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The correlation puzzle

The covariance and correlation between stock returns and measurable
fundamentals, especially consumption, is weak at the 1, 5, and 10
year horizons.

This fact underlies virtually all modern asset-pricing puzzles.

The equity premium puzzle, Hansen-Singleton-style rejection of asset
pricing models, Shiller’s excess volatility of stock prices, etc.

Hansen and Cochrane (1992) and Cochrane and Campbell (1999) call
this phenomenon the “correlation puzzle.”



Asset prices and economic fundamentals

Classic asset pricing models load all uncertainty onto the supply-side
of the economy.

Stochastic process for the endowment in Lucas-tree models.
Stochastic process for productivity in production economies.

These models abstract from shocks to the demand for assets.

It’s not surprising that models with only supply shocks can’t
simultaneously account for the equity premium puzzle and correlation
puzzles.



Fundamental shocks

What’s the other shock?

We explore the possibility that it’s a shock to the demand for assets.



Shocks to the demand for assets

We model the shock to the demand for assets in the simplest possible
way: time-preference shocks.

Macro literature on zero lower bound suggests these shocks are a
useful way to model changes in household savings behavior.

e.g. Eggertsson and Woodford (2003).

These shocks also capture effects of changes in the demographics of
stock market participants or other institutional changes that affect
savings behavior.



Key results

The model accounts for the equity premium and the correlation
puzzle (taking sampling uncertainty into account).

It also accounts for the level and volatility of the risk free rate.

The model’s estimated risk aversion coeffi cient is very low (close to
one).

This finding is consistent with Lucas’conjecture about fruitful
avenues to resolve the equity premium puzzle.

“It would be good to have the equity premium resolved, but I
think we need to look beyond high estimates of risk aversion to
do it.”
Robert Lucas, Jr., “Macroeconomic Priorities,”American
Economic Review, 2003.



Empirical counterpart of time-preference shocks

Our model implies that preference shock is a scaled version of the risk
free rate.

In our benchmark model, the estimated variance of the preference
shock process equals the variance of the risk free rate (taking
sampling uncertainty into account).

An augmented version of the model also matches the persistence of
the risk-free rate.



Key results

Model with Epstein-Zin preferences and no time-preference shocks

Can’t account for the equity premium or the correlation puzzle.

CRRA preferences with or without time-preference shocks.

Can’t account for the equity premium or the correlation puzzle.

Bansal, Kiku and Yaron (2011)

Can account for the equity premium puzzle with a risk aversion
coeffi cient of 10.
Can’t account for the correlation puzzle.



Trade-offs

On the one hand, we introduce a new source of shocks into the model.

On the other hand, our model is simpler than many alternatives.

We assume that consumption and dividends are a random walk with a
homoskedastic error term.

We don’t need:

Habit formation, long-run risk, time-varying endowment volatility,
model ambiguity.
Any of these features could be added.

Straightforward to modify DSGE models to allow for these shocks.



The importance of Epstein-Zin preferences

Just introducing time-preference shocks isn’t suffi cient to generate an
equity premium.

For time-preference shocks to improve the model’s performance, it’s
critical that agents have Epstein-Zin preferences and that risk
aversion is larger than the inverse of the EIS.

Introducing time-preference shocks in a model with CRRA preferences
is counterproductive.

In the CRRA case, the equity premium is a decreasing function of the
variance of time-preference shocks.



The correlation puzzle

We use data for 17 OECD countries and 7 non-OECD countries,
covering the period 1871-2006.

Correlations between stock returns and consumption, as well as
correlations between stock returns and output are low at all time
horizons.

The correlation puzzle for consumption is even worse if we restrict
ourself to the post-1929 period.

The correlation between stock returns and dividend growth is
substantially higher for horizons greater than 10 years, but it’s similar
to that of consumption at shorter horizons.



Historical data

Sample: 1871-2006.

Nakamura, Steinsson, Barro, and Ursúa (2011) for stock returns.

Barro and Ursúa (2008) for consumption expenditures and real per
capita GDP.

Shiller for real S&P500 earnings and dividends.



Historical data

We use realized real stock returns.

As in Mehra and Prescott (1985) and the associated literature, we
measure the risk free rate using realized real returns on nominal,
one-year Treasury Bills.

