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Reference-Dependent Valuations

Experimentally observed choices not always consistent with the
existence of consistent preferences over final outcomes
(independent of path by which they are reached)

— a key feature of the prospect theory of Kahneman and
Tversky (1979)
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Kahneman-Tversky (1979)

Problem
In addition to whatever you own, you have been given 1000. You are
now asked to choose between (a) winning an additional 500 with
certainty, or (b) a gamble with a 50 percent chance of winning 1000
and a 50 percent chance of winning nothing.

Problem
In addition to whatever you own, you have been given 2000. You are
now asked to choose between (a) losing 500 with certainty, and (b) a
gamble with a 50 percent chance of losing 1000 and a 50 percent
chance of losing nothing.
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Problem
In addition to whatever you own, you have been given 1000. You are
now asked to choose between (a) winning an additional 500 with
certainty, or (b) a gamble with a 50 percent chance of winning 1000
and a 50 percent chance of winning nothing.

Majority of subjects choose (a)

Problem
In addition to whatever you own, you have been given 2000. You are
now asked to choose between (a) losing 500 with certainty, and (b) a
gamble with a 50 percent chance of losing 1000 and a 50 percent
chance of losing nothing.

Majority of subjects choose (b)
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Kahneman-Tversky (1979)

Problem for standard EU theory: in both cases, subjects are
choosing between the same probability distributions over final
wealth levels:

(a) initial wealth + 1500 with certainty

VS

(b) 50 percent chance of initial wealth + 1000,
50 percent chance of initial wealth + 2000

Explanation proposed by prospect theory: people don’t evaluate
only distribution over final situations, they care about
distribution of gains or losses relative to “reference point”
(wealth prior to the choice)
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Explaining Reference-Dependence

Kahneman-Tversky (1979), Koszegi-Rabin (2006) seek to
incorporate ref-dependence into economic theory through
non-standard preferences, maximized under full information

Alternative proposal here: standard preferences, but choice
based on imperfect perception of available options

Idea: reference-dependence a feature of the way objective
characteristics are mapped into subjective representations

this can be optimal, due to constraints on
information-processing capacity
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Explaining Reference-Dependence

Strategy: motivate a particular model of perceptual coding —
and the account of information constraints under which it can
be judged to be constrained-optimal — by reference to
documented imperfections in visual perception

similar patterns observed in many different sensory domains

— suggesting common processing constraints may be
responsible for usefulness of similar computational strategies in
multiple contexts
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Imperfect Sensory Perception

Long experimental literature in psychophysics shows that
discrimination between stimuli is both imprecise and
probabilistic:

probability of correct discrimination of relative brightness,
direction of motion, etc., increasing function of objective
difference (“psychometric function”)
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Motion Discrimination: Britten et al. (1992)

“Psychometric” and “neurometric” functions compared.
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probabilistic:

probability of correct discrimination of relative brightness,
direction of motion, etc., increasing function of objective
difference (“psychometric function”)

Interpretation: relation between objective characteristics of
stimulus and subjective representation is stochastic

in animals, the stochastic relationship between stimulus and
neural coding can be directly observed

e.g., Britten et al. (1992) study of ability of rhesus monkeys to
discriminate the direction of motion of moving dots
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Motion Discrimination: Britten et al. (1992)

Histograms of number of spikes in MT neuron.
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Motion Discrimination: Britten et al. (1992)

“Psychometric” and “neurometric” functions compared.
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Sensory Adaptation

Two features of adaptation observed in multiple contexts (Clifford et
al., 2007):

1 adjustment of the range of stimuli over which finer
discriminations are possible

common experience: adjustment of vision to dark room, or
bright sunlight

experiment: prolonged exposure to a particular stimulus leads to
increased discriminability of stimuli similar to the adaptor, but
reduced discriminability of stimuli farther from it
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Post-Adaptation Discrimination Thresholdsa
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Figure 4: Discrimination thresholds: Model predictions vs. human psychophysics. a) The
model predicts that thresholds for direction discrimination are reduced at the adaptor. It
also predicts two side-lobes of increased threshold at further distance from the adaptor.
b) Data of human psychophysics are in qualitative agreement with the model. Data are
replotted from [14] (see also [11]).

each having equal area, with one twice as broad as the other (see Fig. 2). Finally, for
simplicity, we assume a flat prior, but any reasonable smooth prior would lead to results
that are qualitatively similar. Then, according to (2) we compute the predicted estimate of
motion direction in both the unadapted and the adapted case.

