A Macroeconomic Framework for Quantifying Systemic Risk

Zhiguo He

Arvind Krishnamurthy

University of Chicago & NBER

Northwestern University & NBER

June 2012

Systemic Risk

Systemic risk: risk (probability) of a state where

- financial intermediation is disrupted
- small fundamental shocks to financial intermediaries can have quantitatively large effects on macro economy
- ► Goal: Write down a non-linear macro model to assess systemic risk
 - much of the time the link between financial intermediation and macro economy is small

but in (crisis) states the effects are greatly amplified

Systemic Risk

Systemic risk: risk (probability) of a state where

- financial intermediation is disrupted
- small fundamental shocks to financial intermediaries can have quantitatively large effects on macro economy
- ► Goal: Write down a non-linear macro model to assess systemic risk
 - much of the time the link between financial intermediation and macro economy is small
 - but in (crisis) states the effects are greatly amplified
- How well does the model match asymmetry (i.e. occasional effects of financial intermediation) in the data?
- How well can an intermediary shock channel explain patterns in 2007-2009?
- How likely is the economy, say unconditionally, to enter a systemic risk episode?

Innovation Relative to Much of Literature

- We study a model with occasionally binding financial constraint
- Typical models (e.g., Kiyotaki-Moore (1997),...) linearize around steady state where constraint binds.
 - Cannot talk about 1) likelihood that intermediation is disrupted (its always disrupted...) and 2) how severely it is disrupted
- Our model solution has stochastic steady state, with fully solved equilibrium prices and policies
 - Main drawback: need to reduce state variables
 - Have to leave out some common DSGE elements
- Similar methodology to Mendoza (2010) and Brunnermeier-Sannikov (2011)
- Model elements adopted from He-Krishnamurthy (2012), with real investment and housing

Preview of model result

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへぐ

Preview of model result

▶ Distress: $e_{distress} = 4$ so that $\Pr(e \le e_{distress}) = 33\%$ as in data

Strategy

- Crises are rare. How do we quantify model?
- Even if economy is currently not in a crisis state, the anticipation of a crisis affects decisions.
 - 1. We match data on "distress" (33% of data) and "non-distress" periods (67% of data).
 - 2. We extrapolate to a crisis and ask how well the model can match patterns from 2007-2009.
 - 3. We compute conditional probabilities of triggering a crisis (measuring "systemic risk" probabilities).

Evidence of Non-Linearity

- Excess bond premium (EBP): the risk premium part of credit spread (removing default part), Gilchrist and Zakrajsek (2010). Correlates with measures of intermediary health.
- Use EBP to classify distress periods (33%) and non-distress periods (the rest)

Distress Periods	NBER Recessions
1973Q1 - 1975Q3	11/73 - 3/75
1982Q2 - 1982Q4	7/81 - 11/82
1985Q4 - 1987Q3	
1988Q4 - 1990Q1	7/90 - 3/91
1992Q4 - 1993Q2	
2001Q2 - 2003Q1	3/01 - 11/01
2007Q3 - 2009Q3	12/07 - 6/09

State-Dependent Covariances (1)

- Equity = Total market value of equity of finance, insurance and real estate sectors. (works as well if only include banks + broker/dealers)
- All variables are growth, except Sharpe ratio constructed from EBP

	Dist	ress	Non	Distress
	Cov	Corr	Cov	Corr
Equity, Investment	1.31%	51.48	0.07	5.79
Equity, Consumption	0.25%	45.85	0.03	14.74
Equity, Sharpe	-6.81%	-35.96	-0.14	-0.06
Equity, Landprice	4.06%	60.65	0.12	0.07

State-Dependent Covariances (2)

All variables are growth, except Sharpe ratio constructed from EBP

	Dis	tress	Non	Distress
	NBER+2	Excl-Crisis	NBER+2	Excl-Crisis
Equity, Investment	0.84%	0.37	-0.06	0.03
Equity, Consumption	0.13%	0.04	0.01	0.03
Equity, Sharpe	-7.57%	-2.12	-0.78	-0.19
Equity, Landprice	4.39%	-0.63	-0.31 -0.0	

Note: Similar numbers if only use NBER dates, but distress sample is only 20% of observations.