This measure is far from perfect because there is inflation risk, which
can be substantial.



The correlation puzzle

Consumption Output Dividends Earnings Consumption Output Dividends Earnings

1	  year 0.090 0.136 -‐0.039 0.126 -‐0.017 0.073 -‐0.087 0.100
(0.089) (0.101) (0.0956) (0.1038) (0.120) (0.127) (0.155) (0.157)

5	  years 0.397 0.249 0.382 0.436 -‐0.093 -‐0.047 0.277 0.197
(0.177) (0.137) (0.148) (0.179) (0.111) (0.125) (0.122) (0.140)

10	  years 0.248 -‐0.001 0.642 0.406 -‐0.416 -‐0.270 0.722 0.287
(0.184) (0.113) (0.173) (0.125) (0.181) (0.192) (0.190) (0.109)

Full	  sample,	  1871-‐2006	   1930-‐2006

Correlation	  between	  real	  stock	  market	  returns	  and	  the	  growth	  rate	  of	  fundamentals,	  United	  States



Using NIPA measures of consumption, 1952-2006

Horizon Durables Non-durables Services

1 year 0.133
(0.089)

0.289
(0.124)

0.035
(0.010)

5 years 0.185
(0.098)

0.249
(0.140)

−0.141
(0.179)

10 years 0.127
(0.201)

0.106
(0.230)

−0.497
(0.134)



The correlation puzzle

Consumption Output Consumption Output Consumption Output Consumption Output

1	  year 0.008 0.182 0.050 0.089 -‐0.020 0.196 0.039 0.076
(0.062) (0.081) (0.027) (0.031) (0.077) (0.102) (0.030) (0.034)

5	  years 0.189 0.355 0.087 0.157 0.121 0.338 0.064 0.125
(0.105) (0.092) (0.069) (0.074) (0.141) (0.119) (0.077) (0.082)

10	  years 0.277 0.394 0.027 0.098 0.252 0.402 -‐0.003 0.063
(0.132) (0.119) (0.122) (0.130) (0.179) (0.151) (0.135) (0.143)

Non	  G7	  countries

1930-‐2006

Correlation	  between	  real	  stock	  market	  returns	  and	  growth	  rate	  of	  fundamentals
G7	  and	  non	  G7	  countries

G7	  countries Non	  G7	  countries

Full	  sample,	  1871-‐2006

G7	  countries



A model with time-preference shocks

Epstein-Zin preferences

Life-time utility is a CES of utility today and the certainty equivalent of
future utility, U∗t+1.

Ut = max
Ct

[
λtC

1−1/ψ
t + δ

(
U∗t+1

)1−1/ψ
]1/(1−1/ψ)

λt determines how agents trade off current versus future utility,
isomorphic to a time-preference shock.

ψ is the elasticity of intertemporal substitution.



A model with time-preference shocks

Ut = max
Ct

[
λtC

1−1/ψ
t + δ (U∗t+1)

1−1/ψ
]1/(1−1/ψ)

The certainty equivalent of future utility is the sure value of t + 1
lifetime utility, U∗t+1 such that:

(U∗t+1)
1−γ = Et

(
U1−γ
t+1

)
U∗t+1 =

[
Et
(
U1−γ
t+1

)]1/(1−γ)

γ is the coeffi cient of relative risk aversion.



Special case: CRRA

Ut = max
Ct

[
λtC

1−1/ψ
t + δ (U∗t+1)

1−1/ψ
]1/(1−1/ψ)

When γ = 1/ψ, preferences reduce to CRRA with a time-varying rate
of time preference.

Vt = Et
∞

∑
i=0

δiλt+iC
1−γ
t+i ,

where Vt = U
1−γ
t .

Case considered by Garber and King (1983) and Campbell (1986).



Stochastic processes

Consumption follows a random walk

log(Ct+1) = log(Ct ) + µ+ ηct+1

ηct+1 ∼ N(0, σ2c )

Process for dividends:

log(Dt+1) = log(Dt ) + µ+ πηct+1 + ηdt+1

ηdt+1 ∼ N(0, σ2d )



Stochastic processes

Time-preference shock:

log (λt+1/λt ) = ρ log (λt/λt−1) + εt+1

εt+1 ∼ N(0, σ2ε )

We assume that agents know λt+1 at time t.

