0) is known as the quantile loss function. The loss function ρτ is

plotted in Figure ?? for τ = 0.5 (median regression) and τ = 0.2 (which places a higher

penalty on downside errors).

The expectation-based quantile representation is notationally convenient for handling

conditioning information sets. In particular, we use the following conditional quantile nota-

tion

Qτ (yt+1|I) = arg inf
q
E[ρτ (yt+1 − q)|I].

In the seminal quantile regression specification of Koenker and Bassett (1978), the quantiles

of yt+1, conditional on all time t information (summarized by sigma algebra It) are a linear
function of observable conditioning variables, X t,

Qτ (yt+1|It) = βτ,0 + β′τX t. (1)

While OLS models the relationship between X t and the conditional mean of yt+1, quantile

regression models conditional quantiles of yt+1 as linear functions of X t+1. Quantile models

can provide a more complete picture of the target’s distribution when conditioning infor-

mation shifts more than just the distribution’s location. It can be particularly useful when

conditioning information changes the shape of the distribution in the tail regions. In short,

quantile regression provides flexibility for modeling heterogeneous conditional distributions

where simple mean regression is expected to be inadequate.

As the specification in Equation ?? suggests, we will focus on quantile forecasting,

using information from systemic risk measures today to estimate adverse regions of condi-

tional distributions in the future. From a policy and regulatory standpoint, this predictive

formulation seems most appropriate.
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3.2 Empirical Evaluation of Systemic Risk Measures

We begin by studying the performance of systemic risk measures in the US. In particular,

we evaluate the ability of individual systemic risk measures to forecast the quantiles of

the Chicago Fed National Activity Index (CFNAI) and its subcomponents, Production and

Income (PI), Employment, Unemployment and Hours (EUH), Personal Consumption and

Housing (PH) and Sales, Orders and Inventory (SOI). CFNAI corresponds to the index of

economic activity outlined in Stock and Watson (1999), and its objective is to track over

time current and future economic activity in the United States.

First, we compute the parameters of the univariate quantile regression of each macroe-

conomic variable and each measure of systemic risk individually. To take into remove the

influence of predictive information in the CFNAI’s own data history, we use innovations in a

univariate autoregression for each CFNAI series, where the AR order chosen by the Akaike

Information Criterion. AR models use use monthly data, and we forecast the sum monthly

CFNAI shocks over the subsequent quarter.

We start the analysis in 1984, which is the first year in which all of our systemic risk

measures are available. Quantile regression fits are evaluated via their average quantile loss,

which is quantile regression analogue to average squared error in OLS. In particular, we

construct for each measure a quantile version of the R2, computed as:

1−R2 =
1

T

∑

t[ρτ (yt+1 − α̂− β̂Xt)]
1

T

∑

t[ρτ (yt+1 − q̂τ )]

This expression captures the typical loss using conditioning information (the numerator)

relative to the loss using an unconditional quantile estimate (the denominator). When

conditioning information is valuable, average losses are low, and this ratio lies significantly

below 1.0. As in OLS, the in-sample quantile regression R2 always lies between zero and

one. This need not be the case for out-of-sample regressions. Our in-sample measure of

significance comes from from bootstrapped t-statistics, while our out-of-sample measure of

significance comes tests for equality of two sequences of forecast errors (Diebold and Mariano

(1995), West (1996)).

A final remark concerns the choice of the quantile of interest, τ . The following results

focus attention on the 20th percentile, or τ = 0.2. This choice represents a tradeoff between

emphasizing extreme outcomes (very low quantiles) versus weighting a higher number of

available data observations (achieved when τ is nearer to 0.5). We also report results for the
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median, allowing us to identify whether or not the systemic risk indicators provide informa-

tion about the center of macro shock distributions, or about downside risk in particular.

To give a preliminary indication of what may be achieved with quantile regression, we

show two in-sample quantile regression fits for CFNAI shocks. Figure ?? shows quantile

forecasting fits using financial sector turbulence, and ?? shows fits using ∆ absorption ra-

tio. Each figure scatters the pairs (yt+1, Xt) in the period 1967-2010, as well as the fitted

conditional quantile lines for a range of quantiles between the 20th to the 80th percentile.

These figures allow the researcher to read the conditional distribution of yt+1 at any given

level of systemic risk, Xt = x. Figure ?? shows that turbulence is associated with a high

degree of heterogeneity in the conditional quantiles of CFNAI shocks. As turbulence rises,

the conditional distribution of CFNAI shocks fans out, especially on the downside.

An example in which conditioning on systemic risk does not produce different shapes

in CFNAI’s conditional distribution is shown in Figure ??. Here, quantile fits condition on

∆ absorption ratio. We see that the shape of the distribution is homogeneous across different

values of the predictor.

Table ?? reports the average relative losses (1−R2) obtained from in-sample quantile

forecasts of CFNAI shocks (as well as CFNAI subindices) using the full range of systemic

risk measures over 1984-2010. A lower average loss means better forecasting power, and

values below one mean that a measure outperforms the historical unconditional quantile

benchmark. We also report significance levels for whether each predictor improves over the

historical quantile. Only the term spread significantly outperforms the naive benchmark

based on in-sample tests.

Table ?? reports average relative losses obtained from out-of-sample forecasts using

the period 1984-1990 for training, and recursively testing throughout the 1990-2010 sample

to evaluate performance.9 Many systemic risk measures in fact perform worse than the

unconditional quantile in forecasting downturns of the macro outcomes. The two exceptions

are volatility measures (equity realized volatility and turbulence).

9This means that the out-of-sample 1 − R2 comes from 252 overlapping monthly forecasts, or about 84
non-overlapping quarterly forecasts.

12



4 Building a Systemic Risk Index

The limited success of any individual systemic risk measure in forecasting future downside

macro shocks raises the question: Can forecasts be improved by considering all systemic risk

measures jointly?

Motivated by this problem, we propose a simple linear factor model wherein the relevant

information for y’s conditional quantile is captured by an unobservable, low-dimension factor

f . The factor structure is similar to well-known conditional mean factor models (e.g. Stock

and Watson (2002)), which often motivates dimension reduction techniques such as principal

components or partial least squares. The interesting new feature of our model is how it links

latent factors to the conditional quantiles of target variable y.

4.1 A Latent Factor Model for Quantiles

We assume that the τ quantile of yt+1, conditional on time t information, is a linear function

of an unobservable univariate factor ft:

Qτ (yt+1|It) ≡ Qτ (yt+1|f t) = αft

where It is the information set at time t. This formulation is identical to a standard quantile
regression specification, except that ft is a latent variable. Realizations of yt+1 can be written

as αft + ηt+1 where ηt+1 is the quantile residual.

We assume that

xt = φft +Ψgt + εt

where gt are latent factors that can drive all the risk measures and εt is a vector of predictor-

specific idiosyncratic shocks. We denote f t = (ft, gt)
′ and correspondingly α = (α,0)′. As

is usual in this literature, we assume that f is orthogonal to g, and therefore that f is the

relevant information (contained in x) for knowing the conditional distribution of future y,

whereas g is irrelevant.

4.2 Estimators

Based on this model, we propose two factor estimation approaches to consistently estimating

the quantiles of y. We provide asymptotic theory for their ability to estimate the true
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conditional quantile. Then we report their empirical performance, which improves upon all

individual risk measures.

For the sake of exposition, we place all assumptions in the appendix. Assumption ??

formally states the factor model just discussed above. Assumption ?? is identical to Bai and

Ng’s (2006) assumptions A-E, imposing limited dependence between factors, idiosyncracies,

and quantile residuals. Assumption ?? imposes assumptions following Engle and Manganelli

(2004) and White (1994) that guarantee that quantile regression is consistent and asymptot-

ically normal in the presence of serial correlation. We require Assumptions ??-?? for PCQR

below, and cPQR needs an additional ellipticality assumption ??. Altogether, the assump-

tions are weak and allow for some serial and cross-correlation of the idiosyncracies, serial

correlation in the factors, and GARCH effects in the idiosyncracies, factors and quantile

residuals.

4.2.1 Principal Components Quantile Regression (PCQR)

Using principal components analysis to estimate factors in a linear model has been advo-

cated by Stock and Watson (2002) and Bai (2003) among many others. Bai and Ng (2006)

analyze the asymptotic behavior least squares regressions using such factor estimates. To

the best of our knowledge, the asymptotic behavior of quantile regressions using principal

component factor estimates (PCQR) has not been studied before. Seeing as the method of

principal components is well-known, we skip a discussion of the PCQR procedure but place

its algorithm in Table ??.

Generally speaking, our asymptotic analysis must analyze quantile regression on mis-

measured variables, since for any finite N, T the factor estimates f̂ (or f̂) are the true factors

f (or f) plus error. Schennach (2008) discusses the difficulties confronting quantile regression

using regressors measured with error, noting that existing econometric literature typically

deals with this problem by means of instrumental variables assumed to be correlated with

the true regressor and uncorrelated with the measurement error.

We instead appeal to an argument that the measurement error is vanishing as N, T

get large. In order to do so, we turn to Angrist, Chernozhukov and Fernandez-Val’s (2006)

analysis of quantile regression under misspecification. From their analysis we obtain an

expression for the errors-in-variables bias we face, for any finite N, T , in our setting vis-a-vis

the pertinent factor model parameters.

PCQR provides a good introduction into the difficulties our asymptotic theory faces,
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Table 1: Estimators

Principal Components Quantile Regression (PCQR)

Factor Stage
Estimate f̂ t by (Λ′Λ)−1Λ′xt for Λ the K eigenvectors associated
with the K largest eigenvalues of

∑T
t=1

xtx
′
t

Predictor Stage Time series quantile regression of yt+1 on a constant and f̂ t

Partial Quantile Regression (PQR)

Factor Stage

1. Time series quantile regression of yt+1 on a constant and
xit to get slope estimate φ̂i

2. Cross-section OLS regression of xit on a constant and φ̂i

for each t to get slope estimate f̂t

Predictor Stage Time series quantile regression of yt+1 on a constant and f̂t

Consistent Partial Quantile Regression (cPQR)

Factor Stage

1. Time series orthogonal quantile regression of yt+1 on a con-
stant and xit to get slope estimate φ̂i

2. Cross-section OLS regression of xit on a constant and φ̂i

for each t to get slope estimate f̂t

Predictor Stage Time series quantile regression of yt+1 on a constant and f̂t

Notes: The predictors xt are each time-series standardized. All quantile regressions and
orthogonal quantile regressions are run for quantile τ .

because principal components extracts factors based only on the covariance of the predic-

tors x without taking account of their relationship with the ultimate object of interest, y.

This means there are no quantile-regression errors-in-variables biases involved in the factor

estimation stage. Nevertheless, there is such bias in the predictive quantile regression stage,

and the proof of Theorem ?? deals with this.

