Collateral Crises

Gary Gorton

Guillermo Ordoñez

Yale University

Yale University

Banco de Portugal June 15, 2012

MOTIVATION

▶ Information is at the heart of financial intermediation.

MOTIVATION

- ▶ Information is at the heart of financial intermediation.
- ▶ Transparency is at the heart of new proposed regulation.

MOTIVATION

- ▶ Information is at the heart of financial intermediation.
- ▶ Transparency is at the heart of new proposed regulation.

- ▶ How information production shapes business cycles?
- ▶ Should policies induce information production?

- ▶ In a world of collateralized short-term debt, symmetric ignorance about the quality of collateral may be efficient.
 - ► Firms with bad collateral get loans that they otherwise would not. "Ignorance Credit Boom".

- ▶ In a world of collateralized short-term debt, symmetric ignorance about the quality of collateral may be efficient.
 - Firms with bad collateral get loans that they otherwise would not. "Ignorance Credit Boom".
- ▶ but fragile to small shocks that induce asymmetric information.
 - Firms with good collateral do not get loans that they otherwise would. "Collateral Crises".

- ▶ In a world of collateralized short-term debt, symmetric ignorance about the quality of collateral may be efficient.
 - Firms with bad collateral get loans that they otherwise would not. "Ignorance Credit Boom".
- ▶ but fragile to small shocks that induce asymmetric information.
 - Firms with good collateral do not get loans that they otherwise would. "Collateral Crises".
- ▶ Endogenous tail events. Larger booms lead to larger crises.

► A planner would like to produce more information than private agents but would not always want to eliminate fragility.

- ► A planner would like to produce more information than private agents but would not always want to eliminate fragility.
- ▶ After crises, recoveries are faster if
 - ▶ Information is replenished when there are NOT credit policies.
 - ▶ Information is NOT replenished when there are credit policies.

Some loose evidence

- Jorda, Schurlarick, Taylor (2011) study 14 developed countries over 140 years (1870-2008)
 - "Our overall result is that credit growth emerges as the single best predictor of financial instability..."
- ▶ More recently...
 - Credit boom since 1990s and large credit drop in 2008.
 - ▶ Small shock, sudden and large collapse.

Some loose evidence

- Jorda, Schurlarick, Taylor (2011) study 14 developed countries over 140 years (1870-2008)
 - "Our overall result is that credit growth emerges as the single best predictor of financial instability..."
- ▶ More recently...
 - Credit boom since 1990s and large credit drop in 2008.
 - Small shock, sudden and large collapse.

• Empirically our mechanism seems to be at work behind these facts.

Related Literature

- ▶ Financial Intermediation.
 - ▶ Reallocation of funds: Diamond (85), Boyd and Prescott (86).
 - Provision of trading securities: Diamond and Dybvig (83), Gorton and Pennacchi(90), Dang et al (11).

Related Literature

- Macroeconomics and Crises
 - Magnification and Persistence: Bernanke, Gertler and Gilchrist (96), Kiyotaki and Moore (97), Krishnamurthy (09)
 - ▶ Fragility: Diamond and Dybvig (83), Allen and Gale (04).
 - Leverage Cycles: Geanakoplos (97 and 09), Mendoza and Bianchi (11), Perri and Quadrini (11)
 - Information and Asymmetric Cycles: Veldkamp (06), Ordonez(10), Andolfatto et al. (11).

Related Literature

- Macroeconomics and Crises
 - Magnification and Persistence: Bernanke, Gertler and Gilchrist (96), Kiyotaki and Moore (97), Krishnamurthy (09)
 - ▶ Fragility: Diamond and Dybvig (83), Allen and Gale (04).
 - Leverage Cycles: Geanakoplos (97 and 09), Mendoza and Bianchi (11), Perri and Quadrini (11)
 - ▶ Information and Asymmetric Cycles: Veldkamp (06), Ordonez(10), Andolfatto et al. (11).
- We show information dynamics can account for fragility, magnification, persistence and asymmetry of cycles.

Road Map

- ▶ Single Period.
- ▶ Dynamics.
- ▶ Planner.
- ▶ Some Extensions.
- ▶ Some Evidence.

SINGLE PERIOD

Setting

▶ Mass 1 of risk-neutral firms and households.

$$K' = \begin{cases} A \min\{K, L^*\} & \text{with prob. } q \\ 0 & \text{with prob. } (1-q) \end{cases}$$

qA>1. Optimal scale $K^{\ast}=L^{\ast}$

- Households: $\bar{K} > K^*$.
- ▶ Firms: L^* and a unit of land.