What matters for agents’decisions is the growth rate of λt , which we
assume is highly persistent but stationary (ρ is very close to one).

The idea is to capture, in a parsimonious way, persistent changes in
agents’attitudes towards savings.

We assume that εt+1 is uncorrelated with ηct+1 and ηdt+1.

This assumption is reasonable for an endowment economy but not for a
production economy.



Solving the model

Returns to the stock market are defined as returns to claim on
dividend process:

Standard assumption in asset-pricing literature (Abel (1999)).

Realized gross stock-market return:

Rdt+1 =
Pt+1 +Dt+1

Pt
.

Define:

rd ,t+1 = log(Rdt+1),

zdt = log(Pt/Dt ).



Solving the model

Realized gross return to a claim on the endowment process:

Rct+1 =
Pct+1 + Ct+1

Pct
.

Define:

rc ,t+1 = log(Rct+1),

zct = log(Pct /Ct ).



Solving the model

Using a log-linear Taylor expansion:

rd ,t+1 = κd0 + κd1zdt+1 − zdt + ∆dt+1,
rc ,t+1 = κc0 + κc1zct+1 − zct + ∆ct+1,

κd0 = log [1+ exp(zd )]− κ1d zd ,

κc0 = log [1+ exp(zc )]− κ1czc ,

κd1 =
exp(zd )

1+ exp(zd )
, κc1 =

exp(zc )
1+ exp(zc )

.

zd and zc are the unconditional mean values of zdt and zct .



Solving the model

The log-SDF is:

mt+1 = θ log (δ) + θ log (λt+1/λt )−
θ

ψ
∆ct+1 + (θ − 1) rc ,t+1,

θ =
1− γ

1− 1/ψ
.

rc ,t+1 is the log return to a claim on the endowment,

rc ,t+1 = log(Rt+1) = log
(
Pt+1 + Ct+1

Pt

)
.

Euler equation:
Et [exp (mt+1 + rd ,t+1)] = 1



Solving the model

Use Euler equation:

Et [exp (mt+1 + rd ,t+1)] = 1.

Replace mt+1 and rd ,t+1 using equations:

mt+1 = θ log (δ) + θ log (λt+1/λt )−
θ

ψ
∆ct+1 + (θ − 1) rc ,t+1,

rd ,t+1 = κd0 + κd1zdt+1 − zdt + ∆dt+1.

Replace rc ,t+1 with:

rc ,t+1 = κc0 + κc1zct+1 − zct + ∆ct+1.



Solving the model

Guess and verify that the equilibrium solutions for zdt and zct take the
form:

zdt = Ad0 + Ad1 log (λt+1/λt ) ,

zct = Ac0 + Ac1 log (λt+1/λt ) .

Since consumption is a martingale, price-dividend ratios are constant
absent movements in λt .

In calculating conditional expectations use properties of lognormal
distribution.

Use method of indeterminate coeffi cients to compute Ad0, Ad1, Ac0,
and Ac1.



The risk-free rate

r ft+1 = − log (δ)− log (λt+1/λt ) + µ/ψ− (1− θ) κ2c1A
2
c1σ

2
ε /2

+

[
(1− θ)

θ
(1− γ)2 − γ2

]
σ2c/2,

θ =
1− γ

1− 1/ψ
.

θ = 1 when preferences are CRRA.

The risk-free rate is a decreasing function of log (λt+1/λt ).

If agents value the future more, relative to the present, they want to
save more. Since aggregate savings can’t increase, the risk-free rate
has to fall.



Equity premium

r ft+1 = − log (δ)− log (λt+1/λt ) + µ/ψ− (1− θ) κ2c1A
2
c1σ

2
ε /2

+

[
(1− θ)

θ
(1− γ)2 − γ2

]
σ2c/2.

Et (rd ,t+1)− r ft+1 = πσ2c (2γ− π)/2− σ2d/2
+κd1Ad1 [2 (1− θ)Ac1κc1 − κd1Ad1] σ

2
ε /2.

It’s cumbersome to do comparative statics exercises because κc1 and
κd1 are functions of the parameters of the model.



Equity premium: CRRA case

Suppose that θ = 1:

r ft+1 = − log (δ)− log (λt+1/λt ) + µ/ψ− γ2σ2c/2.

