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Abstract

We propose a method to correct for sample selection in quantile regression mod-
els. Selection is modelled via the cumulative distribution function, or copula, of the
percentile error in the outcome equation and the error in the participation decision.
Copula parameters are estimated using an iterated nonlinear least squares procedure.
Given copula parameters, the percentile levels of the outcome are re-ajusted to correct
for selection, and quantile parameters are estimated by minimizing a rotated “check”
function. We apply the method to correct wage percentiles for selection into employ-
ment, using data for the UK for the period 1978-2000. We find that correcting for
sample selection magnifies the increase in wage inequality over the period.
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1 Introduction

Sample selection

• Non-random sample selection is a major issue in empirical work.

• Important example (and our application): wages and employment (Gronau 74, Heck-

man 76).

• In regression models, the solution involves adding a selection factor as a control (Heck-

man 79, Das, Newey and Vella 03).

• Excluded variables (e.g., determinants of employment that do not affect wages directly)

are key to achieve credible identification.

Distributions

• Most selection-correction approaches focus on estimating (conditional) mean models.

• In many applications, however, a flexible specification of the entire distribution of

outcomes is of interest.

• Example 1: when employment rates vary over time, the evolution of observed wage

inequality and latent wage inequality may differ.

• Example 2: if men and women have different employment rates, the gender wage gap

conditional on employment may over/underestimate the latent gap.

Quantile regression

• Quantile regression is widely used to estimate conditional wage distributions.

• Linear model: each percentile τ ∈ (0, 1) is associated with a conditional quantile

qτ (y|x) = x′βτ .

• βτ can be estimated by minimizing a convex (check) function (Koenker & Bassett 78).

• However: to our knowledge there is yet no widely accepted quantile regression approach

in the presence of sample selection.

• Thus, this paper aims at contributing to fill this gap.
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Figure 1: Wage inequality and gender wage gap in the UK
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Note: 10%, 50% and 90%-percentiles of log-hourly wages.

Source: Family Expenditure Survey, 1978-2000.

Figure 2: Employment rates in the UK
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Source: Family Expenditure Survey, 1978-2000.

2



This paper

• We propose a selection correction method for quantile regression.

– In the absence of sample selection, our estimator coincides with standard quantile

regression.

– In the presence of selection, our approach consists in shifting the percentile levels

as a function of the amount of selection.

• Our approach connects with:

– Bounds approaches (Manski 94, Blundell, Gosling, Ichimura, and Meghir 07).

– Parametric and semiparametric versions of the Heckman (79) sample selection

model.

Literature I: Quantiles, distributions, and treatment effects

• Chernozhukov and Hansen (05, 06): Instrumental variables quantile regression. Need

to observe potential outcomes for treated and non-treated, and a rank invariance or

similarity assumption.

• See also Torgovitsky (10) for a model with continuous endogenous regressors.

• Imbens and Rubin (97): Identification and estimation of unconditional distributions of

potential outcomes in treatment effects models. Binary instrument, identification for

compliers (as in Abadie 03, and in Abadie, Angrist and Imbens 02).

• Carneiro and Lee (09): Uses the framework of Heckman and Vytlacil (05) to identify

and estimate distributions of potential outcomes.

Literature II: Quantile selection models

• Buchinsky (98, 01): Proposed an additive approach to correct for sample selection in

quantile regression.

• However: difficult to specify a data-generating process that is consistent with this

approach (Albrecht, van Vuuren and Vroman 09).
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• Picchio and Mussida (10): Flexible parametric model to correct the gender wage gap

for selection into employment (6= quantile regression).

• Huber and Melly (10): Deal with a similar model as we do. They focus on testing for

additivity. In contrast, our focus is on providing a practical estimation method.

Outline

• Introduction

• Model

• Identification

• Estimation

• Properties and extensions

• Empirical application

• Conclusion
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2 Model

2.1 The quantile selection model

• We assume:

Y ∗ = QU (Y ∗ | X) ,

D = 1 {V ≤ p (Z)} ,

Y = Y ∗ if D = 1.