Setting

▶ Mass 1 of risk-neutral firms and households.

$$K' = \begin{cases} A \min\{K, L^*\} & \text{ with prob. } q \\ 0 & \text{ with prob. } (1-q) \end{cases}$$

qA > 1. Optimal scale $K^* = L^*$

- Households: $\bar{K} > K^*$.
- ▶ Firms: L^* and a unit of land.

$$\begin{cases} C>K^* & \text{ with prob. } p \\ 0 & \text{ with prob. } (1-p) \end{cases}$$

Only households can privately learn the truth at a cost γ .

INDUCE INFORMATION

Optimal Information

Optimal Information

OPTIMAL INFORMATION $W = \int_0^1 K(p)(qA-1)f(p)dp \ < \ \mathbf{W}^* = \mathbf{K}^*(\mathbf{qA}-\mathbf{1})$ f(p)0 II IS II

SIMPLER AGGREGATION

 $W_t = [0f(0) + K(\hat{p})f(\hat{p}) + K^*f(1)](qA-1) < \mathbf{W}^* = \mathbf{K}^*(\mathbf{qA}-1)$

DYNAMICS

SETTING DYNAMICS

How this distribution of beliefs evolves over time?

▶ Dynamic extension.

- ▶ OG: "young" households, "old" firms.
- Land is storable, K is not.
- ▶ Land is transferred across generations.
- We assume away bubbles and multiplicity.
- ▶ There are no fire sales.
- Price is pC (i.e., single match and buyers' negotiation power).

EVOLUTION OF COLLATERAL TYPES

▶ Important assumption: Mean reversion of collateral.

- Simplifying assumptions
 - \hat{p} : Fraction of good land.
 - ▶ Idiosyncratic shocks at the end of each period.
 - Occur with probability (1λ)
 - Land becomes good with probability \hat{p} .
 - The shock is observable, the realization is not.
 - At t = 0, all information is known.

INFORMATION SENSITIVE DYNAMICS

 $W_0^{IS} = \hat{p}K^*(qA-1)$

0

 $(1 - \hat{p})$ \hat{p} 1

 \hat{p}

INFORMATION SENSITIVE DYNAMICS

18 / 40

INFORMATION SENSITIVE DYNAMICS

 $W_t^{IS} = \hat{p} K^* (qA-1) - (1-\lambda)\gamma \quad < \quad \mathbf{W}^*$

18/40

INFORMATION INSENSITIVE DYNAMICS

 $W_0^{II} = \hat{p}K^*(qA-1)$

INFORMATION INSENSITIVE DYNAMICS

 $W_1^{II} = \left[(1-\lambda)K(\hat{p}) + \lambda \hat{p}K^* \right] (qA-1)$

INFORMATION INSENSITIVE DYNAMICS

 $W_2^{II} = \left[(1 - \lambda^2) \mathbf{K}(\hat{p}) + \lambda^2 \hat{p} \mathbf{K}^* \right] (qA - 1)$

INFORMATION INSENSITIVE DYNAMICS

 $W_3^{II} = \left[(1 - \lambda^3) K(\hat{p}) + \lambda^3 \hat{p} K^* \right] (qA - 1)$

INFORMATION INSENSITIVE DYNAMICS

 $W_t^{II} = \left[(1 - \lambda^t) K(\hat{p}) + \lambda^t \hat{p} K^* \right] (qA - 1) \rightarrow \mathbf{W}^*$

NEGATIVE AGGREGATE SHOCKS A fraction $(1 - \eta)$ of good collateral become bad.

NEGATIVE AGGREGATE SHOCKS SMALL: Nothing Happens

20 / 40

NEGATIVE AGGREGATE SHOCKS LARGE: Credit Crunch

NEGATIVE AGGREGATE SHOCKS A BIT LARGER: Wave of Information

20 / 40

NUMERICAL EXAMPLE

NUMERICAL EXAMPLE

NUMERICAL EXAMPLE

PLANNER

A PLANNER

▶ Assume a planner that maximizes the discounted utility of cohorts

$$U_t = E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} W_t.$$

- Optimal range of information production is wider.
- The planner can implement the optimum by subsidizing a fraction $\beta\lambda$ of the information cost γ .