Et (rd ,t+1)− r ft+1 = πσ2c (2γ− π)/2− σ2d/2− κ2d1A
2
d1σ

2
ε /2.

Including time-preference shocks in a model with CRRA utility lowers
the equity premium!



Equity premium: CRRA case

To get some intuition consider the case where the stock market is a
claim to consumption (π = 1, σ2d = 0) and log(λt+1/λt ) is a
random walk (ρ = 1).

The Euler equation can be written as

Pt
Ct

= α exp(σεεt+1)

[
Et

(
Pt+1
Ct+1

)
+ 1
]

α = δ exp
[
(1− γ) µ+ (1− γ)2 σ2c/2

]
We used the fact that εt+1 is known at time t and Pt+1/Ct+1
depends only on log(λt+2/λt+1).



Equity premium: CRRA case

Recursing on Pt/Ct :

Pt
Ct
= α exp(σεεt+1)Et

[
1+ α exp(σεεt+2)

+α2 exp(σεεt+2) exp(σεεt+3) + ...

]
Computing expectations:

Pt
Ct
= α exp(σεεt+1)

[
1+ α exp(σ2ε /2) + α2

[
exp(σ2ε /2)

]2
+ ...

]
Assume that α exp(σ2ε /2) < 1 so price is finite.



Equity premium: CRRA case

Pt
Ct
= α exp(σεεt+1)

[
1+ α exp(σ2ε /2) + α2

[
exp(σ2ε /2)

]2
+ ...

]
The price-consumption ratio is an increasing function of σ2ε .

This variance enters because the mean of a lognormal variable is
increasing in the variance.

An increase in σ2ε raises the expected value of λt+1+j/λt+j , j ≥ 1, so
agents want to delay consumption.

Expected returns have to fall to induce them to hold the tree.

The risk-free rate is unaffected because agents know λt+1 at time t.

The last two observations imply that the equity premium is decreasing
in σ2ε .



Equity premium: Epstein-Zin

Et (rd ,t+1)− r ft+1 = πσ2c (2γ− π)/2− σ2d/2
+κd1Ad1 [2 (1− θ)Ac1κc1 − κd1Ad1] σ

2
ε /2.

Recall that:

rd ,t+1 = κd0 + κd1zdt+1 − zdt + ∆dt+1, κd1 =
exp(zd )

1+ exp(zd )

rc ,t+1 = κc0 + κc1zct+1 − zct + ∆ct+1, κc1 =
exp(zc )

1+ exp(zc )

Necessary condition for time-preference shocks to help explain the
equity premium: θ < 1 (γ > 1/ψ).

This condition is more likely to be satisfied for higher risk aversion,
higher IES.



Estimating the parameters of the model

We estimate the model using GMM.

We find the parameter vector Φ̂ that minimizes the distance between
the empirical, ΨD , and model population moments, Ψ(Φ̂),

L(Φ̂) = min
Φ
[Ψ(Φ)−ΨD ]

′Ω−1D [Ψ(Φ)−ΨD ] .

ΩD is an estimate of the variance-covariance matrix of the empirical
moments.



The moments used in GMM

The vector ΨD includes the following 14 moments:

Consumption growth: mean and standard deviation;
Dividend growth: mean, standard deviation;
Correlation between growth rate of dividends and growth rate of
consumption;
Real stock returns: mean and standard deviation;
Real risk free rate: mean and standard deviation;
Correlation between stock returns and consumption growth (1, 5 and
10 years);
Correlation between stock returns and dividend growth (1, 5 and 10
years).



GMM estimation

We constrain the growth rate of dividends and consumption to be the
same.

In estimating ΨD , we used a standard 2-step effi cient GMM estimator

We use a Newey-West weighting matrix with 10 lags.

Our procedure yields an estimate of ΩD .



Estimated parameters

Agents make decisions on a monthly basis. We compute moments at
an annual frequency.

The parameter vector, Φ, includes the 8 parameters:

γ: coeffi cient of relative risk aversion;
ψ: elasticity of intertemporal substitution;
δ: rate of time preference;
σc : volatility of innovation to consumption growth;
π: parameter that controls correlation between consumption and
dividend shocks;
σd : volatility of dividend shocks;
ρ: persistence of time-preference shocks;
σε: volatility of innovation to time-preference shocks.