Theorem 1 (Asymptotic Normality of PCQR). Make assumptions ??, ?? and ?? and

suppose
√
N
T
→ 0. The principal components quantile regression predictor of Qτ (yt+1|It) =
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α′f t = αft is given by α̂
′f̂ t and is such that

α̂′f̂ t −α′f t

1

N
α̂′Σ̂PCQR,1α̂+ 1

T
f̂
′
tΣ̂PCQR,2f̂ t

d−−−−−→
N,T→∞

N(0, 1).

for Σ̂PCQR,1 = Ṽ
−1
Γ̃Ṽ

−1
where Ṽ is the K×K diagonal matrix of the K largest eigenvalues

of XX ′/(TN) in decreasing order,

Γ̃ =
1

N

N
∑

i,j=1

λ̃iλ̃
′
j

1

T

T
∑

t=1

ε̃itε̃jt

λ̃i the vector of the ith elements of the K eigenvectors of XX ′/(TN) associated with

the K largest eigenvalues, ε̃ are the estimated idiosyncracies; and for Σ̂PCQR,2 = τ(1 −
τ)D̂

−1
Σ̂fD̂

−1
where D̂ = 1

T

∑T
t=1

ĥtη(0)f tf
′
t and Σ̂f = 1

T

∑T
t=1

f tf
′
t.

The proof of Theorem ?? is relegated to the appendix and looks similar to Bai and Ng’s

(2006) Theorem 3. The first term in the asymptotic covariance of α̂′f̂ t −α′f t is found just

as Bai and Ng (2006) find it, building from Bai’s (2003) result which requires
√
N
T
→ 0. The

second term is differs from Bai and Ng’s (2006) only insofar as the asymptotic covariance

of a quantile regression coefficient differs from that of the OLS regression coefficient. As

is typically the case with quantile regression, the asymptotic covariance matrix estimator

requires a density estimator ĥtη which could be obtained from Powell (1991) as suggested

in Engle and Manganelli (2004), or else could be bootstrapped. Theorem ?? differs from

existing proofs of quantile regression’s consistency by explicit consideration of the N limit

and the behavior of the vanishing measurement error contained in f̂ .

Our factor model assumes that a scalar f contains the relevant information, but PCQR

and Theorem ?? uses the vector f̂ . This is because PCQR is only consistent for the true

quantile forecast if the entire factor space (f, g) is estimated. This is analogous to the

distinction between principal components OLS regression and a method like partial least

squares – the former produces an asymptotically-efficient forecast only when the entire factor

space is covered, whereas the latter can produce an asymptotically-efficient forecast when

only the relevant factor space is covered (see Kelly and Pruitt (2012)). The root of this

distinction is that, as mentioned above, principal components extract factors using only

information in x. This leads to the possibility that PCQR could be inefficient in finite

samples owing to the irrelevant information it retains in its factor estimates. We now turn
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to two new procedures that attempt to extract only the relevant factor information.

4.2.2 Partial Quantile Regression (PQR and cPQR)

Partial quantile regression (PQR) forecasts can be constructed from a series of quantile

and OLS regressions as summarized in Table ?? and works as follows. In the first pass we

calculate the quantile slope coefficient of yt+1 on each individual predictor xit, i = 1, ..., N

using univariate quantile regression.10 The second pass consists of T cross-sectional OLS

regressions. In each period t, the predictors xit, (i = 1, ..., N) are regressed on their respective

quantile slopes with yt+1 estimated in the first pass. The OLS slope estimate in each period

serves as an estimate of the time t value of (an affine transformation of) the latent factor

ft. In effect, this step forms a weighted average of individual predictors where the weights

are given by first stage slope estimates. The stronger the univariate predictor (the larger

its slope estimate), the more weight it gets when constructing a univariate predictor. The

third and final pass estimates a quantile regression of yt+1 on the time series of latent factor

estimates from the second stage.11

Compared to PCQR, PQR involves the additional difficulty that quantile regression has

been used in the factor estimation stage. Similar to Kelly and Pruitt’s (2012) argument for

partial least squares, this has been done in order to try and extract from x only the relevant

information f while leaving out the irrelevant g. Roughly speaking, this will work if the first-

stage quantile regression slopes φ̂i are functions of factor model parameters which only vary

across i due to φ – in other words, Ψ must not enter into φ̂i. However, in general it appears

the Ψ enters into the first-stage quantile regression slopes φ̂i via the errors-in-variables bias

obtained by Angrist, Chernozhukov and Fernandez-Val’s (2006) results.12 Therefore, at the

current time a proof of PQR’s consistency is beyond reach.

Analysis of PQR leads to another procedure we describe next, for which a proof of

consistency appears possible. Nevertheless, we continue to include PQR estimates because

it is a simpler algorithm (numerically) than the following procedure and because its empirical

10It is important that, in a preliminary step, all predictors are standardized to have equal variance. This
is typically done in other dimension reduction techniques as well, such as principal components regression
and partial least squares.

11This procedure is similar to one of the same name proposed in Dodge and Whittaker (2009), who analyze
neither its asymptotic behavior nor its relationship to factor models described here. The name is meant to
connect to the method of partial least squares.

12It is possible that our expression from ACF (2006) is not the most expedient for this purpose, because
we have used their results to represent an errors-in-variables bias as an omitted variables bias.
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results are quite competitive.

He and Liang (2000) propose a solution to quantile regression under errors-in-variables

by appealing to a quantile version of orthogonal regression. Recently, Liang and Li (2009)

show that this method is consistent for elliptically-distributed data. Therefore, we build on

these insights to propose the method of consistent partial quantile regression (cPQR). This

method differs from PQR only in that the first-stage estimates φ̂i come from the orthogonal

quantile regression

(α0, α) = argmin
α0,α

1

T

T
∑

t=1

ρτ

(

yt+1 − α0 − αxit
√

1 + |α|2

)

.

The orthogonal quantile regression problem can be more computationally involved than

standard quantile regression because it is a nonlinear optimization problem whereas quantile

regression solves a linear programming problem. However, we have found that the additional

time taken is rather minimal.

By additionally assuming that our data are from a elliptical condtional distribution,

we can appeal to Liang and Li’s (2009) Theorem 3 to show consistency of the first-stage

coefficients to a function that does not involve Ψ. We conjecture the following

Theorem 2 (CONJECTURE – Asymptotic Normality of cPQR). Make assumptions ??,

??, ?? and ?? and suppose
√
N
T
→ 0. The consistent partial quantile regression predictor of

Qτ (yt+1|It) = αft is given by α̂f̂t and is such that

α̂f̂t − αft
1

N
α̂2σ̂cPQR,1 +

1

T
f̂ 2
t σ̂cPQR,2

d−−−−−→
N,T→∞

N(0, 1).

A sketch of the conjectured proof of Theorem ?? is relegated to the appendix.

4.3 Empirical Results

The last four rows of Tables ?? and ?? report the results of PCQR, PQR and cPQR forecasts

of the lower tail (20th percentile) of shocks to the CFNAI and its subindices. The in-sample

fit is significantly better than the unconditional quantile for PCQR2 (PCQR using two

principal components), PQR and cPQR. None of these procedures or any one systemic risk

indicator alone can beat the in-sample fit of multiple quantile regression, but we suspect

this is due to the latter’s overfitting. Table ?? supports our hunch, as the out-of-sample
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performance of multiple quantile regression is far worse than its in-sample fit.

The PCQR, PQR and cPQR produce good out-of-sample forecasts. The forecasts

are as good as the best individual forecast, whichever individual risk indicator happens to

produce the best forecast for that macro variable. This implies that our dimension reduction

techniques provide a stable way of extracting from a host of systemic risk indicators the most

important information about future macro shocks. Furthermore, PQR and cPQR perform

very similarly: Since it is conjectured that the latter can be shown to be asymptotically

normal for the true conditional quantile, this provides some comfort that the former may

indeed be close to consistent.

Table ?? reports the out-of-sample results of forecasting the median of shocks to the

CFNAI and its subindices.13 We see that very few risk measures tell us anything meaningful

about the central tendency of future macro shocks. When one or a few do contain some infor-

mation, the PQR or cPQR methods effectively identify the factor and produce significantly

better out-of-sample forecasts. Nevertheless, our interpretation of these median results is

that systemic risk indicators tell us about the lower tail of the future macroeconomic shock

distribution and not its central tendency.

Table ?? turns to international data, forecasting future shocks to industrial production

in the US, UK and Europe.14 Once again, the dimension reduction techniques are effective

at extracting useful information from the host of risk measures, producing out-of-sample

forecasts for these countries that are significantly better than using the historical quantile

alone.15

Summarizing our findings, using a method of dimension reduction to collapse various

systemic risk indicators to one or two informative factors yields impressive out-of-sample

forecasting success. This yields forecasts that perform significantly better than the historical

quantile alone, and is more robust than forecasts based on any single risk indicator alone. The

systemic risk predictor holds more information about the lower tail of future macroeconomic

shocks than about their central tendency.

13Table ?? provides the in-sample results.
14Table ?? provides the in-sample results.
15Results for the median are also provided in Tables ?? and ??.
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5 Macroeconomic Implications

The forecasting results show that the volatility of large financial firms’ equity returns predicts

future macroeconomic shocks’ tail and central tendency (i.e. the performance of realized

volatility in Tables ??-??). More broadly in the literature, shocks to return volatility have

been linked to the shocks to macroeconomic uncertainty, notably by Bloom (2009). Bloom

argues that aggregate stock market volatility is a reasonably good proxy for macroeconomic

uncertainty that often precedes macroeconomic downturns, basing this conclusion on vector

autoregression (VAR) evidence. Are the results for our financial firm stock return volatility

essentially picking up the effect of Bloom documents for all firm stock return volatility? Or

is there anything special about the equity return volatility for financial firms in particular?

We provide two answers to these related questions.

For our first answer, we construct two volatility variables – one for the returns on the

portfolio of all financial firm stocks, and the other for the returns on the portfolio of all non-

financial firm stocks. We then conduct our forecasting exercise for the conditional quantiles of

macroeconomic shocks using these two variables, focusing attention on industrial production

as does Bloom (2009). Since we are considering only a pair of measures, we abstract from

using dimension-reduction techniques and report the results for each individually and when

combined using multiple quantile regression. Additionally, these variables have a long history

and therefore we present results starting the out-of-sample period either in 1990 (as we did

above) or in 1970 (which gives us 40 years’ worth of pseudo out-of-sample forecast evidence).

Table ?? shows that financial firms’ stock price volatility indeed contains unique in-

formation not present in non-financial firms’ volatility. Financial volatility significantly im-

proves upon the naive historical forecast – in both the 1970-present and 1990-present out-

of-sample forecast periods – whereas non-financial volatility does not. Financial volatility is

particularly informative about the 20th-percentile of future macro shocks (relative losses of

0.94 or 0.88 in the two out-of-sample periods, both significant at the 1% level). Non-financial

volatility, on the other hand, tells us nothing significant about future macro shocks’ tails.