VAR Evidence of Non-Linearity (3)

VAR order: [intermediary equity, aggregate stock market, EBP, investment]. Coefficients depend on distress/non-distress state. Quarterly growth rates.

PANELA: DISTRESS PERIODS

Road Map of the Rest of Talk

- Model, mechanism, and solution
- Calibration
 - Baseline parameters
 - Prices and polices, comparative statics
- Matching data on distress and non-distress
- Systemic crisis
 - Extrapolate to crisis state
 - Uncover fundamental shocks in the recent crisis

How likely are crises?

Agents and Technology

- Two classes of agents: households and bankers
 - Households own the entire economy, but subject to frictions related to bankers who control intermediaries (next slide)
- ► Two types of capital: productive capital K_t and housing capital H. Fixed supply of housing $H \equiv 1$
 - Price of capital q_t and price of housing P_t determined in equilibrium

Agents and Technology

- Two classes of agents: households and bankers
 - Households own the entire economy, but subject to frictions related to bankers who control intermediaries (next slide)
- ► Two types of capital: productive capital K_t and housing capital H. Fixed supply of housing $H \equiv 1$
 - Price of capital q_t and price of housing P_t determined in equilibrium
- Production $Y = AK_t$, with A being constant
- Fundamental shocks: stochastic capital quality shock dZ_t

$$\frac{dK_t}{K_t} = i_t dt - \delta dt + \sigma dZ_t$$

Investment/Capital it, quadratic adjustment cost

$$\Phi(i_t, K_t) = i_t K_t + \frac{\kappa}{2} \left(i_t - \delta\right)^2 K_t$$

Aggregate Balance Sheet

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Aggregate Balance Sheet

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Single Bank/Banker

Capital $q_t k_t$ Equity e_t Housing $P_t h_t$ Debt d_t

Portfolio share in capital: $\alpha_t^k = \frac{q_t k_t}{e_t}$ Portfolio share in housing : $\alpha_t^h = \frac{P_t h_t}{e_t}$ Borrowing (no constraint): $d_t = q_t k_t + P_t h_t - e_t = (\alpha_t^k + \alpha_t^h - 1)e_t$

Return on bank equity: $d\tilde{R}_t = \alpha_t^k dR_t^k + \alpha_t^h dR_t^h - (\alpha_t^k + \alpha_t^h - 1)r_t dt$

Banker (log preference) solves: $\max_{\alpha_t^k, \alpha_t^h} E[d\tilde{R}_t - r_t dt] - \frac{m}{2} Var_t[d\tilde{R}_t]$

Single Bank/Banker

Capital $q_t k_t$ Equity e_t \cdot (k, h) scales with eHousing $P_t h_t$ Debt d_t \cdot (k, h) increasing in $E_t[dR - r]$ \cdot (k, h) decreasing in Var[dR]

Portfolio share in capital: $\alpha_t^k = \frac{q_t k_t}{e_t}$ Portfolio share in housing : $\alpha_t^h = \frac{P_t h_t}{e_t}$ Borrowing (no constraint): $d_t = q_t k_t + P_t h_t - e_t = (\alpha_t^k + \alpha_t^h - 1)e_t$

Return on bank equity: $d\tilde{R}_t = \alpha_t^k dR_t^k + \alpha_t^h dR_t^h - (\alpha_t^k + \alpha_t^h - 1)r_t dt$

Banker (log preference) solves: $\max_{\alpha_t^k, \alpha_t^h} E[d\tilde{R}_t - r_t dt] - \frac{m}{2} Var_t[d\tilde{R}_t]$

General Equilibrium (1)

Intermediary Sector

Household Sector

- ► Given a particular state (K_t, E_t), the portfolio shares are pinned down by GE
- Portfolio shares must also be optimally chosen by banks

$$\max_{x_t^k, \alpha_t^h} \mathbb{E}_t[d\tilde{R}_t - r_t dt] - \frac{m}{2} Var_t[d\tilde{R}_t]$$