We set the growth rate of consumption and dividends to the
first-stage GMM point estimate.



Parameter estimates, benchmark model, 1871-2006

Parameter Estimates Parameter Estimates

γ 1.22
(0.04)

σd 0.019
(0.0007)

ψ 1.26
(0.67)

π 0.47
(0.08)

δ 0.999
(0.003)

σε 0.00012
(0.00028)

σc 0.008
(0.0003)

ρ 0.9996
(0.002)

µ 0.00133
(0.00026)



Moments, annual data and model

Moments Data Model

Std (∆dt ) 8.98
(1.33)

6.55

Std (∆ct ) 3.35
(0.40)

2.75

Corr(∆ct ,∆dt ) 0.21
(0.12)

0.20



Moments (annual), data and model

Moments Data Model Moments Data Model

E (Rdt ) 6.36
(1.19)

4.17 Std
(
Rdt
)

18.40
(1.61)

17.99

E (R ft ) 1.53
(0.64)

0.52 Std(R ft ) 4.30
(0.70)

4.84

E (Rdt )− E (R ft ) 4.83
(1.64)

3.65



Annual correlations between fundamentals and real stock
returns

Consumption Data Model

1 year 0.09
(0.07)

0.07

5 year 0.29
(0.13)

0.06

10 year 0.26
(0.17)

0.06

Dividends Data Model

1 year −0.03
(0.11)

0.36

5 year 0.37
(0.10)

0.32

10 year 0.62
(0.09)

0.30



The importance of the correlation puzzle

Since corr(∆dt ,Rdt ) and corr(∆ct ,Rdt ) are estimated with more
precision than average rates of return, the estimation criterion gives
them more weight.

If we drop the 5 and 10 year correlations from the criterion, the
parameters move to a region where the equity premium is larger.

The value of θ = (1− γ)/(1− 1/ψ) goes from −1.06 to −2.03 ,
which is why the equity premium implied by the model rises.



Data Benchmark Benchmark
No corr. with returns in criterion

γ - 1.22
(0.04)

0.21

ψ - 1.26
(0.67)

0.72

E (Rdt ) 6.36
(1.19)

4.17 5.16

E (Rf ) 1.53
(0.64)

0.52 0.90

E (Rdt )− Rf 4.83
(1.64)

3.65 4.26

corr(∆dt ,Rdt ) −0.03
(0.11)

0.36 0.34

corr(∆ct ,Rdt ) 0.09
(0.07)

0.07 0.02



Model without time-preference shocks

The model cannot generate an equity premium.

It also cannot account for the correlation puzzle

corr(∆dt ,Rdt ) = 1, corr(∆ct ,R
d
t ) = 0.38.



Data Benchmark Benchmark
No time pref.shocks

γ - 1.22
(0.04)

1.70

ψ - 1.26
(0.67)

4.6

E (Rdt ) 6.36
(1.19)

4.17 5.65

E (Rf ) 1.53
(0.64)

0.52 5.65

E (Rdt )− Rf 4.83
(1.64)

3.65 0.0

corr(∆dt ,Rdt ) −0.03
(0.11)

0.36 1.00

corr(∆ct ,Rdt ) 0.09
(0.07)

0.07 0.38



CRRA Preferences

With preference shocks, the CRRA model generates a negative equity
premium and does poorly on the consumption correlation.

Without preference shocks, the CRRA model doesn’t generate an
equity premium and does very poorly on the correlation puzzle.



Data Benchmark CRRA CRRA
No time pref. shocks

γ - 1.22
(0.04)

2.15 1.53

ψ - 1.26
(0.67)

1/2.15 1/1.53

E (Rdt ) 6.36
(1.19)

4.17 3.18 5.65

E (Rf ) 1.53
(0.64)

0.52 4.18 5.65

E (Rdt )− Rf 4.83
(1.64)

3.65 −1.00 0.00

corr(∆dt ,Rdt ) −0.03
(0.11)

0.36 0.35 1.0

corr(∆ct ,Rdt ) 0.09
(0.07)

0.07 0.40 0.38



Measuring the shocks

According to the model

r ft+1 = − log (δ)− log (λt+1/λt ) + µ/ψ− (1− θ) κ2c1A
2
c1σ

2
ε /2

+

[
(1− θ)

θ
(1− γ)2 − γ2

]
σ2c/2,

So
log (λt+1/λt ) = χ− r ft+1

χ = − log (δ) + µ/ψ− (1− θ) κ2c1A
2
c1σ

2
ε /2

+

[
(1− θ)

θ
(1− γ)2 − γ2

]
σ2c/2,

So, up to a constant, we can measure the preference shock as minus
the risk-free rate.