Nevertheless, financial volatility also exposes useful information about the median of future

macro shocks (relative losses of 0.96 and 0.92 in the two out-of-sample periods, both signifi-

cant at the 5% level). Non-financial volatility, on the other hand, provides information about

future shocks’ central tendency in the more recent out-of-sample period, which is significant

at the 10% level.

Our second answer uses well-known VAR methods and closely follows Bloom (2009).
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Since a VAR defines a set of variables’ conditional mean, this answer involves only the central

tendency of macroeconomic variables (similar to our forecasting results for the median) and

not their tails. Using Bloom’s data, we reproduce his impulse response result for the effects of

“uncertainty shocks” on industrial production. Bloom’s primary uncertainty shock measure

is an indicator variable he constructs from the volatility of total stock market returns. The

indicator variable is 1 when market volatility jumps about 1.65 standard deviations.

Ours is a simple experiment: Does the volatility of financial firms provide information

that is not already captured by total market volatility shocks? We relegate precise details

of the VAR to the appendix and here state the important details. We identify structural

shocks according to Bloom’s (2009) recursive scheme, ordering first stock prices to control

for first-moment shocks, ordering second Bloom’s volatility measure to control for Bloom’s

total market second-moment shock, and ordering third our financial volatility measure to

evaluate the impact of a financial-sector second-moment shock.

Figure ?? reports the benchmark result that shocks to financial volatility have sig-

nificant effects on future macroeconomic variables.16 In response to Bloom’s uncertainty

indicator (top pane;), industrial production falls about 60 (log) basis points from its HP-

trend around 3-5 months after impact. Thereafter, industrial production rises above trend

by 100 basis points within 9 months after impact. On the other hand, in response to a shock

to financial volatility (bottom panel) industrial production falls 20 basis points 7 months

after impact and only just rises 10 basis points above trend one-and-a-half years after im-

pact. The broad pattern is similar for both volatility shocks: An initial decrease in activity

followed by a rebound above trend.

Figure ?? gives the impression that total market volatility has larger effects than finan-

cial volatility, but this is because Bloom’s (2009) indicator selects only those months when

total market volatility jumped by a lot. On the other hand, the response to financial volatil-

ity comes from every move of the variable. To provide an “apples-to-apples” comparison, we

rerun the VAR replacing Bloom’s indicator with its underlying market volatility series.17

Figure ?? reports the impulse responses in this case, where total market volatility con-

tinues to be ordered before financial volatility. We see that Figure ??’s different magnitudes

16Adapting Bloom (2009) and a large portion of VAR literature, we report bootstrapped one-standard-error
(68% coverage confidence interval) bands and our statistical statements reference this degree of significance.
Bloom (2009) uses asymptotic one-standard-error bands.

17An alternative would be to threshold financial volatility as Bloom (2009) does total market volatility.
We leave that exercise for future research as it entails lesser-known threshold-VAR methods and our goal
here is to compare total market and financial volatility in a very familiar context.
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were largely a product of thresholding the total market volatility variable. For example,

both total market and financial volatility shocks depress industrial production by about 15-

20 basis points 4-8 months after impact. Furthermore, using volatility itself instead of an

indicator weakens the evidence of an activity rebound (above trend) more than a year after

impact of either volatility shock.

Finally, since financial firms are a subset of all market firms, we ask whether the

impulse responses change with financial volatility ordered first – Figure ?? says they do. In

fact, there is little significant effect of a shock to total market volatility after one controls for

a shock to financial volatility in particular.18 In other words, shocks to financial volatility

tend to drive out the effects of shocks to total market volatility, which suggests that there is

something special about financial firms and future macroeconomic conditions.

Financial firms’ stock prices expose future macroeconomic risk. This could be because

conditions at these firms drive the distribution of macroeconomic shocks, or else because

these firms’ conditions are particularly responsive to the forces that change macroeconomic

shocks’ distribution. We do not take a stand as to which of these is the case. Our em-

pirical evidence broadly supports theories following Bernanke and Gertler’s (1990) which

tie financial firms’ conditions to business cycle volatility. Meanwhile, since we find that the

tails of macroeconomic shocks are more responsive to shocks to financial firms’, this suggests

that explicitly nonlinear dynamics are an important part of the systemic risk story, as in

Krishnamurthy and He (2012) and Brunnermeier and Sannikov (2012). Our evidence sup-

ports the need for more of such theoretical work that teases out the different macroeconomic

consequences of shocks to all firms’ conditions and shocks to financial firms’ conditions in

particular.

6 Conclusion

In this paper we quantitatively examine a large collection of recently proposed systemic risk

measures. We construct a time series for more than 20 measures dating back to 1967 and,

in some cases, to 1926, for the US, and more than 10 measures for other countries. Based

on this panel, we study whether these measures agree in signaling periods of financial sector

distress. We find that, outside the recent financial crisis, the correlations of these measures

18If instead we use Bloom’s (2009) indicator ordered after financial volatility there continues to be an effect
(Figure ??. Future work (beyond the scope of this paper) may better tease out the relationship between
total market and financial volatility in such nonlinear systems.
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are low, and each measure displays idiosyncratic peaks at different times during the last 100

years, often as high as the peaks observed during the financial crisis.

Next, we propose a criterion to evaluate the empirical success of these measures in

predicting systemic risk. We argue that, for a systemic risk measure to be useful as an input

for decisions regarding policy and regulation geared towards welfare improvement, it should

be observably associated with real macroeconomic outcomes. Motivated by macroeconomic

theories with financial frictions, we evaluate the importance of each candidate measure by

testing whether it predicts low quantiles of future macroeconomic realizations.

Finally, we propose two methodologies for aggregating systemic risk information over

a large number of mis-measured individual series. We motivate this with a framework in

which each measure contains useful information about future economic downturns, but the

information is obscured by noise or other factors that are irrelevant to the macroeconomy.

Dimension reduction based on principal components and partial quantile regression forecast

macro quantiles using a small number of factors that are each a linear combination of in-

dividual systemic risk measures. We prove consistency and asymptotic normality of both

estimators. Systemic risk indexes constructed using these dimension reduction techniques

have significant power to forecast economic downturns in the US and Europe.
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A Appendix

A.1 Systemic Risk Measures

CoV aR and ∆CoV aR (Adrian and Brunnermeier 2011) CoVaR is defined as the

value-at-risk (VaR) of the financial system as a whole conditional on an institution being in

distress. The distress of the institution, in turn, is captured by the institution being at its

own individual VaR (computed at quantile q):

Pr(X i < V ari) = q

CoVar for institution i is then defined as:

Pr(Xsyst < CoV art|X i = V aRi) = q

which we estimate using conditional linear quantile regression after estimating V aRi.

∆CoV aRi
t is defined as the VaR of the financial system when institution i is at quantile q

(in distress) relative to the VaR when institution i is at the median of its distribution

∆CoV aRi
t = CoV aRi

t(q)− CoV aRi
t(0.5).

In estimating CoVar, we set q to the 5th percentile. Note that Adrian and Brunnermeier

(2011) propose the use of a conditional version of CoVaR as well, called forward CoVaR, in

which the relation between the value-at-risk of the system and the individual one is modeled

as conditional on an additional set of covariates Xt. Here we use the alternative approach

of rolling windows CoVaR estimates (in particular, we use a window of 252 days).

MES, SysRisk (Acharya, Pedersen, Philippon and Richardson (2010)) These

measures capture the exposure of each individual firm to shocks to the aggregate system.

MES captures the expected return of a firm conditional on the system being in its lower

tail:

MESi
t = E[Ri

t|Rt
m < q]

where q is a low quantile of the distribution of Rt
m. Together with leverage (LV G, defined

as the ratio of assets to market equity) this comprises a measure of expected capital shortfall,
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or SysRisk, when the system is in its lower tail:

SysRiski
t = αMESi

t + (1− α)LV Gi
t.

We construct MES and SES using a rolling window of 252 days.

SRISK (Brownlees and Engle (2011)) We construct the SRISK version ofMES, which

employs dynamic volatility models (GARCH/DCC for σ·,t, ρt) to estimate the components

of MES:

SRISKi,t−1 = σi,tρtE

[

ǫm,t|ǫm,t <
k

σm,t

]

+ σi,t

√

1− ρ2tE

[

ǫi,t|ǫm,t <
k

σm,t

]

.

Absorption Ratio (Kritzman et al. (2010)) This measure computes the fraction of

return variance of a set of N financial institutions explained by the first K < N principal

components:

AR(K) =

∑K
i=1

V ar(PCi)
∑N

i=1
V ar(PCi)

.

A leading distress indicator is then constructed as the difference between absorption

ratios calculated long (one year) and short (one month) estimation windows

∆AR(K) = AR(K)short − AR(K)long.

In our empirical analysis we construct the AR(3) measure, and construct ∆AR(K)

using respectively 22 and 252 days for the short and the long windows.

Dynamic Causality Index – or DCI (Billio et al. 2012) The index aims to capture

how interconnected a set of financial institutions is by computing the fraction of significant

Granger-causality relationships among their returns:

DCIt =
# significantGC relations

# relations

We consider significant Granger-causality relations with a p-value below 0.05. We

construct the measure using a rolling window of 36 months.
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International Spillover (Diebold and Yilmaz 2009) The index, kindly shared by

Professors Diebold and Yilmaz, aggregates the contribution of each variable to the forecast

error variance of other variables across multiple return series. It captures the total extent of

spillover across the series considered (a measure of interdependence).

Realized Volatility We construct individual volatility series of financial institutions by

computing the within-month standard deviation of daily returns. We construct the aggre-

gated series of realized volatility by averaging the individual volatility across the 20 largest

institutions. We exclude firm-month observations in which the realized volatility is 0.

Insolvency We start by constructing individual series of the inverse of the within-month

standard deviation of daily returns. We construct the aggregated series of insolvency by

averaging them across the 20 largest institutions. We exclude firm-month observations in

which the realized volatility is 0, and for UK and EU we additionally exclude observations in

which the realized volatility is below the 1st percentile of the overall empirical distribution

of realized monthly volatilities (in these cases, the inverse of volatility of an individual firm

becomes extremely large and dominates the insolvency measure).

Book and Market Leverage We construct a measure of aggregate book leverage (debt/assets)

and aggregate market leverage (debt/market equity) for the largest 20 financial institutions

to capture the potential for instability and shock propagation that occurs when large inter-

mediaries are highly levered.

Size concentration We construct the Herfindal index of the size distribution among fi-

nancial firms:

Herft = N
ΣN

i=1ME2
i

(ΣN
i=1MEi)2

The concentration index also captures potential instability due to the threat of default of

the largest firms. Note that we construct this measure using all available data (i.e., not

restricting ourselves to the top 20 institutions only).

Turbulence (Kritzman and Li (2010)) Turbulence is a measure of “excess volatility”,

that compares in each period the squared returns of financial institutions with their historical
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volatility:

Turbt = (rt − µ)′Σ−1(rt − µ)

where rt is the vector of returns of financial institutions, and µ and Σ are the historical

mean and variance-covariance matrix. We compute it using data for the largest 20 financial

institutions and a rolling window of 60 months.