Figure 3a shows the predicted difference between the pre- and post-adaptive average esti-
mate of direction, as a function of the stimulus direction, θstim. The adaptor is indicated with
an arrow. The repulsive effect is clearly visible. For comparison, Figure 3b shows human
subject data replotted from [10]. The perceived motion direction of a grating was estimated,
under both adapted and unadapted conditions, using a two-alternative-forced-choice exper-
imental paradigm. The plot shows the change in perceived direction as a function of test
stimulus direction relative to that of the adaptor. Comparison of the two panels of Figure 3
indicate that despite the highly simplified construction of the model, the prediction is quite
good, and even includes the small but consistent repulsive effects observed 180 degrees
from the adaptor.

3.2 Changes in discrimination threshold

Adaptation also changes the ability of human observers to discriminate between the di-
rection of two different moving stimuli. In order to model discrimination thresholds, we
need to consider a Bayesian framework that can account not only for the mean of the es-
timate but also its variability. We have recently developed such a framework, and used
it to quantitatively constrain the likelihood and the prior from psychophysical data [16].
This framework accounts for the effect of the measurement noise on the variability of the
estimate θ̂. Specifically, it provides a characterization of the distribution p(θ̂|θstim) of the
estimate for a given stimulus direction in terms of its expected value and its variance as a
function of the measurement noise. As in [16] we write

var〈θ̂|θstim〉 = var〈m〉(∂θ̂(m)

∂m
)2|m=θstim . (3)

Assuming that discrimination threshold is proportional to the standard deviation,

Discrimination thresholds for direction of motion
[Data: Phinney et al., 1997]
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Sensory Adaptation

Two features of adaptation observed in multiple contexts (Clifford et
al., 2007):

1 adjustment of the range of stimuli over which finer
discriminations are possible

2 repulsion effects: stimuli different from what visual system has
come to “expect” are perceived as even more different than they
really are

after-effects from prolonged exposure to an intense stimulus:
brightness, color, tilt of lines, direction of motion, etc.

Michael Woodford (Columbia) Efficient Perception Oporto June 2012 15 / 53



Sensory Adaptation

Two features of adaptation observed in multiple contexts (Clifford et
al., 2007):

1 adjustment of the range of stimuli over which finer
discriminations are possible

2 repulsion effects: stimuli different from what visual system has
come to “expect” are perceived as even more different than they
really are

after-effects from prolonged exposure to an intense stimulus:
brightness, color, tilt of lines, direction of motion, etc.

Michael Woodford (Columbia) Efficient Perception Oporto June 2012 15 / 53



Repulsion Effect: Direction of Motiona
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Figure 3: Repulsion: Model predictions vs. human psychophysics. a) Difference in per-
ceived direction in the pre- and post-adaptation condition, as predicted by the model. Post-
adaptive percepts of motion direction are repelled away from the direction of the adaptor.
b) Typical human subject data show a qualitatively similar repulsive effect. Data (and fit)
are replotted from [10].

hood function. The two gray-scale images represent the conditional probability densities,
p(m|θ), in the unadapted and the adapted state. They are formed by assuming additive
noise on the measurement m of constant variance (unadapted) or with a variance that
decreases symmetrically in the vicinity of the adaptor parameter value θadapt, and grows
slightly in the region beyond. In the unadapted state, the likelihood is convolutional and
the shape and variance are equivalent to the distribution of measurement noise. However,
in the adapted state, because the likelihood is a function of θ (horizontal slice through the
conditional surface) it is no longer convolutional around the adaptor. As a result, the mean
is pushed away from the adaptor, as illustrated in the two graphs on the right. Assuming
that the prior distribution is fairly smooth, this repulsion effect is transferred to the posterior
distribution, and thus to the estimate.

3 Simulation Results

We have qualitatively demonstrated that an increase in the measurement reliability around
the adaptor is consistent with the repulsive effects commonly seen as a result of percep-
tual adaptation. In this section, we simulate an adapted Bayesian observer by assuming a
simple model for the changes in signal-to-noise ratio due to adaptation. We address both
repulsion and changes in discrimination threshold. In particular, we compare our model
predictions with previously published data from psychophysical experiments examining
human perception of motion direction.