Persistence in the risk-free rate

The previous observations imply that log (λt+1/λt ) should be as
persistent as the risk-free rate.

In our estimated model,

log (λt+1/λt ) = 0.9996 log (λt/λt−1) + εt+1.

If we regress the demeaned risk-free rate on one lag we obtain an AR
coeffi cient of 0.64, with a standard error of 0.05.



Getting persistence right

Fixing the persistence problem is straightforward and doesn’t have a
major effect on other aspects of the models’performance.

Suppose that:
log(λt+1/λt ) = xt+1 + σεεt+1.

xt+1 = ρxxt + σx ξt+1

where εt+1 is i.i.d.

So the time preference shock is the sum of a persistent shock and an
i.i.d. shock.



Getting persistence right

Solving the model we obtain:

r ft+1 = −
(
log (δ) + log

(
λt+1

λt

)
− 1

ψ µ+
(

γ2 − θ−1
θ (1− γ)2

)
σ2η/2

− (θ − 1) (κ1A1σx )2 /2− (θ − 1) (κ1A2)2 /2

)

and

Et (rd ,t+1)− r ft = π (2γ− π) σ2η/2− ϕ2dσ2η/2

+κd1Ad1 (2 (1− θ) κ1A1 − κd1Ad1) σ2x/2
+κd1 (2 (1− θ) κ1 − κd1) σ2ε /2



Estimating the augmented model

We re-estimate the model

Include σε as a new parameter.
Add the AR coeffi cient, τ, of the risk-free rate to our specification of
ΨD .

Main finding: we can match the persistence of the risk-free rate with
relatively minor changes in the properties of the model.



Parameter estimates, augmented model, 1871-2006

Parameter Estimates Parameter Estimates

γ 0.95
(0.24)

σd 0.019
(0.0006)

ψ 0.93
(0.12)

π 0.57
(0.074)

δ 0.999
(0.001)

σλ 0.00008
(0.00009)

σc 0.009
(0.0002)

ρ 0.9997
(0.0006)

µ 0.00133
(0.00026)

σε 0.00009
(0.000006)



Properties of the augmented model

Data Benchmark Augmented Model
E (Rdt ) 6.36

(1.19)
4.17 3.33

E (R ft ) 1.53
(0.64)

0.52 0.62

E (Rdt )− Rf 4.83
(1.64)

3.65 2.71

corr(∆dt ,Rdt ) −0.03
(0.11)

0.36 0.38

corr(∆ct ,Rdt ) 0.09
(0.07)

0.07 0.09

τ 0.64
(0.05)

.9995 0.61



Bansal, Kiku and Yaron (2011)

Originally, they emphasized importance of long run risk.

More recently they emphasized the importance of movements in
volatility.

Ut = max
Ct

[
λtC

1−1/ψ
t + δ (U∗t+1)

1−1/ψ
]1/(1−1/ψ)

U∗t+1 =
[
Et
(
U1−γ
t+1

)]1/(1−γ)

gt = µ+ xt−1 + σt−1ηt ,

xt = ρxxt−1 + φeσt−1et ,

σ2t = σ2(1− ν) + νσ2t−1 + σ2wwt .



BKY parameters

Parameter BKY Parameter BKY

γ 10 σ 0.0072

ψ 1.5 ν 0.999

δ 0.9989 σw 0.28× 10−5

µ 0.0015 φ 2.5

ρx 0.975 π 2.6

φe 0.038 ϕ 5.96



Parameter estimates, benchmark model, 1930-2006

Parameter Estimates Parameter Estimates

γ 2.05 σd 0.019

ψ 3.68 π −0.17

δ 0.998 σλ 0.0002

σc 0.005 ρ .998

µ 0.00185
(0.0002)

.