• Y ∗ is the latent outcome (e.g. market wages).

• D is the participation indicator (employment).

• Z = (W,X) strictly contains X, so W is the exclusion restriction.

• In estimation, we will restrict the conditional U -quantiles of Y ∗ given X to be linear:

QU (Y ∗ | X = x) = x′βU .

Assumptions

• A1 (exclusion restriction): (U, V ) is statistically independent of Z given X.

• A2 (normalization): (U, V ) given X = x has uniform marginals. We denote its cumu-

lative distribution function (or “copula”) as Cx (u, v).

• A3 (continuous outcomes): The conditional cdf FY ∗|X (y|x) is strictly increasing in y.

In addition, u 7→ Cx(u, v) is strictly increasing.

• A4 (propensity score): p (Z) = Pr (D = 1|Z) > 0 with probability one.

2.2 Examples

Special case I: additive selection model

• Suppose that outcomes are additive in the unobservables:

Y ∗ = g (X) + ε,

D = 1 {V ≤ p (Z)} ,

where (ε, V ) is statistically independent of Z.
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• Then, the following restrictions hold (Das et al. 03):

E (Y |D = 1, Z) = g (X) + E (ε|Z, V ≤ p (Z))

= g (X) + λ (p (Z)) ,

where λ (p) = E (ε|V ≤ p).

• Assumption A1 is satisfied, with U = Fε (ε).

Special case II: reservation wage

• Suppose the following reservation rule:

D = 1 {Y ∗ ≥ R(Z) + η} ,

where (Y ∗, η) is statistically independent of Z given X.

• Equivalently:

D = 1
{
V ≤ Fη−Y ∗|Z (−R(Z)|Z)

}
,

where V = Fη−Y ∗|Z (η − Y ∗|Z) is standard uniform, independent of Z.

• Let Y ∗ = QU (Y ∗ | X), non-additive in U . In this case, U and V are independent of Z

given X, but are not jointly independent of X.

Extension: treatment effects with selection on unobservables.

• Consider the system:

Y ∗
0 = QU0

(Y ∗
0 | X) ,

Y ∗
1 = QU1

(Y ∗
1 | X) ,

D = 1 {V ≤ p (Z)} ,

Y = (1 − D)Y ∗
0 + DY ∗

1 ,

where (U0, U1, V ) is independent of Z given X.

• The model coincides with the standard potential outcomes framework in the treatment

effects literature (Vytlacil 02).

• We make no assumption of rank invariance or rank similarity (unlike Chernozhukov

and Hansen 05). ⇒ Our approach recovers the distributions of Y ∗
0 and Y ∗

1 given X.
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3 Identification

3.1 Restrictions and conditions for point-identification

Latent quantiles

• The τ -quantile of latent outcomes is qτ (x) ≡ Qτ (Y ∗ | X = x). That is:

Pr (Y ∗ ≤ qτ (x)|X = x) = Pr
[
qU(x) ≤ qτ (x)|X = x

]

= Pr (U ≤ τ |X = x)

= τ .

• In the absence of sample selection, qτ (x) could be estimated using standard (parametric

or nonparametric) quantile regression.

• Unfortunately, we do not observe Y ∗ when D = 0.

Observed quantiles

• Conditioning on participation, and letting z = (x,w):

Pr (Y ∗ ≤ qτ (x)|D = 1, Z = z) = Pr (U ≤ τ |V ≤ p(z), Z = z)︸ ︷︷ ︸
≡Gx(τ ,p(z))

,

where Gx (τ , p(z)) = Cx (τ , p(z)) /p(z).

• Hence, the conditional τ -quantile of Y ∗ coincides with the conditional Gx (τ , p(z))-

quantile of Y given D = 1.

⇒ If we knew the mapping Gx from latent to observed ranks, one could estimate qτ (x)

using rotated quantile regression.

• Key insight: the exclusion restriction provides information about the mapping Gx.