3.1 Repulsion

In the unadapted state, we assume the measurement noise to be additive and normally
distributed, and constant over the whole measurement space. Thus, assuming that m and
θ live in the same space, the likelihood is a Gaussian of constant width. In the adapted
state, we assume a simple functional description for the variance of the measurement noise
around the adapter. Specifically, we use a constant plus a difference of two Gaussians,

Bias in post-adaptation perceived direction of motion
[Data: Schrater and Simoncelli, 1998]
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Sensory Adaptation

Two features of adaptation observed in multiple contexts (Clifford et
al., 2007):

1 adjustment of the range of stimuli over which finer
discriminations are possible

2 repulsion effects: stimuli different from what visual system has
come to “expect” are perceived as even more different than they
really are

after-effects from prolonged exposure to an intense stimulus:
brightness, color, tilt of lines, direction of motion, etc.

similar repulsion effects from other elements of visual field:
many common visual illusions
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Perceived Brightness Depends on Contrast

The central squares reflect equal amounts of light.
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Perceived Orientation Depends on Contrast

Page 1 of 1

5/23/2012https://encrypted-tbn2.google.com/images?q=tbn:ANd9GcRZ1DI82n0NlUCgEKxavYlTiE...

The central bars are actually vertical.
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Explaining Sensory Adaptation

Proposal: perceptual coding adjusts to the (apparent) frequency
distribution of stimuli in a given environment (class of situations)

It does this so as to make efficient use of limited
information-processing capacity of the channel over which
observations of the world must be transmitted to the nervous
system
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Levels of Processing
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Efficient Perception

Concern here: how a subjective representation r of the situation
is produced, as function of the actual state s, and the prior
[distribution f (s)] for this class of situations

note: the mapping from s to r will be stochastic

Hypothesis: the perceptual mapping is efficient, given

the decision problem [defined by U(s, a), a to be a function of r ]

the prior f (s)

capacity of the channel for transmission of information about s
used to produce r
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Processing Constraints

The bottleneck: a communication channel with possible inputs
X , possible outputs R , produces output y with conditional
probability p(r |x)

Given these properties, the (Shannon) capacity of the channel is
defined as

C (p) ≡ max
π

Iπ(X ,R)

where for any frequency distribution π(x) over inputs x , Iπ is
the mutual information between random variables X and R
when joint distribution is p(x , r) = π(x)p(r |x)
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Efficient Perception

Complete perception/action circuit:

encoding: x = g(s)

transmission [perception]: r produced with prob p(r |x)
decoding [action]: a = h(r)

Relevant measure of accuracy of perception: given joint
distribution for (s, r) implied by prior f , encoding g , and
channel p,

W (g , p; f ) ≡ Es,r

[
max
h(r)

Es ′ [U(h(r), s
′)|r ]

]
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Efficient Perception

Two (nested) efficiency hypotheses:

1 Efficient Coding Hypothesis: the encoding function g is
optimized for the prior f and channel p

Ŵ (p; f ) ≡ max
g

W (g , p; f )

implies adaptation of g (hence joint dist’n p(s, r)) to changing
environment f

2 Efficient Channel Hypothesis: the channel p is also optimized,
for some prior over states, subject to a bound on possible
channel capacity

max
p

Ŵ (p; f ) s.t. C (p) ≤ C̄
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Efficient Perception

Adaptation of channel may occur more slowly than adaptation of
coding

hence p may be optimal for typical past environment, but not
current f

or p may be optimized for a class of possible environments {fθ},
given prior over parameters θ

max
p

EθŴ (p; fθ)
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Perceived Direction of Motion

Illustrative application:

State θ = direction of motion of stimulus (angle on the circle)

Action: estimated direction θ̂ (also an angle on the circle)

Objective: maximization of expected accuracy

E[cos(θ̂ − θ)]

approximately minimization of MSE, when accuracy is high: but
a periodic function
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Perceived Direction of Motion

Channel: assumed to be optimized for a uniform prior

f (θ) = 1/2π ∀θ

Optimal channel:

input space = angles φ̂ on the circle

optimal encoding [wlog]: φ̂(θ) = θ

output space = angles φ on the circle

distribution of outputs [subjective perceptions of direction]
given input:

p(φ|φ̂) = A eλ−1 cos(φ−φ̂) ∀φ

where λ > 0 varies inversely with capacity C̄

optimal decoding: θ̂(φ) = φ
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Perceived Direction of Motion