General Equilibrium (2)

- Prices (returns) have to adjust for optimality:
 - $\mathbb{E}_t[dR_t^h r_t dt], \mathbb{E}_t[dR_t^k r_t dt] \Rightarrow$ equations for $\mathbb{E}_t[dP_t], \mathbb{E}_t[dq_t]$
- Rewrite to get ODEs for $P(K, \mathcal{E})$ and $q(K, \mathcal{E})$
- ▶ Scale invariance: Define $e \equiv \mathcal{E}/K$; then P = Kp(e) and q(e)

Capital Producers and Investment

- Capital goods producers (owned by households) undertake real investment
- Producers must sell the capital stock to intermediaries at price q_t
 - Risk averse intermediaries bear aggregate fundamental shocks
 - Real investment is affected by financial condition of intermediaries to capture "credit crunch"
- Possible interpretations:
 - Entrepreneurs raise capital from VC/PE at the price of q_t
 - Commercial banks makes collateralized loans
- Investment decision

$$\max_{i_t} q_t i_t K_t - \Phi(i_t, K_t) \Rightarrow i_t = \delta + \frac{q_t - 1}{\kappa}$$

Capital Constraint

 Single bank has reputation \(\varepsilon_t\) linked to intermediary performance (constant m)

$$\frac{d\epsilon_t}{\epsilon_t} = m\tilde{R}_t.$$

- Poor past returns reduce reputation
- \blacktriangleright Households invest a maximum of ϵ_t dollars of equity capital with this banker

Capital Constraint

 Single bank has reputation \(\varepsilon_t\) linked to intermediary performance (constant m)

$$\frac{d\epsilon_t}{\epsilon_t} = m\tilde{R}_t.$$

- Poor past returns reduce reputation
- Death rate η, and entry dψ_t > 0 of new bankers in extreme states (modeled later)
- \mathcal{E}_t : aggregate reputation. Identical banks, aggregate dynamics of \mathcal{E}_t

$$\frac{d\mathcal{E}_t}{\mathcal{E}_t} = md\tilde{R}_t - \eta dt + d\psi_t$$

Capital Constraint

 Single bank has reputation \(\varepsilon_t\) linked to intermediary performance (constant m)

$$\frac{d\epsilon_t}{\epsilon_t} = m\tilde{R}_t.$$

- Poor past returns reduce reputation
- \blacktriangleright Households invest a maximum of ϵ_t dollars of equity capital with this banker
- Death rate η, and entry dψ_t > 0 of new bankers in extreme states (modeled later)
- \mathcal{E}_t : aggregate reputation. Identical banks, aggregate dynamics of \mathcal{E}_t

$$\frac{d\mathcal{E}_t}{\mathcal{E}_t} = md\tilde{R}_t - \eta dt + d\psi_t$$

• Note: \mathcal{E}_t is like "net worth" in many other models.

Households' Problem (1)

• Choose consumption c_t^y and housing c_t^h to maximize

$$\mathbb{E}\left[\int_{0}^{\infty} e^{-\rho t} \left((1-\phi) \ln c_{t}^{y} + \phi \ln c_{t}^{h} \right) dt \right]$$

• Equilibrium rental price D_t (housing asset dividend), FOC $\frac{c_t^h D_t}{\phi} = \frac{c_t^{\gamma}}{1-\phi}$. In equilibrium $(C_t^h = H = 1)$

$$D_t = rac{\phi}{1-\phi} C_t^y$$

φ: expenditure share in housing, or the relative size of housing sector
Households free to trade short-term debt.