Identifying restrictions

• Given two values z = (x,w) and z̃ = (x, w̃) we have:

FY |D=1,Z

(
F−1

Y |D=1,Z

(
τ
∣∣z̃
) ∣∣z
)

︸ ︷︷ ︸
data

= Gx

(
G−1

x (τ , p(z̃)) , p(z)
)
. (1)
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• These restrictions are uninformative in the absence of an exclusion restriction (i.e.,

when z = z̃ = x).

• Moreover, these are the only restrictions on Gx: For any Gx satisfying (1), one can

find a distribution of latent outcomes FY ∗|X that rationalizes the data.

Point-identification

• Two simple conditions lead to point-identification of Gx (., p(z)):

1. Identification at infinity: there exists some zx = (x,wx) such that p(zx) = 1.

2. Flexible parametric identification: the function Gx is real analytic.

⇒ extrapolated outside an open neighborhood.

⇒ Two sources of identification: variation in the excluded variable, and functional

forms.

• In either of these two cases, the quantiles qτ (x) are also point-identified, for all τ ∈
(0, 1).

3.2 Partial identification

Bounds on Gx

• Note that, if Gx(., p(z̃)) were known for some z̃, then by (1) Gx(., p(z)) would be known

for all z values.

⇒ Gx is identified up to a monotone transformation of its first argument.

• Fix z̃, and bound Gx(., p(z̃)) by the worst-case (“Fréchet”) bounds:

max

(
τ + p(z̃) − 1

p(z̃)
, 0

)
≤ Gx (τ , p(z̃)) ≤ min

(
τ

p(z̃)
, 1

)
.

• This implies the following bounds on Gx:

Gx (τ , p(z)) ≤ inf
z̃

FY |D=1,Z

[
F−1

Y |D=1,Z

(
min

(
τ

p(z̃)
, 1

) ∣∣∣ z̃
) ∣∣∣ z

]

Gx (τ , p(z)) ≥ sup
z̃

FY |D=1,Z

[
F−1

Y |D=1,Z

(
max

(
τ + p(z̃) − 1

p(z̃)
, 0

) ∣∣∣ z̃
) ∣∣∣ z

]
.
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Bounds on qτ (x)

• Using the above bounds on Gx, we can bound the quantiles of latent outcomes as:

qτ (x) ≤ inf
z̃

F−1
Y |D=1,Z

(
min

(
τ

p(z̃)
, 1

) ∣∣∣ z̃
)

qτ (x) ≥ sup
z̃

F−1
Y |D=1,Z

(
max

(
τ + p(z̃) − 1

p(z̃)
, 0

) ∣∣∣ z̃
)

,

where the infimum and supremum are taken with respect to elements of the support

of Z given X = x.

• These bounds are sharp, and coincide with the ones derived in Manski (94).

4 Estimation

4.1 Preliminaries

Parametric specification

• Quantile functions are linear: qτ (x) = x′βτ .

• Gx(τ , p) ≡ G(τ , p; ρ) = C(τ,p;ρ)
p

is indexed by a parameter vector ρ (remark: could

depend on x).

Many convenient parsimonious specifications are available (e.g., based on Gaussian,

Frank, or Gumbel copulas). More flexible alternatives exist (e.g., based on Bernstein

copulas).

• p(z; θ) is a known function of a parameter θ (this may be relaxed).

• We will denote as θ̂ a consistent (maximum-likelihood) estimate of θ.

Digression: quantile curves are non-additive in x and p(z)

• The τ -quantile of observed outcomes given z = (x,w) is:

qd
τ (z) ≡ F−1

Y |D=1,Z
(τ | z) = x′βG−1(τ,p(z)).
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• We show that qd
τ (z) is non-additive in x and p (z), unless:

i) All coefficients of βτ but the constant are independent of τ , or

ii) U and V are statistically independent.

• However, additive specifications such as qd
τ (z) = x′βτ +λτ (p (z)) (for a smooth function

λτ (p)) are often used in applied work.