Adaptation: suppose subject exposed repeatedly to a single
direction of motion [wlog: θadapt = 0]

Hypothesis: no change in channel, but encoding φ̂(θ) adjusts, to
be optimal for a new perceived environment, described by a new
prior on the circle, with mode at θ = 0:

f (θ) = B eβ cos θ

where β > 0 indicates degree of habituation to adaptor [β = 0
means unchanged prior]

Numerical example: λ = 1, β = 0.8
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Post-Adaptation Prior
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Post-Adaptation Optimal Coding
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Post-Adaptation Optimal Decoding
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Perceived Direction of Motion

Predictions for experimental data:

1 Effect of adaptation on perceived direction of motion:
define the average perceived direction φ̄ (given distribution of
representations φ) as the angle that max’s Eφ[cos(φ− φ̄)]
then measure bias by

bias(θ) ≡ φ̄(θ)− θ

2 Effect on sensitivity to differences in direction of motion:
measure the variability of perceived direction by

σ2
φ ≡ 2{1− E[cos(φ− φ̄)]}

then define the discrimination threshold function by

τ(θ) ≡ σφ(θ)

φ̄′(θ)

Michael Woodford (Columbia) Efficient Perception Oporto June 2012 33 / 53



Perceived Direction of Motion

Predictions for experimental data:

1 Effect of adaptation on perceived direction of motion:
define the average perceived direction φ̄ (given distribution of
representations φ) as the angle that max’s Eφ[cos(φ− φ̄)]
then measure bias by

bias(θ) ≡ φ̄(θ)− θ

2 Effect on sensitivity to differences in direction of motion:
measure the variability of perceived direction by

σ2
φ ≡ 2{1− E[cos(φ− φ̄)]}

then define the discrimination threshold function by

τ(θ) ≡ σφ(θ)

φ̄′(θ)
Michael Woodford (Columbia) Efficient Perception Oporto June 2012 33 / 53



Prediction: Repulsion Effect
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Evidence: Repulsion Effecta
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Figure 3: Repulsion: Model predictions vs. human psychophysics. a) Difference in per-
ceived direction in the pre- and post-adaptation condition, as predicted by the model. Post-
adaptive percepts of motion direction are repelled away from the direction of the adaptor.
b) Typical human subject data show a qualitatively similar repulsive effect. Data (and fit)
are replotted from [10].

hood function. The two gray-scale images represent the conditional probability densities,
p(m|θ), in the unadapted and the adapted state. They are formed by assuming additive
noise on the measurement m of constant variance (unadapted) or with a variance that
decreases symmetrically in the vicinity of the adaptor parameter value θadapt, and grows
slightly in the region beyond. In the unadapted state, the likelihood is convolutional and
the shape and variance are equivalent to the distribution of measurement noise. However,
in the adapted state, because the likelihood is a function of θ (horizontal slice through the
conditional surface) it is no longer convolutional around the adaptor. As a result, the mean
is pushed away from the adaptor, as illustrated in the two graphs on the right. Assuming
that the prior distribution is fairly smooth, this repulsion effect is transferred to the posterior
distribution, and thus to the estimate.

3 Simulation Results

We have qualitatively demonstrated that an increase in the measurement reliability around
the adaptor is consistent with the repulsive effects commonly seen as a result of percep-
tual adaptation. In this section, we simulate an adapted Bayesian observer by assuming a
simple model for the changes in signal-to-noise ratio due to adaptation. We address both
repulsion and changes in discrimination threshold. In particular, we compare our model
predictions with previously published data from psychophysical experiments examining
human perception of motion direction.

3.1 Repulsion

In the unadapted state, we assume the measurement noise to be additive and normally
distributed, and constant over the whole measurement space. Thus, assuming that m and
θ live in the same space, the likelihood is a Gaussian of constant width. In the adapted
state, we assume a simple functional description for the variance of the measurement noise
around the adapter. Specifically, we use a constant plus a difference of two Gaussians,

Bias in post-adaptation perceived direction of motion
[Data: Schrater and Simoncelli, 1998]
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Evidence: Sensitivity Effecta
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Figure 4: Discrimination thresholds: Model predictions vs. human psychophysics. a) The
model predicts that thresholds for direction discrimination are reduced at the adaptor. It
also predicts two side-lobes of increased threshold at further distance from the adaptor.
b) Data of human psychophysics are in qualitative agreement with the model. Data are
replotted from [14] (see also [11]).

each having equal area, with one twice as broad as the other (see Fig. 2). Finally, for
simplicity, we assume a flat prior, but any reasonable smooth prior would lead to results
that are qualitatively similar. Then, according to (2) we compute the predicted estimate of
motion direction in both the unadapted and the adapted case.