AIM (Amihud 2002) AIM captures a weighted average of stock-level illiquidity AIM i
t ,

defined as:

AIM i
t =

1

K

t
∑

τ=t−K

|ri,τ |
turnoveri,τ

We construct an aggregated measure by averaging the measure across the top 20 fi-

nancial institutions.

TED Spread The difference between three-month LIBOR and three-month T-bill interest

rates.

Default Yield Spread The difference between yields on BAA corporate bonds and Trea-

suries.

Term Spread The difference between yields on ten year and one month US Treasury

bonds.
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A.2 Proofs

A.2.1 Assumptions

Assumption 1. Let It denote the information set at time t and Qτ (yt+1|It) denote the
time-t conditional τ−quantile of yt+1. Let f + 1 be 1× 1 and gt be Kg × 1 with K = 1+Kg

and f independent of g, the loadings φ and Ψ are orthogonal to each other, f t ≡ (ft, g
′
t)
′,

and xt be N × 1, for t = 1, . . . , T . Then

•Qτ (yt+1|It) = Qτ (yt+1|f t) = α′f t = αft

• yt+1 = αft + ηt+1

• xt = φft +Ψgt + εt = Λf t + εt

Assumption 2. Let ||A|| = (tr(A′A))1/2 denote the norm of matrix A, and M be some

positive finite scalar.

• E||f t||4 ≤M <∞ and 1

T

∑T
t=1

f tf
′
t → Σf or some K×K positive definite matrix Σf

• ||λi|| ≤ λ̄ <∞ and ||Λ′Λ/N −ΣΛ|| → 0 for some K ×K positive definite matrix ΣΛ.

• For all (i, t), E(εit) = 0,E|εit|8 ≤M

• There exist E(εitεjs) = σij,ts and |σij,ts| < σ̄ij for all (t, s), and |σij,ts ≤ τts for all (i, j)

such that 1

N

∑N
i,j=1

σ̄ij ≤M , 1

T

∑T
t,s=1

τts ≤M , and 1

NT

∑

i,j,s,t=1
|σij,ts| ≤M

• For every (t, s), E| 1√
N

∑N
i=1

[εisεit − E(εisεit)‖4 ≤M

• For each t, 1√
N

∑N
i=1

λiεit
d−−−→

N→∞
N(0,Γt) for

1

N

∑N
i=1

∑N
j=1

λiλ
′
jE(εitεjt)

p−−−→
N→∞

Γt

• The variables {λi}, {ft}, {gt} and {εit} are four mutually independent groups. De-
pendence within each group is allowed.

• Let zt = (f ′t,w
′
t)
′, E||zt||4 ≤M . Then E(ηt+h|yt, zt, yt−1, zt−1, . . .) = 0 for any h > 0,

and zt, ηt are independent of the idiosyncratic errors εis for all i, s, and

– 1

T

∑T
t=1

ztzt
p−−−→

T→∞
Σzz > 0

– 1√
T

∑T
t=1

ztηt+h
d−−−→

T→∞
N(0,Σzz,η) where

1

T

∑T
t=1

ztztη
2
t+h

p−−−→
T→∞

Σzz,η
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Assumption 3. Let M,m be positive finite scalars. The τ−quantile shock ηt+1 has condi-

tional density htητ (·|It) ≡ htη(·) and is such that

• htη is everywhere continuous

• m ≤ htη ≤M for all t

• htη satisfies the Lipschitz condition |htη(κ1)− htη(κ2)| ≤M |κ1 − κ2| for all t

• τ ∈ (0, 1)

• D = E

[

1

T

∑T
t=1

htη(0)f tf
′
t

]

≥ m and 1

T

∑T
t=1

htη(0)f tf
′
t

p−−−→
T→∞

D

• The sequence
{

1√
T

∑T
t=1

ρτ (ηt+1)f t

}

obeys a central limit theorem.

Assumption 4. Let the sequences {f t}, {εt} and {ηt+1} follow elliptical distributions.

A.2.2 Proof of Theorem ??

Proof. The predictive quantile regression coefficient is given by

α̂ = argmin
α

1

T

T
∑

t=1

ρτ (yt+1 −α′f̂ t).

Note that f t linearly depends on (f̂ t, f̂ t −Hf t) where following Bai (2003) we have H =

Ṽ
−1
(F̃

′
F /T )(Λ′Λ/N) where F̃ ≡ (f̃ 1, . . . , f̃T ) is the matrix of r eigenvectors (multiplied

by
√
T ) associated with the r largest eigenvalues of XX ′/(TN) in decreasing order and Ṽ

is the r × r diagonal matrix of these r largest eigenvalues.

By White (1994) Corollary 5.12 and the conditional quantile factor model assumption

(α̇1, α̇) = argmin
α1,α

1

T

T
∑

t=1

ρτ (yt+1 −α′f̂ t −α′1(f̂ t −Hf t))
p−−−→

T→∞
(α′H−1,−αH−1)

for each N . This can be verified by seeing that assumptions ??, ?? and ?? satisfy Engle and

Manganelli’s (2004) assumptions C0-C7 and AN1-AN4.

ACF (2006) Thm 2 implies that

α̂ = α̇+

(

1

T

T
∑

u=1

wuf̂uf̂
′
u

)−1(
1

T

T
∑

u=1

wuf̂uα̇
′
1(f̂u −Hfu)

)

.
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Note that wu depends on (f̂u−Hfu), and this deviation is a function of the cross-sectional

errors (ǫi1, . . . , ǫiT ) for i = 1, . . . , N . These are independent of the true fu. The wu is the

weight defined in ACF (2006) that is the integral of the specification error (the distance

α̂′f̂ t − α′f t). Note that as this distance vanishes the weight sequence {wu} becomes, in
general, a deterministic sequence for all u (and a constant should η be homoskedastic).

Following Bai and Ng (2006) we write

α̂′f̂ t −α′f t = α̂′(f̂ t −Hf t) + (α̂′ −α′H−1)Hf t

=
1√
N
α̂′
[√

N(f̂ t −Hf t)
]

+
[√

T (α̂′ −α′H−1)
] 1√

T
Hf t. (A1)

√
N(f̂ t −Hf t) and

√
T (α̂′ − α′H−1) are asymptotically independent just as Bai and Ng

(2006) argue since the limit of the former is determined by (ǫi1, . . . , ǫiT ) for i = 1, . . . , N while

the limit of the latter is determined by (η2, . . . , ηT+1) which are independent of the cross-

sectional errors. Bai (2003) says that
√
NΣ̂

−1/2
PCQR,1(f̂ t−Hf t)

d−−−→
N→∞

N(0, I) if
√
N
T
→ 0 and

is bounded otherwise, for Σ̂PCQR,1 given by Bai and Ng’s (2006) theorem 4. For simplicity

we assumed that
√
N
T
→ 0 so we have this normal asymptotic distribution. This means

that the first term of (??) is normal in the limit with asymptotic variance estimated by
1

N
α̂′Σ̂PCQR,1α̂.

We can write

√
T (α̂′ −α′H−1)

=
√
T (α̇′ −α′H−1) +

(

1

T

T
∑

u=1

wuf̂uf̂
′
u

)−1(
1

T

T
∑

u=1

wuf̂uα̇
′
1(f̂u −Hfu)

√
T

)

=
√
T (α̇′ −α′H−1) +

(

1

T

T
∑

u=1

wuf̂uf̂
′
u

)−1(
1

T

T
∑

u=1

wuf̂u(α̇
′
1 +α′H−1)(f̂u −Hfu)

√
T

)

+

(

1

T

T
∑

u=1

wuf̂uf̂
′
u

)−1(
1

T

T
∑

u=1

wuf̂uα
′H−1(f̂u −Hfu)

√
T

)

(A2)
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We can rewrite the third term of (??) as

(

1

T

T
∑

u=1

wuf̂uf̂
′
u

)−1(√
T√
N

1

T

T
∑

u=1

wuf̂uα
′H−1

√
N(f̂u −Hfu)

)

=
1√
N

(

1

T

T
∑

u=1

wuf̂uf̂
′
u

)−1(
1√
T

T
∑

u=1

wuHfuα
′H−1

√
N(f̂u −Hfu)

)

+
1√
N
op(1)

= Op(
1√
N
)

The last equality holds using Slutsky because:
(

1

T

∑T
u=1

wuf̂uf̂
′
u

)−1
is a constant in the

limit; f̂u−Hfu = op(1) and therefore wuf̂uα
′H−1√N(f̂u−Hfu) = Hfuα

′H−1√N(f̂u−
Hfu)wu+op(1); in the limit {wu} is a deterministic sequence; and

√
N(f̂u−Hfu) is indepen-

dent of the true fu. All these statements then imply that
1√
T

∑T
u=1

wuHfuα
′H−1√N(f̂u−

Hfu) is a bounded mean zero random variable for N, T large – but there is an extra 1√
N
out

front, and so the whole term is Op(
1√
N
). The second term of (??) is identical to the third term

we just handled, except for the (α̇′−αH−1) term which is itself Op(
1√
T
) – therefore the sec-

ond term of (??) is Op(
1√
NT

). This means that
√
T (α̂′−α′H−1) =

√
T (α̇′−α′H−1)+op(1).

Now
√
T Σ̂

−1/2
PCQR,2(α̇

′ − α′H−1)
d−−−→

T→∞
N(0, I) by White (1994) and Engle and Man-

ganelli (2004). Furthermore, since f̂ = Hf t + op(1), we can consistently estimate the

asymptotic variance of
[√

T (α̇′ −α′H−1)
]

1√
T
Hf t by

1

T
f̂
′
tΣ̂PCQR,2f̂ t given in the theorem

statement.

Recalling the asymptotic independence of the two terms in (??), we therefore have the

result that
α̂′f̂ t −α′f t

1

N
α̂′Σ̂PCQR,1α̂+ 1

T
f̂
′
tΣ̂PCQR,2f̂ t

d−−−−−→
N,T→∞

N(0, 1).

A.2.3 Sketch of proof of Theorem ??

The first-stage orthogonal quantile regression estimate φ̂i is given by

(φ̂0i, φ̂i) = argmin
φ0,φi

1

T

T
∑

t=1

ρτ

(

yt+1 − φ0i − φixit
√

1 + φ2ci

)

.
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For a consistent estimate of ci, Liang and Li’s (2009) theorem 3 and assumption ?? imply

that φ̂i
p−−−→

T→∞
α
φi

with a rate of convergence O( 1√
T
).

The second-stage cross-sectional OLS regression of xit on a constant and φ̂i yields a

slope coefficient that is consistent for an affine function a+ bft for each t, for N large. Call

this estimate f̂t. Using this estimate we can construct an estimate ĉi, plug this into the

first-stage, and repeat the first and second stages until convergence.