4.2 Three-step estimation strategy

• We propose to compute selection-corrected quantile regression estimates in three steps:

1. Compute θ̂, and predict p
(
zi; θ̂

)
.

2. Compute ρ̂. This is the computationally expensive step.

3. For any given τ , compute G
(
τ , p

(
zi; θ̂

)
; ρ̂
)
, and compute β̂τ .

• This may be done using a standard quantile regression algorithm.

Step 3: estimation of βτ

• Given ρ̂ (and given θ̂), β̂τ can be estimated for any given τ as:

β̂τ = argmin
b

N∑

i=1

Di

[
Ĝτi (yi − x′

ib)
+

+
(
1 − Ĝτi

)
(yi − x′

ib)
−
]
,

where a+ = max(a, 0), a− = max(−a, 0), and:

Ĝτi = G
(
τ , p

(
zi; θ̂

)
; ρ̂
)

.

• This amounts to minimizing a rotated check function.

⇒ Estimation using a simple linear program.

• Compare with the (infeasible) quantile regression estimate:

β̃τ = argmin
b

N∑

i=1

[
τ (y∗

i − x′
ib)

+
+ (1 − τ) (y∗

i − x′
ib)

−
]
.
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Step 2: estimation of ρ, Method A

• The moment restrictions are:

E

[
1 {Y ≤ x′βτ} − G (τ , p(z; θ); ρ)

∣∣∣D = 1, Z = z
]

= 0.

• We propose estimating ρ by:

ρ̂ = argmin
c

∥∥∥∥∥

N∑

i=1

∑

ℓ

Diϕτℓ
(zi)

[
1
{

yi ≤ x′
iβ̂τℓ

(c)
}
− G

(
τ ℓ, p(zi; θ̂); c

)]∥∥∥∥∥ ,

where {τ ℓ} is a finite grid, ϕτ (zi) are instrument functions, and:

β̂τ (c) = argmin
b

N∑

i=1

Di

[
G
(
τ , p(zi; θ̂); c

)
(yi − x′

ib)
+

+
(
1 − G

(
τ , p(zi; θ̂); c

))
(yi − x′

ib)
−
]
.

Step 2: estimation of ρ, Method B

• From the identification discussion we have:

E

(
1
{
Y ≤ qd

τ (z̃)
} ∣∣∣D = 1, Z = z

)
= G

[
G−1 (τ , p(z̃; θ); ρ) , p(z; θ); ρ

]
.

• Given a consistent estimate q̂d
τ (z̃) (and given θ̂), we minimize the following objective

with respect to c:

∑

i6=j

∑

ℓ

Di

(
1
{
yi ≤ q̂d

τℓ
(xi, wj)

}
− G

[
G−1

(
τ ℓ, p(xi, wj; θ̂); c

)
, p(xi, wi; θ̂); c

] )2

.

• qd
τ may be estimated as a sample quantile (cell-by-cell, as in Chamberlain 93), or using

nonparametric quantile regression methods (when covariates are continuous).

Method B: iteration

• Recall that the observed quantiles satisfy:

qd
τ (z) = x′βG−1(τ ,p(z)).
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• Given an estimate ρ̂, we can estimate:

q̃d
τ (z) = x′β̂G−1(τ ,p(z);ρ̂),

and update ρ by minimizing:

∑

i6=j

∑

ℓ

Di

(
1
{
yi ≤ q̃d

τℓ
(xi, wj)

}
− G

[
G−1

(
τ ℓ, p(xi, wj; θ̂); c

)
, p(xi, wi; θ̂); c

] )2

.

• This procedure may be iterated until convergence.

Comments on estimation of ρ

• Method A: the objective function is not continuous, and non-convex.

• May use grid search (low dimensional ρ), or simulation-based optimization.

• Method B: based on the identification argument. Robust to misspecification of qτ (x)

(when covariates are discrete).

• Fast and straightforward way to obtain good starting values for method A.

5 Properties and extensions

Asymptotic properties (method A)

• We impose standard assumptions on the quantile model for potential outcomes.