Figure 3a shows the predicted difference between the pre- and post-adaptive average esti-
mate of direction, as a function of the stimulus direction, θstim. The adaptor is indicated with
an arrow. The repulsive effect is clearly visible. For comparison, Figure 3b shows human
subject data replotted from [10]. The perceived motion direction of a grating was estimated,
under both adapted and unadapted conditions, using a two-alternative-forced-choice exper-
imental paradigm. The plot shows the change in perceived direction as a function of test
stimulus direction relative to that of the adaptor. Comparison of the two panels of Figure 3
indicate that despite the highly simplified construction of the model, the prediction is quite
good, and even includes the small but consistent repulsive effects observed 180 degrees
from the adaptor.

3.2 Changes in discrimination threshold

Adaptation also changes the ability of human observers to discriminate between the di-
rection of two different moving stimuli. In order to model discrimination thresholds, we
need to consider a Bayesian framework that can account not only for the mean of the es-
timate but also its variability. We have recently developed such a framework, and used
it to quantitatively constrain the likelihood and the prior from psychophysical data [16].
This framework accounts for the effect of the measurement noise on the variability of the
estimate θ̂. Specifically, it provides a characterization of the distribution p(θ̂|θstim) of the
estimate for a given stimulus direction in terms of its expected value and its variance as a
function of the measurement noise. As in [16] we write

var〈θ̂|θstim〉 = var〈m〉(∂θ̂(m)

∂m
)2|m=θstim . (3)

Assuming that discrimination threshold is proportional to the standard deviation,

Discrimination thresholds for direction of motion
[Data: Phinney et al., 1997]
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Perceptions of Value

Here hypothesize that imperfect perceptions of value in
economic decisions are also optimal, subject to a similar
info-processing constraint

Model: suppose that true utility value of each option is a sum

u = ∑
a

sa

of the values of each of a number of attributes, each of which
must be perceived separately
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Perceptions of Value

Assumed form of channel:

a subjective perception ra for each attribute
parallel processing: conditional probabilities pa(ra|xa) for each
attribute are independent of other attributes, where xa is a
function only of sa

Assumed objective: minimize MSE of subjective estimate of u

Assume priors are independent for each attribute

f (−→s ) = ∏ fa(sa)
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Optimal Perception of Value

Optimal decoding of each attribute depends only on prior,
coding, and channel for that attribute:

ŝa = E [sa|ra]

Optimal coding of attribute a depends only on fa, pa

Optimal channel for attribute a depends only on fa and shadow
value λ of additional capacity (same for all attributes)
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Implications of Optimal Coding

Suppose different possible classes θ of choice situations are
associated with different priors f θ over possible values of the
attributes; but suppose that prior for attribute a is of the same
form

f θ
a (sa) =

1

σa
f̂a

(
sa − µθ

a

σθ
a

)

for all θ

— example: prior always belongs to Gaussian family

Then given channel pa, optimal coding will be of same form

g θ
a (sa) = ĝa

(
sa − µθ

a

σθ
a

)

for each class θ

Michael Woodford (Columbia) Efficient Perception Oporto June 2012 41 / 53



Implications of Optimal Coding

Suppose different possible classes θ of choice situations are
associated with different priors f θ over possible values of the
attributes; but suppose that prior for attribute a is of the same
form

f θ
a (sa) =

1

σa
f̂a

(
sa − µθ

a

σθ
a

)

for all θ

— example: prior always belongs to Gaussian family

Then given channel pa, optimal coding will be of same form

g θ
a (sa) = ĝa
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Implications of Optimal Coding

g θ
a (sa) = ĝa

(
sa − µθ

a

σθ
a

)

Hence coding of value will be reference-dependent: what is
coded is not absolute value sa, but sa relative to the prior mean

the “reference point” is thus determined by expectations, as
argued by Koszegi and Rabin (2006)

but in general, no significance of any single “reference point”:
coding is relative to the prior distribution
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Character of Optimal Channel