► Interest rate $r_t = \rho + \mathbb{E}_t \left[dC_t^y / C_t^y \right] - Var_t \left[dC_t^y / C_t^y \right]$

Households' Problem (2)

- Representative household enters time t with financial wealth W_t
- The household splits wealth: (1 − λ) W_t to "equity households," λW_t to "bond households"
 - Equity households invest their portion of wealth as equity of intermediaries, subject to capital frictions
 - Bond households invest in riskless bonds
- Once returns are realized, both members pool their wealth again (as in Lucas 1990)
- The only role of bond households (i.e. parameter λ) is to introduce intermediary's leverage in normal time

Debt/Equity Ratio

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Equity Capital Constraint

- Unconstrained capital structure: λW_t of Debt, $(1 \lambda)W_t$ of Equity.
- Intermediary equity capital E_t is given by

$$E_t = \min \left[\mathcal{E}_t, (1 - \lambda) W_t \right]$$

- How can capital constraint come to bind, beginning in a state where $\mathcal{E}_t > (1 \lambda) W_t$?
- Suppose a −10% shock to real estate and price of capital, so that W_t ↓ 10% (Household wealth = aggregate wealth)
- ▶ Reputation follows $\frac{d\mathcal{E}_t}{\mathcal{E}_t} = md\tilde{R}_t + ...$ Two forces make $\mathcal{E}_t \downarrow$ more than 10%:
 - Equity is levered claim on assets: Return on equity = $d\tilde{R}_t < -10\%$

m > 1 in our calibration.

Boundary Conditions

▶ When $e = \infty$, $\mathcal{E}_t > (1 - \lambda) W_t$ frictionless economy

- We solve for $p(\infty)$, $q(\infty)$ analytically
- As $e \rightarrow 0$, intermediaries' portfolio volatility, i.e. Sharpe ratio, rises
- New bankers enter if e = e (Sharpe ratio hits γ, exogenous constant)
 - \blacktriangleright Entry increases aggregate $\mathcal E$ but requires physical capital K at conversion rate of β
 - <u>e</u> is a reflecting boundary
- Boundary conditions at the entry point <u>e</u>

$$q'\left(\underline{e}\right) = 0, \ p'\left(\underline{e}\right) = rac{p\left(\underline{e}\right)eta}{1 + \underline{e}eta}, \ ext{and} \ Sharpe_Ratio\left(\underline{e}\right) = \gamma$$

Calibration: Baseline Parameters

	Parameter	Choice	Target
Par	nel A: Intermediation		
m	Performance sensitivity	2.5	Average Sharpe ratio (38%)
λ	Debt ratio	0.5	Average intermediary leverage
η	Banker exit rate	13%	Good model dynamics
γ	Entry trigger	5.5	Highest Sharpe ratio
β	Entry cost	2.35	Land price volatility

Panel B: Technology

σ	Capital quality shock	5%	Investment and Consumption volatilities
δ	Depreciation rate	10%	Literature
κ	Adjustment cost	2	Literature
Α	Productivity	0.14	Investment-to-capital ratio

Panel C: Others

ρ	Time discount rate	2%	Literature
ϕ	Housing share	0.5	Housing-to-wealth ratio

Equilibrium Prices and Policies (1)

- $e_{crisis} = 0.65$: binding capital constraint
- $e_{distress} = 4$ so that $\Pr(e \le e_{distress}) = 33\%$ as in data

= 900

Equilibrium Prices and Policies (2)

- e_{crisis} = 0.65: binding capital constraint
- ▶ $e_{distress} = 4$ so that $Pr(e \le e_{distress}) = 33\%$ as in data

Matching State-Dependent Covariances: Baseline

	Dist	tress	Non	Distress
	Data	Baseline	Data	Baseline
vol (Eq)	31.48%	26.01	17.54	6.77
vol (I)	8.05%	5.73	6.61	5.39
vol (C)	1.71%	3.29	1.28	3.94
vol (LP)	21.26%	22.87	9.79	9.38
vol (EB)	60.14%	49.96	12.72	6.32
$\mathit{cov}\left(\mathit{Eq},\mathit{I} ight)$	1.31%	0.80	0.07	0.36
$\mathit{cov}\left(\mathit{Eq},\mathit{C} ight)$	0.25%	0.34	0.03	0.26
$\mathit{cov}\left(\mathit{Eq},\mathit{LP} ight)$	4.06%	4.56	0.12	0.63
$\mathit{cov}\left(\mathit{Eq},\mathit{EB} ight)$	-6.81%	-6.69	-0.14	-0.09

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Matching State-Dependent Covariances: lower σ