A Planner: Cutoffs

E(Profits) = E(K')

A Planner: Cutoffs

E(Profits) = E(K')

PREVENTIVE POLICIES

The possibility of a negative aggregate shock does not always justify acquiring information, reducing current output to insure against potential reductions in future output.

PREVENTIVE POLICIES

- The possibility of a negative aggregate shock does not always justify acquiring information, reducing current output to insure against potential reductions in future output.
- ▶ Under certain conditions (guaranteed if $\eta > \hat{p}$), incentives to acquire information increase with
 - ▶ The likelihood of the expected shock.
 - The size of the expected shock.

EX-POST POLICIES

- ► Collateral Policies:
 - ▶ Restore \hat{p} . e.g., buy and guarantee collateral.
 - More effective when information is not produced.
- ► Lending Policies:
 - ▶ Avoid information acquisition. e.g., subsidizing firm loans.
 - ▶ More effective in the presence of collateral policies.

WITHOUT COLLATERAL POLICIES

WITH COLLATERAL POLICIES

SOME EXTENSIONS

EXTENSIONS

▶ Endogenous complex securities.

▶ Real Shocks.

- ▶ Two Sided Information Production.
- ▶ Crises without shocks.

ENDOGENOUS SECURITY STRUCTURE

Two securities with different \boldsymbol{p}

ENDOGENOUS SECURITY STRUCTURE

Pooling Collateral

ENDOGENOUS SECURITY STRUCTURE

Complexity of Securities (Larger γ)

A REAL SOURCE OF A CREDIT CRUNCH

A reduction in the success probability q can lead to a credit crunch.

A REAL SOURCE OF A CREDIT CRUNCH

A reduction in the success probability q can lead to a credit crunch.

TWO-SIDED INFORMATION PRODUCTION

What if borrowers also can acquire information privately at a cost γ ?

TWO-SIDED INFORMATION PRODUCTION

What if borrowers also can acquire information privately at a cost γ ?

PURELY ENDOGENOUS CYCLES

- ▶ Decreasing marginal probability of success.
- \blacktriangleright Individual q non observable.

SOME EVIDENCE

Some Suggestive Evidence

▶ In booms, negative relation between credit and belief dispersion.

- \blacktriangleright 29 credit boom events: 12 pre-Fed (1863-1914) and 17 post-Fed.
 - <u>Credit Boom Dates:</u> Davis (2006).
 - <u>Credit:</u> Bank Total Assets. (from "Call Reports")
 - <u>Dispersion of Beliefs</u>: Std. Dev. of the cross section of stock returns. (from NYSE (1815-1925) and CRSP (1926-2011)).

Examples of Credit Booms

Pre Fed: Boom from 05/1885 to 03/1887.

Examples of Credit Booms

Post Fed: Boom from 11/2001 to 12/2007.

CORRELATIONS

Means	Change in Beliefs	Change in K-P Filtered Beliefs	Change in Total Assets
National Banking Era, 1863-1914	0.70	-0.019	0.061
Federal Reserve Era, 1914-2010	-0.122	-0.013	0.137
Whole Period: 1863-2010	-0.035	-0.016	0.105

Correlations	Change in Beliefs and Change in Total Assets	Change in K-P Beliefs and Change in Total Assets
National Banking Era, 1863-1914	-0.366	-0.326
Federal Reserve Era, 1914-2010	-0.085	-0.002
Whole Period: 1863-2010	-0.226	-0.045

EVIDENCE INFORMATION PRODUCTION

Perraudin and Wu (2008)

AA-Rated Home Equity Loan ABS Tranches

EVIDENCE INFORMATION PRODUCTION

Perraudin and Wu (2008)

AAA-Rated Home Equity Loan ABS Tranches

FINAL REMARKS

- Symmetric ignorance may be socially desirable, but it is vulnerable to a sudden loss of confidence in its symmetry.
- ▶ Macroeconomic implications:
 - ▶ Larger "ignorance credit booms" lead to larger crises.
 - The planner may not want to eliminate fragility.
 - Recoveries.
 - ▶ NO expansionary policies: Information speeds up recoveries.
 - ▶ Expansionary policies: Information delays recoveries.
 - Dispersion of beliefs (and of credit and production) is endogenous.
 We tested this implication of the mechanism empirically.
- ▶ Optimal information production when collateral is productive?