Outputs will generally be stochastic function of inputs

hence subjective representations will be stochastic function of
true state
not deterministic quantization as proposed by Saint-Paul
(2011), Gul et al. (2011)

not because it is assumed that feasible channels are inevitably
stochastic: it is actually a more efficient use of bounded
capacity

Generally only a finite number of output states

hence little difference in the way that extreme states (relative to
the prior) are coded
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Outputs will generally be stochastic function of inputs

hence subjective representations will be stochastic function of
true state
not deterministic quantization as proposed by Saint-Paul
(2011), Gul et al. (2011)
not because it is assumed that feasible channels are inevitably
stochastic: it is actually a more efficient use of bounded
capacity

Generally only a finite number of output states

hence little difference in the way that extreme states (relative to
the prior) are coded
how far into the tails of prior states continue to be distinguished
depends on capacity allocated to perception of the attribute in
question
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Mean Subjective Value vs. True Value
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Kahneman-Tversky (1979) Example

Problem for standard EU theory: in both cases, subjects are
choosing between the same probability distributions over final
wealth levels:

(a) initial wealth + 1500 with certainty

VS

(b) 50 percent chance of initial wealth + 1000,
50 percent chance of initial wealth + 2000

Explanation proposed by “prospect theory”: outcomes evaluated
relative to a different reference point in the two cases (wealth
prior to the choice)
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Applying the Theory

Choice between two lotteries: the relevant attributes of each are
its payoffs in the two equi-probable states

(a) (1500, 1500)
(b) (1000, 2000)

Subjective perception of each of the two attributes depends on
distribution of expected possible values for that attribute
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Applying the Theory

Suppose the class θ for which perceptual coding is optimized is
“choice between two lotteries, starting from initial wealth θ”

prior f θ is evoked by receipt of initial payment θ (the “cue”),
before presentation of lotteries

For concreteness, suppose the prior f θ is N (θ, 10002)
distribution of possible lottery payoffs in each state is expected
to be independent of initial wealth

Efficiency hypothesis:

channel is optimized for the entire class of possible priors {f θ}
(prior over θ doesn’t matter!)
encoding optimally adapts to the particular prior f θ after initial
wealth θ is learned
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Mean Subjective Valuations of Options

0 500 1000 1500 2000 2500 3000

µ = 2000

µ = 1000

(a) has higher MNSV when µθ = 1000, but (b) higher when µθ = 2000
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Comparison with Prospect Theory

Explanation by a sigmoid-shaped “value function” formally the same,
though here the nonlinear transformation interpreted as reflecting
perception rather then preferences. Also:

Deeper explanation for shape of the value function proposed

Provides a theory of location of “reference point”

— and not always status quo

Predicts that both reference-dependence, and departures from
risk-neutrality for small gambles, will be greater in contexts
where stakes are small enough for low-capacity channel to be
optimal
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Comparison with Sims’s “Rational Inattention”

RI assumes joint optimization of coding and channel (hence no
need to discuss separate encoding stage)

RI assumes joint coding of all aspects of choice situation

in above case, would be optimal to code only mean outcome
over states ⇒ (a) and (b) equivalent

RI assumes upper bound on mutual information rather than
channel capacity

in above case, optimal coding would make E[ẑ |z ] a linear
function ⇒ (a) and (b) have same MNSV
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Further Implications of the Theory

The efficient coding hypothesis simultaneously offers candidate
explanation for other behavioral anomalies:

stochasticity of choice
— implication of optimal channel, even if not optimized for
same prior as the encoding

“focusing effects”
— optimal channel may transmit no information at all about
some utility-relevant attributes (corner solution)

“menu effects”
— if prior implies correlation of attributes of choices in a given
choice set
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Further Implications of the Theory

A variety of modifications of standard choice theory have been
proposed to allow for each of these anomalies:

random utility models (McFadden, 1974)
prospect theory (Kahneman-Tversky, 1979)
reference-dependent preferences (Koszegi-Rabin, 2006)
preference for sparse representations (Gabaix, 2010)
range-dependent weights on attributes (Koszegi-Szeidl, 2011)
“local thinking” (Bordalo et al., 2010, 2011)
preferences depend on “comparison set” (Cunningham, 2011)

But the present proposal offers a unified explanation of all of
these phenomena

— in a way that is also consistent with observations about
perception in other contexts
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