Fitted values form the third-stage quantile regression of yt+1 on a constant and the

second-stage {f̂t} should be asymptotically normal for the conditional quantile αft.

A.3 VAR

We use Bloom’s (2009) data from June 1962 to June 2008: the log of the S&P500 stock

market index sp500, the stock-market volatility series bloom, the Federal Funds rate ff ,

the log of average hourly earnings wage, the log of the consumer price index price, average

hours hours, the log of employment empl, and the log of industrial production ip. We add to

this financial volatility finvol, measured as the realized volatility (daily within the month)

of the portfolio of all financial firms in CRSP. Following Bloom (2009), all variables are

Hodrick-Prescott detrended with a smoothing parameter of 129,600, save for Bloom’s stock-

market volatility indicator. We consider two versions of his volatility series. The primary

is the indicator variable described in Bloom (2009) which is 1 for 17 months wherein an

underlying stock market volatility measure spikes 1.65 standard deviations above mean –

this variable is not HP-filtered. The second volatility series is the underlying stock market

volatility measure itself, which is HP-filtered.

Therefore the VAR setup is




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










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
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
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=
12
∑

j=1
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
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
























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where we include twelve lags following Bloom (2009) and we assume ut is serially uncorre-

lated. The recursive identification scheme (see Sims 1980) assumes that

ut = Cǫt

where E(ǫt) = 0, E(ǫtǫ
′
t)− I and C is a lower triangular matrix. The structural shocks are

found from a Cholesky factorization of the sample covariance matrix of the estimated resid-

uals ût, and then the impulse responses follow from the estimated dynamics {Â1, . . . , Â12}.
We present bootstrapped confidence intervals with 68% coverage, which are finite-sample

versions of Bloom’s one-standard-deviation asymptotic standard-error bands – we follow

Efron and Tibshirani (1993), which constructs a simulated distribution of impulse-response

coefficients across bootstrap worlds and reports the centered region that covers 68% of these

bootstrapped coefficient estimates.
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A.4 Tables and Figures
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Figure 1: Systemic Risk Measures
Notes: The figure plots a subset of our panel of systemic risk measures. All measures have been standardized
to have equal variance.
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Figure 2: Loss Functions
Notes: The figure plots three regression loss functions including that of least squares, quantile regression
with τ = 0.5 (median regression), and quantile regression with τ = 0.2
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Figure 3: Example of Quantile Fit: Turbulence
Notes: The figure show a scatter plot of financial sector turbulence at time t against CFNAI shocks aggregated
from t+ 1 to t+ 3. It also shows fitted quantile regression forecast lines for quantiles between 0.2 and 0.8.
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Figure 4: Example of Quantile Fit: ∆ Absorption Ratio
Notes: The figure show a scatter plot of ∆ absorption ratio at time t against CFNAI shocks aggregated from
t+ 1 to t+ 3. It also shows fitted quantile regression forecast lines for quantiles between 0.2 and 0.8.
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Figure 5: Impulse Responses: Benchmark
Notes: Impulse responses estimated from benchmark VAR with Bloom’s (2009) volatility indicator ordered
first followed by financial volatility. Bootstrapped one-standard-error (68% coverage confidence interval)
bands.
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Figure 6: Impulse Responses: Market Volatility before Financial Volatility
Notes: Impulse responses estimated from benchmark VAR with Bloom’s (2009) total market volatility mea-
sure ordered first followed by financial volatility. Bootstrapped one-standard-error (68% coverage confidence
interval) bands.
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Figure 7: Impulse Responses: Financial Volatility before Market Volatility
Notes: Impulse responses estimated from benchmark VAR with financial volatility ordered first followed by
Bloom’s (2009) total market volatility measure. Bootstrapped one-standard-error (68% coverage confidence
interval) bands.
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Figure 8: Impulse Responses: Financial Volatility before Bloom Indicator
Notes: Impulse responses estimated from benchmark VAR with financial volatility ordered first followed
by Bloom’s (2009) volatility indicator. Bootstrapped one-standard-error (68% coverage confidence interval)
bands.
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Table 2: Sample Start Dates

US UK EU

Absorption 1957 1973 1973

∆ Absorp. 1957 1973 1973

Turbulence 1959 1978 1978

dci 1957 1975 1975

avgmessrisk 1954 1973 1973

avgmesappr 1971 1973 1973

avgcov 1957 1974 1974

avgdcov 1957 1974 1974

mktherf 1926 1973 1973

realvol 1954 1973 1973

diebold 1963 - -

def 1926 - -

ts 1926 - -

ted 1984 - -

avgaim 1954 - -

avgsysriskappr 1971 - -

booklev 1970 - -

mktlev 1970 - -

Notes: Measures begin in the stated year and are available through 2012 unless otherwise specified (in
parenthesis).
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Table 4: Correlations, UK and EU
UK Absorption ∆ Absorp. turb dci avgmessrisk avgmesappr avgcov avgdcov mktherf realvol

Absorption 1.00 −0.50 0.10 0.40 0.45 0.62 0.57 0.69 0.17 0.34

∆ Absorp. −0.50 1.00 0.06 −0.23 −0.15 −0.35 −0.31 −0.37 −0.04 0.12

Turbulence 0.10 0.06 1.00 0.03 0.46 0.36 0.40 0.35 0.16 0.69

DCI 0.40 −0.23 0.03 1.00 0.40 0.45 0.34 0.37 0.38 0.21

MES (BE) 0.45 −0.15 0.46 0.40 1.00 0.66 0.49 0.54 0.59 0.66

MES (APPR) 0.62 −0.35 0.36 0.45 0.66 1.00 0.92 0.93 0.50 0.66

CoVaR 0.57 −0.31 0.40 0.34 0.49 0.92 1.00 0.97 0.32 0.69

∆ CoVaR 0.69 −0.37 0.35 0.37 0.54 0.93 0.97 1.00 0.32 0.65

Size Conc. 0.17 −0.04 0.16 0.38 0.59 0.50 0.32 0.32 1.00 0.40

log Real. Vol. 0.34 0.12 0.69 0.21 0.66 0.66 0.69 0.65 0.40 1.00

EU

Absorption 1.00 −0.51 0.02 0.39 0.53 0.78 0.68 0.77 0.30 0.34

∆ Absorp. −0.51 1.00 0.09 −0.20 −0.25 −0.41 −0.34 −0.38 −0.21 0.18

Turbulence 0.02 0.09 1.00 0.14 0.16 0.08 0.11 0.09 −0.02 0.42

DCI 0.39 −0.20 0.14 1.00 0.39 0.54 0.51 0.53 0.42 0.33

MES (BE) 0.53 −0.25 0.16 0.39 1.00 0.63 0.51 0.64 0.23 0.35

MES (APPR) 0.78 −0.41 0.08 0.54 0.63 1.00 0.94 0.96 0.37 0.52

CoVaR 0.68 −0.34 0.11 0.51 0.51 0.94 1.00 0.96 0.42 0.57

∆ CoVaR 0.77 −0.38 0.09 0.53 0.64 0.96 0.96 1.00 0.46 0.51

Size Conc. 0.30 −0.21 −0.02 0.42 0.23 0.37 0.42 0.46 1.00 0.10

log Real. Vol. 0.34 0.18 0.42 0.33 0.35 0.52 0.57 0.51 0.10 1.00

Notes: Each pairwise correlation is calculated using the longest available coinciding sample for that pair.
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Table 5: Variance Decomposition, 1984-2011
Principal Component

1 2 3 4 5

US

Absorption 0.58 0.20 0.08 0.00 0.00

∆ Absorp. 0.13 0.19 0.00 0.14 0.18

Turbulence 0.29 0.16 0.19 0.04 0.02

DCI 0.47 0.05 0.00 0.17 0.04

MES (BE) 0.31 0.33 0.00 0.00 0.02

MES (APPR) 0.89 0.01 0.00 0.01 0.02

CoVaR 0.84 0.04 0.01 0.00 0.03

∆ CoVaR 0.85 0.02 0.00 0.00 0.03

Size Conc. 0.02 0.52 0.14 0.11 0.00

log Real. Vol. 0.51 0.10 0.13 0.14 0.00

Intl. Spillover 0.36 0.06 0.12 0.00 0.12

Def Spr. 0.40 0.00 0.40 0.09 0.00

Term Spr. 0.14 0.00 0.66 0.08 0.01

TED Spri. 0.10 0.37 0.17 0.00 0.01

AIM 0.00 0.00 0.00 0.44 0.00

SysRisk 0.91 0.00 0.00 0.01 0.02

Book Lvg. 0.23 0.22 0.03 0.00 0.36

Mkt Lvg. 0.56 0.12 0.03 0.05 0.14

UK

Absorption 0.45 0.21 0.04 0.02 0.10

∆ Absorp. 0.11 0.52 0.08 0.14 0.10

Turbulence 0.24 0.42 0.08 0.18 0.00

DCI 0.28 0.08 0.39 0.02 0.14

MES (BE) 0.65 0.02 0.05 0.11 0.01

MES (APPR) 0.90 0.01 0.00 0.04 0.00

CoVaR 0.80 0.00 0.05 0.10 0.00

∆ CoVaR 0.85 0.01 0.06 0.06 0.00

Size Conc. 0.46 0.00 0.30 0.01 0.16

log Real. Vol 0.61 0.28 0.00 0.00 0.00

EU

Absorption 0.75 0.03 0.04 0.00 0.00

∆ Absorp. 0.25 0.35 0.06 0.20 0.04

Turbulence 0.03 0.55 0.00 0.34 0.06

DCI 0.39 0.00 0.21 0.04 0.21

MES (BE) 0.49 0.00 0.08 0.03 0.18

MES (APPR) 0.92 0.00 0.01 0.02 0.00

CoVaR 0.86 0.00 0.00 0.04 0.04

∆ CoVaR 0.93 0.00 0.00 0.02 0.01

Size Conc. 0.23 0.05 0.55 0.00 0.04

log Real. Vol. 0.31 0.49 0.00 0.07 0.00

Notes: We standardize all systemic risk measures so that they have equal variance, and calculate the principal
components of the standardize measures. We then report the fraction of each measure’s variance attributable
to each principal component. A21



Table 6: Granger Causality Tests
US UK EU

Causes Caused by Causes Caused by Causes Caused by
Absorption 4 1 1 1 1 6

∆ Absorp. 7 1 5 0 4 0

Turbulence 9 5 6 1 5 1

DCI 1 7 0 5 3 1

MES (BE) 1 12 1 8 1 6

MES (APPR) 5 6 3 6 2 5

CoVaR 5 4 4 3 3 3

∆ CoVaR 7 4 3 3 4 3

Size Conc. 0 0 2 0 1 0

log Real. Vol. 10 4 6 4 6 5

Intl. Spillover 0 7 − − − −
Def. Spr. 3 4 − − − −
Term Spr. 2 10 − − − −
TED Spr. 4 1 − − − −
AIM 1 0 − − − −
SysRisk 7 4 − − − −
Book Lvg. 1 0 − − − −
Mkt Lvg. 3 0 − − − −