Model performance, 1930-2006

1930-2006 Data Benchmark BKY

E (Rdt ) 8.47
(1.55)

4.47 8.75

std(Rdt ) 16.25
(1.17)

17.93 23.37

E (Rf ) 0.42
(0.89)

−0.31 1.05

std(R ft ) 3.47
(0.90)

3.46 1.22

E (Rdt )− Rf 8.05 4.78 7.70



Correlation between stock returns and consumption
growth, 1930-2006

Correlation puzzle is stronger in the short sample than in the full
sample.

1930-2006 Data Bench. BKY

1 year −0.13
(0.13)

−0.02 0.66

5 year 0.06
(0.13)

−0.02 0.88

10 year −0.42
(0.15)

−0.02 0.92



Correlation between stock returns and dividend growth,
1930-2006

1930-2006 Data Bench. BKY

1 year 0.20
(0.07)

0.37 0.66

5 year 0.36
(0.10)

0.35 0.90

10 year 0.72
(0.11)

0.34 0.93



Bansal, Kiku and Yaron (2011)

The BKY model does a very good job at accounting for the equity
premium and the average risk free rate.

Problem: correlations between stock market returns and fundamentals
(consumption or dividend growth) are close to one.

Our benchmark model understates the long-term correlation between
equity returns and dividend growth.



Parameter estimates, augmented model benchmark model,
1930-2006

Parameter Estimates Parameter Estimates

γ 1.48 σd 0.016

ψ 2.38 π −0.19

δ 0.999 σλ 0.00009

σc 0.005 ρ .999

µ 0.00185
(0.0002)



Model performance, augmented model, 1930-2006

1930-2006 Data Benchmark

E (Rdt ) 8.47
(1.55)

3.37

std(Rdt ) 16.25
(1.17)

17.24

E (Rf ) 0.42
(0.89)

0.22

std(R ft ) 3.47
(0.90)

3.26

E (Rdt )− Rf 8.05 3.15



Correlation between stock returns and consumption
growth, augmented model, 1930-2006

1930-2006 Data Augmented Model

1 year −0.13
(0.13)

−0.02

5 year 0.06
(0.13)

−0.02

10 year −0.42
(0.15)

−0.02



Correlation between stock returns and dividend growth,
augmented model, 1930-2006

1930-2006 Data Bench.

1 year 0.20
(0.07)

0.37

5 year 0.36
(0.10)

0.35

10 year 0.72
(0.11)

0.34



Implications for the term premium

According to Beeler and Campbell (2012) the real yield on long-term
bonds has always been positive and is usually above 2 percent.

The BKY model implies a 10-year yield of -0.43 percent.

Long term bonds are a hedge against long-run risk (Piazzesi and
Schneider (2006)).
So long-term bonds command a negative risk premium.

Our augmented model implies a 10-year yield of 1.36 percent.

Since there is uncertainty about how agents will value consumption in
10 years, 10-year bonds command a positive risk premium.



Conclusion

We propose a simple model that accounts for the level and volatility
of the equity premium and of the risk free rate.

The model is broadly consistent with the correlations between stock
market returns and fundamentals, consumption and dividend growth.

Key features of the model

Consumption and dividends follow a random walk;
Epstein-Zin utility;
Stochastic rate of time preference.

The model accounts for the equity premium with low levels of risk
aversion.



Robustness check using global financial statistics data,
1930-2006

Parameter Estimates Parameter Estimates

γ 1.5628 σd 0.011378

ψ 2.8138 π 1.3756

δ 0.99801 σλ 4.0278× 10−5

σc 0.0043003 ρ 0.99984

µ 0.035658
(0.0029309)



Moments, annual data and model

Moments Data Model

Std (∆dt ) 4.4424 6.55

Std (∆ct ) 1.4897 2.75

Corr(∆ct ,∆dt ) 0.46129 0.20



Moments (annual), data and model

Moments Data Model Moments Data Model

E (Rdt ) 4.522 4.17 Std
(
Rdt
)

15.4995 17.99

E (R ft ) 1.7422 0.52 Std(R ft ) 2.7186 4.84

E (Rdt )− E (R ft ) 2.8798 3.65



Annual correlations between fundamentals and real stock
returns

Consumption Data Model

1 year 0.2266 0.13221

5 year 0.048778 0.1252

10 year −0.36584 0.11795

Dividends Data Model

1 year 0.071877 0.28662

5 year 0.25978 0.27142

10 year 0.38509 0.25569


