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KREPS-PORTEUS MODEL

Vt =
[
(ζλtCt)

1−ψ + exp(−δ) [Rt(Vt+1)]
1−ψ

] 1
1−ψ

. (1)

where ζ > 0 is a scale factor that does not alter preferences, and

Rt (Vt+1) =
(
E
[
(Vt+1)

1−γ |Ft
]) 1

1−γ

adjusts the continuation value Vt+1 for risk. With these preferences, 1
ψ

is the elasticity of intertemporal substitution and δ is a subjective
discount rate. The process λ is an unobserved (to an econometrician)
preference shifter.

2 / 11



EXOGENOUS STOCHASTIC EVOLUTION

λt+1 − λt = μλ + Xt

Xt+1 = ρXt + σx · Wt+1

where Wt+1 is a three-dimensional standard normal shock and
|ρ| < 1.

� preference shifter is locally predictable
� σx · Wt+1 independent of shocks to cash flow and consumption
� log C and log D are correlated random walks with drift. No

predictability for mean or volatility. Independent of the
preference shifter process.

� Xt is the single state variable.
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RECURSION RECONSIDERED
Exploit homogeneity and transform the recursion. Instead of:

Vt =
[
(ζλtCt)

1−ψ + exp(−δ) [Rt(Vt+1)]
1−ψ

] 1
1−ψ

.

Construct a recursion for

Wt =
Vt

λtCt
=

Vt

C∗
t

where C∗
t = Ctλt

Wt =

[
(ζ)1−ψ + exp(−δ)

(
Rt

[
Wt+1

(
C∗

t+1

C∗
t

)])1−ψ
] 1

1−ψ

.

This recursion has a solution of the form:

Wt = f (Xt)
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RECURSION REVISITED

Wt =

[
(ζ)1−ψ + exp(−δ)

(
Rt

[
Wt+1

(
C∗

t+1

C∗
t

)])1−ψ
] 1

1−ψ

.

� This is the same recursion as for a “long-run” risk model but
with a change in numeraire.

� C∗ = Cλ evolves just as C in Bansal and Yaron (abstracting
from stochastic volatility) and is a restricted version of the
specification used by Hansen, Heaton and Li. The λ risk
becomes the “growth-rate risk” for C∗.
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TWO STOCHASTIC DISCOUNT FACTORS

� Transformed specification:

S∗t+1

S∗t
= exp(−δ)

(
C∗

t+1

C∗
t

)−γ [ Vt+1/C∗
t+1

Rt (Vt+1/C∗
t )

]ψ−γ

.

� Original numeraire

St+1

St
= exp(−δ)

(
λt+1
λt

)1−γ (Ct+1
Ct

)−γ [ Vt+1/C∗
t+1

Rt(Vt+1/C∗
t )

]ψ−γ

= exp(−δ) exp [(1 − γ)Xt]
(

Ct+1
Ct

)−γ [ f (Xt+1)
g(Xt)

]ψ−γ

Approximate f and g as log-linear in the realized state x. Approximate
continuation values.
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LIMIT APPROXIMATION AND EXISTENCE
Hansen (Econometrica) and Hansen and Scheinkman (PNAS)
Solve

E

[(
C∗

t+1

Ct

∗)1−γ

e(Xt+1)|Xt = x

]
= exp(η)e(x).

where

e(x) = exp(βx).

Under log-normality this equation has a log-linear solution with
coefficient

β =
1 − γ

1 − ρ

Use this as the starting point for showing existence of the
infinite-horizon value function. The implied value of η restricts the
range of admissible parameters.
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WHAT HAPPENS AT THE BOUNDARY?
� At the boundary, the forward-looking channel is featured to the

greatest extent possible.

St+1

St
≈ exp(−η) exp[(1− γ)zt]

(
Ct+1

Ct

)−γ [h(Xt+1)

h(Xt)

]
. (2)

where

h(x) = e(x)
ψ−γ
1−γ = exp

[(
ψ − γ

1 − ρ

)
x
]

� The implied S process is log-normal.

log St+1 − log St = μs + αXt + σs · Wt+1

Xt+1 = ρXt + σx · Wt+1

Why not just start here? Interesting restrictions implied by the
model?
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CASH FLOW PRICING

� Equity is a composite of “dividend strips”.

Pt

Dt
=

∞∑
j=1

E
[

St+jDt+j

StDt
|Xt

]
.

� The component terms:

E
[

St+jDt+j

StDt
|Xt

]

are the outcome of jointly compounding the stochastic discount
factor the cash flow growth. Risk prices are encoded in S and
risk exposures in D.

� See interesting recent work by van Binsbergen, Brandt and
Koijen (AER) on using information from derivative claims to
extract prices of dividend strips.

� All of the dependence on the state variable comes through the
stochastic discount factor channel S.
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PRICING SHOCK EXPOSURES

“Building blocks” of multi period valuation.

� Assign “prices” to shocks. Pricing counterpart to impulse
response functions. Horizon dependent term structure of risk
prices.

� For log-normal models “shock price elasticities” are revealed by
the impulse response functions for log S. Direct extensions to
more general nonlinear Markov models. Exposure to which
shocks require the largest compensation and how this changes
for different payoff or investment horizons.

� In this paper there is apparently only weak correlations between
S and D. One-period equity returns are presumably explosed to
shocks to the preference process via the capital gains channel.
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Shock-price elasticities for recursive utility model
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SUMMARY
� What is the role for consumption in this analysis? What happens

if you simply drop consumption from the analysis and posit a
process for λ that is not locally predictable and has a predictable
mean component but independent of the cash flow process?

� Why independence? This paper imposes independence between
the preference process on the one hand and the consumption and
cash flow process on the other hand. Challenging to defend.

� How do we interpret this preference shock process? Authors
mention low frequency demographic changes in demographics.
Observable? Alternative, sentiments or animal spirits.
Answering this may lead us to put more structure on how we
model taste changes.

� State dependence in risk premia? Not in this model. Empirical
evidence suggests that risk premia are bigger in bad times than
good ones. Open question as to what is driving this, say risk
exposures or risk prices? If prices, why? What might this line of
research contribute?
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