Notes: For each pair of variables, we conduct two-way Granger causality tests. The table reports the number
of variables that each measure significantly causes (left column) or is caused by (right column) in a Granger
sense at the 2.5% one-sided significance level (tests are for positive causation only).
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Table 7: In-Sample Quantile Forecasts, CFNAI and its Components, 20th Percentile, Quarter
Shocks

Mean Loss Relative to Historical Quantile

Total EUH PH PI SOI

Hist. Quantile - - - - -

Absorption 0.9789 0.9611 0.9859 0.9530 0.9899

AIM 1.0000 0.9977 0.9986 0.9992 0.9965

CoVaR 0.9849 0.9704 0.9839 0.9644 0.9957

∆ CoVaR 0.9975 0.9963 0.9796 0.9865 0.9996

MES (APPR) 0.9950 0.9900 0.9780 0.9862 0.9987

MES (BE) 0.9869 0.9904 0.9733 0.9875 0.9832

Book Lvg. 0.9741 0.9634 0.9582 0.9624 0.9956

DCI 0.9795 0.9662 0.9042 0.9864 0.9994

Def. Spr. 0.9988 0.9952∗ 0.9946 0.9997 0.9993

∆ Absorption 0.9990 0.9956 0.9956 0.9998 1.0000

Intl. Spillover 0.9935 0.9947 0.9954 0.9978 0.9925∗∗

Size Conc. 0.9994 0.9837 0.9890 0.9885 0.9982

Mkt. Lvg. 0.9371 0.9338 0.8555 0.9457 0.9797

log Real. Vol. 0.9155 0.8922 0.9576 0.9062 0.9404

TED Spr. 0.9226 0.9475 0.9425 0.9269 0.9473

Term Spr. 0.9770∗∗ 0.9563∗∗∗ 0.9981 0.9747∗∗∗ 0.9840∗∗

Turbulence 0.8781 0.8694 0.9185 0.8819 0.9052

Multiple QR 0.7156 0.7093 0.7568 0.7267∗ 0.7802

PCQR1 0.9630 0.9464 0.9472 0.9455 0.9819

PCQR2 0.9430∗∗∗ 0.9384∗∗∗ 0.9194∗∗∗ 0.9445∗∗∗ 0.9683∗∗

PQR 0.8613∗∗∗ 0.8632∗∗∗ 0.8871∗∗∗ 0.8722∗∗∗ 0.8922∗∗∗

cPQR 0.8893∗∗∗ 0.8632∗∗∗ 0.8866∗∗∗ 0.8806∗∗∗ 0.8911∗∗∗

Notes: The table reports in-sample average quantile forecast losses relative to the historical quantile model.
Lower average losses represent more accurate quantile forecasts.
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Table 8: Out-of-Sample Quantile Forecasts, CFNAI and its Components, 20th Percentile,
Quarter Shocks

Mean Loss Relative to Historical Quantile

Total EUH PH PI SOI

Hist. Quantile - - - - -

Absorption 1.0176 0.9880 1.0020 0.9654 1.0195

AIM 1.0080 1.0119 1.0037 1.0123 0.9990

CoVaR 1.0146 0.9997 1.0049 0.9810 1.0227

∆ CoVaR 1.0294 1.0341 1.0063 1.0103 1.0258

MES (APPR) 1.0420 1.0309 1.0215 1.0326 1.0329

MES (BE) 1.0171 1.0548 1.0265 1.0260 1.0348

Book Lvg. 1.0151 0.9936 0.9720∗ 0.9810 1.0145

DCI 1.0060 1.0085 0.9014∗∗ 1.0146 1.0443

Def. Spr. 1.0284 1.0234 1.0124 1.0245 1.0250

∆ Absorption 1.0070 1.0022 0.9976 1.0105 1.0136

Intl. Spillover 1.0256 1.0414 1.0234 1.0301 1.0237

Size Conc. 1.0519 1.0294 1.0542 1.0439 1.0503

Mkt. Lvg. 0.9928 0.9648 0.8429∗∗∗ 1.0010 1.0585

log Real. Vol. 0.9158∗∗ 0.9219∗∗ 1.0013 0.9139∗∗ 0.9479∗

TED Spr. 0.9717 0.9979 0.9444∗ 0.9508∗∗ 0.9725∗

Term Spr. 1.0044 0.9735 1.0259 0.9882 0.9962

Turbulence 0.8956∗ 0.8643∗∗ 0.9559 0.8905∗∗ 0.9144∗∗

Multiple QR 1.0773 1.0742 1.0352 1.0638 1.0838

PCQR1 0.9977 0.9773 0.9641∗∗ 0.9517 1.0275

PCQR2 0.9093∗ 0.9185∗ 0.9138∗∗ 0.9184∗ 0.9310

PQR 0.9116∗∗ 0.8980∗∗∗ 0.8667∗∗∗ 0.9273∗∗ 0.9535

cPQR 0.9309∗ 0.8980∗∗∗ 0.8668∗∗∗ 0.9141∗∗ 0.9517

Notes: The table reports out-of-sample average quantile forecast losses relative to the historical quantile
model. Lower average losses represent more accurate quantile forecasts. Out-of-sample begins 1990.
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Table 9: In-Sample Quantile Forecasts, CFNAI and its Components, Median, Quarter Shocks

Mean Loss Relative to Historical Quantile

Total EUH PH PI SOI

Hist. Quantile - - - - -

Absorption 0.9919 0.9941 0.9961 0.9962 0.9999

AIM 0.9991 0.9992 0.9990 0.9999 0.9995

CoVaR 0.9985 1.0000 0.9994 0.9986 0.9986

∆ CoVaR 0.9997 0.9980 0.9994 0.9996 0.9943

MES (APPR) 0.9998 0.9974 0.9999 0.9984 0.9951

MES (BE) 0.9988 0.9989 0.9994 1.0000 0.9995

Book Lvg. 0.9917 0.9997 0.9885 0.9968 0.9963

DCI 0.9970 0.9992 0.9932 0.9989 0.9995

Def. Spr. 0.9907∗∗ 0.9920 0.9957 0.9893∗∗ 0.9925∗

∆ Absorption 1.0002 0.9981 0.9994 0.9938 0.9969

Intl. Spillover 0.9922∗∗ 0.9945 0.9996 0.9822∗∗∗ 0.9925

Size Conc. 0.9949 0.9968 0.9997 0.9966 0.9945

Mkt. Lvg. 0.9930 1.0002 0.9749 0.9957 0.9986

log Real. Vol. 0.9729 0.9766 0.9926 0.9684 0.9907

TED Spr. 0.9888 0.9912 0.9904 0.9721 0.9929

Term Spr. 0.9765∗∗∗ 0.9796∗∗∗ 0.9922 0.9741∗∗∗ 0.9738∗∗∗

Turbulence 0.9563 0.9527 0.9660 0.9642 0.9675

Multiple QR 0.8333 0.8414 0.8967 0.8243∗ 0.8601

PCQR1 0.9982 1.0002 0.9961 0.9990 0.9994

PCQR2 0.9966 0.9997 0.9927∗∗ 0.9921∗∗ 0.9973

PQR 0.9366∗∗∗ 0.9325∗∗∗ 0.9473∗∗∗ 0.9305∗∗∗ 0.9486∗∗∗

cPQR 0.9573∗∗∗ 0.9313∗∗∗ 0.9450∗∗∗ 0.9311∗∗∗ 0.9480∗∗∗

Notes: The table reports in-sample average quantile forecast losses relative to the historical quantile model.
Lower average losses represent more accurate quantile forecasts.
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Table 10: Out-of-Sample Quantile Forecasts, CFNAI and its Components, Median, Quarter
Shocks

Mean Loss Relative to Historical Quantile

Total EUH PH PI SOI

Hist. Quantile - - - - -

Absorption 1.0071 1.0156 1.0157 1.0123 1.0201

AIM 1.0217 1.0180 1.0088 1.0150 1.0052

CoVaR 1.0082 1.0250 1.0075 1.0136 1.0163

∆ CoVaR 1.0047 1.0169 1.0078 1.0053 1.0024

MES (APPR) 1.0081 1.0248 1.0173 1.0109 1.0152

MES (BE) 1.0170 1.0135 1.0157 1.0142 1.0091

Book Lvg. 1.0090 1.0180 1.0032 1.0103 1.0151

DCI 1.0170 1.0202 1.0082 1.0399 1.0145

Def. Spr. 1.0111 1.0103 1.0073 1.0045 1.0068

∆ Absorption 1.0031 1.0060 1.0043 0.9958 1.0023

Intl. Spillover 1.0115 1.0197 1.0144 0.9903 0.9995

Size Conc. 1.0152 1.0193 1.0196 1.0230 1.0197

Mkt. Lvg. 1.0443 1.0539 0.9993 1.0493 1.0311

log Real. Vol. 0.9956 1.0129 1.0160 0.9840 1.0088

TED Spr. 1.0055 1.0094 1.0081 0.9859∗ 1.0047

Term Spr. 0.9878 0.9880 1.0029 0.9834∗ 0.9855

Turbulence 0.9715 0.9657 0.9895 0.9722 0.9729

Multiple QR 1.1500 1.2042 1.2162 1.1321 1.1044

PCQR1 1.0222 1.0441 1.0264 1.0290 1.0285

PCQR2 1.0045 1.0323 1.0238 1.0161 1.0102

PQR 0.9674 0.9858 1.0225 0.9542∗ 0.9793

cPQR 0.9513∗ 0.9840 1.0215 0.9520∗ 0.9793

Notes: The table reports out-of-sample average quantile forecast losses relative to the historical quantile
model. Lower average losses represent more accurate quantile forecasts. Out-of-sample begins 1990.
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Table 11: In-Sample Quantile Forecasts, Industrial Production Growth, 20th Percentile,
Quarter Shocks

Mean Loss Relative to Historical Quantile

US UK EU

Hist. Quantile - - -

Absorption 0.9484 0.9922 0.9587

AIM 0.9959 1.0001 0.9952

CoVaR 0.9110 0.9270 0.9715

∆ CoVaR 0.9455 0.9427 0.9711

MES (APPR) 0.9390 0.9404 0.9711

MES (BE) 0.9516 0.9314 0.9772

Book Lvg. 0.9536 0.9371 0.9830

DCI 0.9557 1.0016 0.9750

Def. Spr. 0.9847 0.9650 0.9122

∆ Absorption 0.9998 0.9949 0.9898∗

Intl. Spillover 0.9890 0.9617 0.9811

Size Conc. 0.9918 0.8807 0.9447

Mkt. Lvg. 0.8932 0.9455 0.9960

log Real. Vol. 0.8451 0.9372 0.9355

TED Spr. 0.9229 0.9531 0.9849

Term Spr. 0.9955 0.9987 0.9534

Turbulence 0.8429 0.9498 0.9549

Multiple QR 0.6716∗ 0.7798∗ 0.7321∗∗

PCQR1 0.8805 0.9120 0.9232

PCQR2 0.8712∗∗∗ 0.8862∗∗∗ 0.9047∗∗∗

PQR 0.8840∗∗∗ 0.9265∗∗∗ 0.9358∗∗∗

cPQR 0.8840∗∗∗ 0.9265∗∗∗ 0.9358∗∗∗

Notes: The table reports in-sample average quantile forecast losses relative to the historical quantile model.
Lower average losses represent more accurate quantile forecasts.
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Table 12: Out-of-Sample Quantile Forecasts, Industrial Production Growth, 20th Percentile,
Quarter Shocks