	Distress				Non Distress			
	Data	Baseline	$\sigma = 4\%$	-	Data	Baseline	$\sigma = 4\%$	
vol (Eq)	31.48%	26.01	20.57		17.54	6.77	5.09	
vol (I)	8.05%	5.73	4.40		6.61	5.39	4.18	
vol (C)	1.71%	3.29	2.67		1.28	3.94	3.36	
vol (LP)	21.24%	21.26	12.91		9.79	9.38	6.41	
vol (EB)	60.14%	48.96	36.52		12.72	6.32	4.33	
$\mathit{cov}\left(\mathit{Eq},\mathit{I} ight)$	1.31%	0.81	0.47		0.07	0.37	0.22	
$\mathit{cov}\left(\mathit{Eq},\mathit{C} ight)$	0.25%	0.35	0.22		0.03	0.26	0.17	
$\mathit{cov}\left(\mathit{Eq},\mathit{LP} ight)$	4.06%	4.56	2.03		0.12	0.63	0.34	
$\mathit{cov}\left(\mathit{Eq},\mathit{EB} ight)$	-6.81%	-6.69	-3.58		-0.14	-0.09	-0.04	

Matching State-Dependent Covariances: No Housing

	Distress				Non Distress			
	Data	Baseline	$\phi = 0$		Data	Baseline	$\phi = 0$	
vol (Eq)	31.48%	26.09	14.62		17.54	6.77	5.00	
vol (I)	8.05%	5.73	5.14		6.61	5.40	5.01	
vol (C)	1.71%	3.29	4.52		1.28	3.92	4.94	
vol (LP)	21.24%	21.26			9.79	9.38		
vol (EB)	60.14%	48.96	9.42		12.72	6.32	0.03	
$\mathit{cov}\left(\mathit{Eq},\mathit{I} ight)$	1.31%	0.81	0.53		0.07	0.37	0.25	
$\mathit{cov}\left(\mathit{Eq},\mathit{C} ight)$	0.25%	0.35	0.44		0.03	0.26	0.25	
$\mathit{cov}\left(\mathit{Eq},\mathit{LP} ight)$	4.06%	4.56			0.12	0.63		
$\mathit{cov}\left(\mathit{Eq},\mathit{EB} ight)$	-6.81%	-6.69	-0.33		-0.14	-0.09	-0.00	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Uncovering Shocks in the Recent Crisis

Data

Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Uncovering Shocks in the Recent Crisis

Based on realized equity return we uncover fundamental shocks to K

07QIII	07QIV	08QI	08Q11	08QIII	08QIV	09QI	09QII	09Q111	09QIV
-3.77%	-7.24	-6.62	-2.85	-0.48	-3.10	-2.32	-1.15	-0.04	-0.77

э

Total -25%. Capital constraint binds after 08QII—systemic crisis

▶ In the model (data), land price fall by 71% (55%)

Probability of Crisis

2007Q2, Prob(crisis occurs in the next 2 years)=0.09%, Prob(5 years) = 2.62%, Prob (10 years) = 10.05%

Probability of Crisis

- 2007Q2, Prob(crisis occurs in the next 2 years)=0.09%, Prob(5 years) = 2.62%, Prob (10 years) = 10.05%
- Conditional probability of hitting crisis (left) or distress (right)

Note: Probabilities are low, which suggests improved capital buffers would have limited effects.

VIX and Systemic Risk

- Volatility in our model rises most sharply when the constraint binds
- Coincident indicator and no predictive content.
- What might work better? A VIX spread: Long-maturity VIX minus short-maturity VIX
- Other indicators...

Conclusion

- We develop a fully stochastic model of systemic crisis, with two major frictions:
 - Equity capital constraint on intermediary sector
 - Intermediaries have substantial holdings in real assets (physical capital or housing)
- We find that the model
 - not only qualitatively delivers the nonlinearity observed in the data

- but also quantitatively matches the differential comovements in distress and non-distress periods
- Recent 07/08 crisis requires a cumulative negative shock around -25%
- Things we are working on: more on model-based measure of systemic risk