Mean Loss Relative to Historical Quantile

US UK EU

Hist. Quantile - - -

Absorption 0.9808 1.0154 0.9804

AIM 1.0043 1.0291 1.0033

CoVaR 0.9388 0.9446∗∗ 0.9870

∆ CoVaR 0.9762 0.9603∗∗ 0.9976

MES (APPR) 0.9671 0.9537∗∗ 0.9910

MES (BE) 1.0025 0.9567∗ 0.9965

Book Lvg. 0.9734∗ 0.9337∗∗ 1.0108

DCI 0.9929 1.0302 0.9922

Def. Spr. 1.0119 0.9925 0.9282∗∗

∆ Absorption 1.0037 0.9968 0.9966

Intl. Spillover 1.0409 1.0024 1.0235

Size Conc. 1.0358 0.8940∗∗∗ 0.9628∗∗

Mkt. Lvg. 0.9190 1.0019 1.0262

log Real. Vol. 0.8504∗∗∗ 0.9872 0.9642∗

TED Spr. 0.9376∗∗∗ 0.9807 1.0043

Term Spr. 1.0023 1.0318 0.9657∗

Turbulence 0.8460∗∗∗ 1.0297 0.9826

Multiple QR 0.9337 1.2230 0.9951

PCQR1 0.8979∗ 0.9480∗∗ 0.9492∗

PCQR2 0.8834∗∗ 0.9066∗∗∗ 0.9898

PQR 0.9154∗∗ 0.9484∗ 0.9774

cPQR 0.9154∗∗ 0.9484∗ 0.9774

Notes: The table reports out-of-sample average quantile forecast losses relative to the historical quantile
model. Lower average losses represent more accurate quantile forecasts. Out-of-sample begins 1990.
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Table 13: In-Sample Quantile Forecasts, Industrial Production Growth, Median, Quarter
Shocks

Mean Loss Relative to Historical Quantile

US UK EU

Hist. Quantile - - -

Absorption 0.9871 0.9981 0.9817

AIM 0.9962 1.0006 0.9993

CoVaR 0.9871 0.9859 0.9959

∆ CoVaR 0.9950 0.9897 0.9956

MES (APPR) 0.9980 0.9901 0.9983

MES (BE) 0.9993 0.9491 0.9987

Book Lvg. 0.9696 0.9636 0.9963

DCI 0.9846 0.9999 0.9909

Def. Spr. 0.9997 0.9971 0.9693

∆ Absorption 0.9989 0.9956 0.9943

Intl. Spillover 0.9968 0.9963 0.9969

Size Conc. 0.9961 0.9492 0.9914

Mkt. Lvg. 0.9561 0.9730 0.9951

log Real. Vol. 0.9597 0.9714 0.9964

TED Spr. 0.9790 0.9953 0.9998

Term Spr. 0.9862∗∗ 0.9759∗∗∗ 0.9833

Turbulence 0.9522 0.9805 1.0000

Multiple QR 0.7713∗ 0.8247 0.8668

PCQR1 0.9807 0.9738 0.9769

PCQR2 0.9732∗∗∗ 0.9629∗∗ 0.9765∗∗

PQR 0.9291∗∗∗ 0.9347∗∗∗ 0.9724∗∗∗

cPQR 0.9291∗∗∗ 0.9347∗∗∗ 0.9724∗∗∗

Notes: The table reports in-sample average quantile forecast losses relative to the historical quantile model.
Lower average losses represent more accurate quantile forecasts.
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Table 14: Out-of-Sample Quantile Forecasts, Industrial Production Growth, Median, Quar-
ter Shocks

Mean Loss Relative to Historical Quantile

US UK EU

Hist. Quantile - - -

Absorption 0.9951 1.0102 0.9842

AIM 0.9989 1.0434 1.0013

CoVaR 0.9992 1.0255 1.0057

∆ CoVaR 1.0057 1.0208 1.0036

MES (APPR) 1.0247 1.0177 1.0079

MES (BE) 1.0171 0.9589∗∗ 1.0105

Book Lvg. 0.9753∗ 0.9733 1.0041

DCI 1.0080 1.0123 0.9952

Def. Spr. 1.0196 1.0418 0.9763∗

∆ Absorption 0.9990 1.0116 0.9955

Intl. Spillover 1.0125 1.0298 1.0034

Size Conc. 1.0173 0.9709∗ 0.9991

Mkt. Lvg. 0.9603 1.0439 1.0158

log Real. Vol. 0.9794 0.9816 1.0161

TED Spr. 0.9826∗∗∗ 1.0138 1.0060

Term Spr. 0.9970 1.0081 0.9901

Turbulence 0.9553∗∗ 1.0119 1.0101

Multiple QR 1.0400 1.2380 1.0910

PCQR1 0.9997 1.0007 0.9919

PCQR2 0.9902 0.9790 1.0097

PQR 0.9546∗∗ 0.9724 1.0355

cPQR 0.9546∗∗ 0.9723 1.0355

Notes: The table reports out-of-sample average quantile forecast losses relative to the historical quantile
model. Lower average losses represent more accurate quantile forecasts. Out-of-sample begins 1990.
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Table 15: Out-of-Sample Quantile Forecasts, Industrial Production Growth, Financial and
Nonfinancial Stock Volatility

Mean Loss Relative to Historical Quantile

20th Percentile Median

Out-of-Sample Begins in 1970

Financial Volatility 0.9407∗∗∗ 0.9630∗∗

Non-Financial Volatility 1.0016 0.9901

Multiple QR 0.9661 0.9771

Out-of-Sample Begins in 1990

Financial Volatility 0.8750∗∗∗ 0.9183∗∗

Non-Financial Volatility 0.9819 0.9762∗

Multiple QR 0.9109∗∗ 0.9307∗∗

Notes: The table reports out-of-sample average quantile forecast losses relative to the historical quantile
model. Lower average losses represent more accurate quantile forecasts.
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Table 16: In-Sample Quantile Forecasts, CFNAI and its Components, 20th Percentile, Six-
Month Shocks

Mean Loss Relative to Historical Quantile

Total EUH PH PI SOI

Hist. Quantile - - - - -

Absorption 0.9490∗ 0.9354∗∗ 0.9774∗ 0.9486 0.9587

AIM 0.9989 0.9984 0.9874∗∗∗ 0.9991 0.9984

CoVaR 0.9803 0.9657 1.0001 0.9740 0.9836

∆ CoVaR 0.9982 0.9967 0.9990 0.9976 0.9993

MES (APPR) 0.9965 0.9960 0.9977 0.9922 0.9994

MES (BE) 0.9993 0.9998 0.9980 0.9984 0.9999

Book Lvg. 0.9544∗ 0.9459∗∗ 0.9419∗∗ 0.9540∗ 0.9542∗

DCI 0.9821 0.9827 0.8923∗∗∗ 0.9832 0.9843

Def. Spr. 0.9868 0.9825∗ 1.0043 0.9896 0.9952

∆ Absorption 1.0001 0.9980 0.9982 1.0016 0.9998

Intl. Spillover 0.9865 0.9826 0.9969 0.9785 0.9842

Size Conc. 0.9817∗ 0.9737∗ 0.9925 0.9742∗ 0.9789∗

Mkt. Lvg. 0.9479 0.9567 0.8391∗∗∗ 0.9556 0.9478

log Real. Vol. 0.9227∗∗ 0.9023∗∗ 0.9803 0.9041∗∗ 0.9206∗∗

TED Spr. 0.9131∗∗ 0.9424∗ 0.9306∗ 0.9119∗∗ 0.9135∗∗∗

Term Spr. 0.9565∗∗ 0.9485∗∗∗ 0.9920 0.9483∗∗ 0.9646∗∗

Turbulence 0.8700∗∗∗ 0.8733∗∗∗ 0.9192∗∗∗ 0.8776∗∗∗ 0.8693∗∗∗

Multiple QR 0.6092∗∗∗ 0.5964∗∗∗ 0.6770∗∗∗ 0.6187∗∗∗ 0.6761∗∗∗

PCQR1 0.9619 0.9582 0.9685∗ 0.9527 0.9692

PCQR2 0.9599 0.9566 0.9340∗∗ 0.9476 0.9599

PQR 0.8317∗∗∗ 0.8197∗∗∗ 0.7964∗∗∗ 0.8410∗∗∗ 0.8423∗∗∗

cPQR 0.9955 0.8450∗∗∗ 0.7962∗∗∗ 0.8672∗∗∗ 0.8381∗∗∗

Notes: The table reports in-sample average quantile forecast losses relative to the historical quantile model.
Lower average losses represent more accurate quantile forecasts.
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Table 17: Out-of-Sample Quantile Forecasts, CFNAI and its Components, 20th Percentile,
Six-Month Shocks

Mean Loss Relative to Historical Quantile

Total EUH PH PI SOI

Hist. Quantile - - - - -

Absorption 1.0107 0.9837 1.0463 1.0142 1.0340

AIM 1.0062 1.0010 1.0091 1.0086 1.0079

CoVaR 1.0311 1.0208 1.0364 1.0347 1.0446

∆ CoVaR 1.0540 1.0381 1.0313 1.0580 1.0522

MES (APPR) 1.0740 1.0616 1.0504 1.0650 1.0837

MES (BE) 1.0626 1.0444 1.0728 1.0621 1.0453

Book Lvg. 1.0220 0.9889 0.9836 1.0159 1.0029

DCI 1.0713 1.0546 0.9042∗∗∗ 1.0640 1.0820

Def. Spr. 1.0483 1.0282 1.0653 1.0257 1.0699

∆ Absorption 1.0063 1.0145 1.0145 1.0091 1.0049

Intl. Spillover 1.0064 1.0068 1.0475 1.0179 1.0095

Size Conc. 1.0660 1.0911 1.1039 1.0674 1.0593

Mkt. Lvg. 1.0519 1.0508 0.8497∗∗∗ 1.0602 1.0496

log Real. Vol. 0.9548 0.9466 1.0659 0.9316∗∗ 0.9604

TED Spr. 0.9621∗∗ 1.0230 0.9907 0.9480∗∗∗ 0.9649∗

Term Spr. 1.0082 0.9654∗ 1.0346 0.9832 1.0079

Turbulence 0.9215∗ 0.9442 0.9824 0.9343∗ 0.9110∗∗

Multiple QR 1.0750 1.2118 1.1061 1.1147 1.1359

PCQR1 1.0352 1.0067 1.0532 1.0202 1.0390

PCQR2 0.9557 0.9373 0.9427∗ 0.9472 0.9459

PQR 0.9271∗ 0.9173∗∗ 0.8590∗∗∗ 0.9558 0.9393∗

cPQR 1.0251 0.8760∗∗∗ 0.8584∗∗∗ 0.9422 0.9371

Notes: The table reports out-of-sample average quantile forecast losses relative to the historical quantile
model. Lower average losses represent more accurate quantile forecasts. Out-of-sample begins 1990.
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Table 18: In-Sample Quantile Forecasts, CFNAI and its Components, 20th Percentile, Year
Shocks

Mean Loss Relative to Historical Quantile

Total EUH PH PI SOI

Hist. Quantile - - - - -

Absorption 0.9410∗ 0.9198∗ 0.9432∗∗ 0.9387∗ 0.9572

AIM 0.9914∗∗ 0.9915 0.9868∗∗∗ 0.9926∗ 0.9963∗∗

CoVaR 0.9969 0.9987 0.9996 0.9915 0.9975

∆ CoVaR 0.9993 0.9928 0.9944 0.9998 0.9964

MES (APPR) 0.9998 0.9953 0.9947 1.0001 0.9975

MES (BE) 0.9974 0.9885 1.0001 0.9975 0.9985

Book Lvg. 0.9527∗∗ 0.9338∗∗ 0.8773∗∗∗ 0.9702∗ 0.9666∗

DCI 0.9594∗ 0.9853 0.8389∗∗∗ 0.9654 0.9520∗

Def. Spr. 0.9250∗∗ 0.9439∗∗ 0.9796 0.9341∗∗ 0.9239∗∗∗

∆ Absorption 0.9946 0.9929 0.9996 0.9980 0.9955

Intl. Spillover 0.9480∗∗∗ 0.9399∗∗ 0.9966 0.9263∗∗∗ 0.9263∗∗∗

Size Conc. 0.9632∗∗ 0.9431∗∗ 0.9934∗ 0.9602∗ 0.9776

Mkt. Lvg. 0.9819 0.9888 0.8470∗∗∗ 0.9866 0.9847

log Real. Vol. 0.9663∗ 0.9607∗ 0.9949 0.9680 0.9699∗

TED Spr. 0.9452∗ 0.9594∗ 0.9596∗ 0.9338∗ 0.9336∗∗

Term Spr. 0.8633∗∗∗ 0.8576∗∗∗ 0.9493∗∗ 0.8745∗∗∗ 0.8668∗∗∗

Turbulence 0.9096∗∗ 0.9054∗∗∗ 0.9587∗ 0.9100∗∗ 0.9223∗∗

Multiple QR 0.5765∗∗∗ 0.5696∗∗∗ 0.5644∗∗∗ 0.5771∗∗∗ 0.5771∗∗∗

PCQR1 0.9951 0.9984 0.9748∗ 0.9974 0.9961

PCQR2 0.9934 0.9984 0.9668∗∗ 0.9963 0.9901

PQR 0.7486∗∗∗ 0.7202∗∗∗ 0.6668∗∗∗ 0.7570∗∗∗ 0.7349∗∗∗

cPQR 0.9934 0.8284∗∗∗ 0.6592∗∗∗ 0.9263∗∗∗ 0.8361∗∗∗

Notes: The table reports in-sample average quantile forecast losses relative to the historical quantile model.
Lower average losses represent more accurate quantile forecasts.
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Table 19: Out-of-Sample Quantile Forecasts, CFNAI and its Components, 20th Percentile,
Year Shocks

Mean Loss Relative to Historical Quantile

Total EUH PH PI SOI

Hist. Quantile - - - - -

Absorption 1.0704 1.0352 1.0564 1.0633 1.0866

AIM 0.9993 1.0092 1.0390 0.9948 1.0410

CoVaR 1.0741 1.0762 1.0872 1.0508 1.0629

∆ CoVaR 1.0396 1.0236 1.0707 1.0336 1.0251

MES (APPR) 1.0618 1.0630 1.1378 1.0794 1.0612

MES (BE) 1.0474 1.0321 1.0999 1.0324 1.0386

Book Lvg. 0.9870 0.9711∗∗ 0.9860 1.0226 1.0281

DCI 1.0309 1.0847 0.8677∗∗∗ 1.0272 1.0272

Def. Spr. 0.9808 1.0433 1.0605 0.9740 0.9927

∆ Absorption 1.0111 1.0180 1.0255 1.0274 1.0134

Intl. Spillover 0.9992 0.9615∗∗ 1.1425 0.9839 0.9625

Size Conc. 1.1501 1.1066 1.1656 1.1876 1.1442

Mkt. Lvg. 1.1303 1.1175 0.9125∗∗ 1.1209 1.1132

log Real. Vol. 1.0161 1.0340 1.0796 1.0163 1.0281

TED Spr. 1.0238 1.0707 1.0798 0.9938 1.0010

Term Spr. 0.9003∗∗∗ 0.9203∗∗∗ 0.9896 0.8968∗∗∗ 0.8861∗∗∗

Turbulence 0.9792 0.9761 1.0109 0.9658 1.0091

Multiple QR 1.3758 1.3843 1.4812 1.2718 1.3726

PCQR1 1.0505 1.0462 1.0919 1.0697 1.0857

PCQR2 0.9791 0.9904 1.0184 0.9894 0.9567

PQR 0.9141∗∗∗ 0.9138∗∗∗ 0.9306∗∗ 0.9090∗∗∗ 0.8872∗∗∗

cPQR 1.0354 1.0154 0.9469 1.0616 1.0347

Notes: The table reports out-of-sample average quantile forecast losses relative to the historical quantile
model. Lower average losses represent more accurate quantile forecasts. Out-of-sample begins 1990.
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Table 20: In-Sample Quantile Forecasts, CFNAI and its Components, 20th Percentile, Quar-
ter Shocks, 1967-2011 Sample

Mean Loss Relative to Historical Quantile

Total EUH PH PI SOI

Hist. Quantile - - - - -

Absorption 0.9981 0.9901 0.9914 0.9853 1.0030

AIM 1.0081 1.0125 0.9997 1.0031∗ 1.0208

CoVaR 0.9849 0.9719 0.9845 0.9717∗∗ 1.0051

∆ CoVaR 0.9998 0.9974 0.9812 0.9901 0.9990

MES (APPR) 0.9921 0.9927 0.9836 0.9834 0.9995

MES (BE) 0.9986 1.0057 0.9815 1.0002 0.9883

Book Lvg. 0.9885 0.9865 1.0033 0.9889 1.0012

DCI 0.9970 0.9971 0.9243 1.0009 1.0131

Def. Spr. 1.0065∗ 1.0015∗ 1.0319 1.0162∗ 1.0236∗

∆ Absorption 0.9998 0.9950 1.0042 1.0066 1.0024

Intl. Spillover 0.9913 0.9994 0.9977 1.0009 0.9993

Size Conc. 0.9984 0.9910 0.9875∗ 0.9955 1.0017

Mkt. Lvg. 0.9339∗∗ 0.9350∗∗ 0.8794∗∗∗ 0.9458∗∗ 0.9738∗

log Real. Vol. 0.9101∗∗∗ 0.8962∗∗ 0.9575∗∗ 0.9104∗∗∗ 0.9514∗∗

Term Spr. 0.9733∗∗∗ 0.9556∗∗∗ 1.0078∗∗ 0.9772∗∗∗ 0.9914∗∗∗

Turbulence 0.8802∗∗ 0.8809∗∗ 0.9239∗∗ 0.8875∗∗∗ 0.9086∗∗∗

Multiple QR 0.7089∗∗∗ 0.7072∗∗∗ 0.7566∗∗∗ 0.7236∗∗∗ 0.7769∗∗∗

PCQR1 0.9633 0.9494 0.9550 0.9555 0.9829

PCQR2 0.8784∗∗∗ 0.8760∗∗∗ 0.9200∗∗∗ 0.8902∗∗∗ 0.9111∗∗∗

PQR 0.9027∗∗∗ 0.8913∗∗∗ 0.9144∗∗∗ 0.8928∗∗∗ 0.9180∗∗∗

cPQR 0.9913 1.0169 0.9149∗∗∗ 1.0184∗ 0.9184∗∗∗

Notes: The table reports in-sample average quantile forecast losses relative to the historical quantile model.
Lower average losses represent more accurate quantile forecasts. Over full 1967-2011 sample.

A36



Table 21: Out-of-Sample Quantile Forecasts, CFNAI and its Components, 20th Percentile,
Quarter Shocks, 1967-2011 Sample

Mean Loss Relative to Historical Quantile

Total EUH PH PI SOI

Hist. Quantile - - - - -

Absorption 1.0322 1.0357 1.0151 1.0227 1.0329

AIM 1.0081 1.0147 1.0101 1.0134 1.0331

CoVaR 1.0527 1.0510 1.0162 1.0244 1.0768

∆ CoVaR 1.0705 1.0738 1.0179 1.0395 1.0878

MES (APPR) 1.0514 1.0603 1.0378 1.0338 1.0782

MES (BE) 1.0255 1.0247 1.0251 1.0194 1.0237

Book Lvg. 1.0176 1.0126 1.0089 1.0150 1.0156

DCI 1.0198 1.0354 1.0021 1.0248 1.0167

Def. Spr. 1.0117 1.0029 1.0255 1.0075 1.0176

∆ Absorption 1.0016 1.0004 1.0187 0.9999 1.0103

Intl. Spillover 1.0085 1.0144 1.0073 1.0036 1.0123

Size Conc. 1.0232 1.0258 1.0121 1.0188 1.0245

Mkt. Lvg. 1.0076 0.9808 0.9421∗∗∗ 1.0342 1.0319

log Real. Vol. 0.9867 0.9901 1.0001 0.9600 1.0207

Term Spr. 0.9642 0.9448∗∗ 1.0158 0.9553∗ 0.9787

Turbulence 0.9453∗ 0.9411∗ 0.9698∗∗ 0.9241∗∗ 0.9557∗

Multiple QR 1.2287 1.2293 1.3302 1.1138 1.2370

PCQR1 1.0025 1.0062 0.9771 0.9797 1.0700

PCQR2 0.9463 0.9319∗ 0.9600∗ 0.9366∗ 0.9903

PQR 0.9284∗∗ 0.9631 0.9993 0.9264∗∗ 0.9306∗∗

cPQR 1.0194 1.0676 1.0002 0.9973 0.9222∗∗

Notes: The table reports out-of-sample average quantile forecast losses relative to the historical quantile
model. Lower average losses represent more accurate quantile forecasts. Over full 1967-2011 sample. Out-
of-sample begins 1980.
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