• We also impose regularity conditions on the copula C (u, v; ρ).

⇒ application of GMM with non-smooth moment functions.

• We show that, for any τ ∈ (ε, 1 − ε):

√
N

(
β̂τ − βτ

ρ̂ − ρ

)
d→ N [0, Vτ ] ,

where a consistent estimator of Vτ can be constructed following Powell (86).
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Estimating bounds

• Let px = supw p(x,w). Quantile linearity implies the following (not necessarily sharp)

bounds:

x′β
G−1

(
max

(
τ+px−1

px
,0
)
,px

)

︸ ︷︷ ︸
q

τ
(x)

≤ qτ (x) ≤ x′β
G−1

(
min

(
τ

px
,1
)
,px

)

︸ ︷︷ ︸
qτ (x)

.

• Under the assumption that the support of W given X = x is independent of x, px can

be consistently estimated by p̂x = supN
i=1 p(x,wi; θ̂).

⇒ Consistent estimates of q
τ
(x) and qτ (x) are easily obtained.

• We are thus using our model as a flexible specification of the bounds, which are non-

parametrically identified.

Unconditional quantiles

• Once β̂τ has been computed (for a grid of τ ’s), the unconditional cdf of Y ∗ (a discretized

or simulated version of) may be estimated as in Machado & Mata (05):

F̂Y ∗(y) =
1

N

N∑

i=1

∫ 1

0

1
{

x′
iβ̂τ ≤ y

}
dτ ,

and its unconditional quantiles as q̂τ = inf
{

y, F̂Y ∗(y) ≥ τ
}

.

• Confidence bands for unconditional effects may be derived using the results in Cher-

nozhukov, Fernandez-Val and Melly (10).

• Note that unconditional quantiles are monotone by construction. If needed, conditional

quantiles may be rearranged (Chernozhukov, Fernandez-Val and Galichon 10).

Extensions

• Nonparametric p(z): When Z is continuous, extending our approach requires dividing

by p(z). A trimming approach may be used along the lines of Buchinsky & Hahn (98).

• Censoring and endogeneity: Our approach may be easily combined with Powell (86)

and Chernozhukov and Hansen (05, 06).

• Nonparametric G: One may want to let the dimension of ρ increase with the sample

size (see Chen and Pouzo 10 for general results).
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6 Application to wage inequality and gender gaps in

the UK

6.1 Data

• FES, 1978-2000, aged 23 to 59. 77, 830 males, 89, 848 females.

• Time, cohort, and regional effects, education and number of kids (26 controls). Sample

split by gender and marital status.

• Exclusion restriction: we follow Blundell, Reed and Stoker (03) and use their measure

of potential out-of-work income as our excluded regressor w in z = (w, x).

• This measure is constructed for each individual in the sample using the IFS tax and

welfare-benefit simulation model.

Figure 3: Descriptive statistics (conditional on employment)

Mean Min Max q10 q50 q90

Males
Married

Log-wage 2.10 .172 4.30 1.56 2.06 2.71
Propensity score .879 .021 1.00 .766 .893 .979

Single
Log-wage 1.99 .319 4.28 1.45 1.95 2.58

Propensity score .753 .259 1.00 .574 .765 .916

Females
Married

Log-wage 1.64 -.378 3.59 1.11 1.57 2.32
Propensity score .681 .006 .998 .512 .699 .844

Single
Log-wage 1.78 -.465 3.58 1.20 1.76 2.42

Propensity score .718 .019 1.00 .475 .735 .933

Source: Family Expenditure Survey, 1978-2000.

Note: The propensity score is estimated using a probit model.
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6.2 Results

Implementation

• We model the propensity score using a probit.

• In the benchmark results, we use a Frank copula (Frank 79), yielding:

G (u, v; ρ) = − 1

ρv
ln

[
1 − (1 − e−ρu) (1 − e−ρv)

1 − e−ρ

]
.

We also use an encompassing two-parameter generalized Frank family (called “BB8”

in Joe 97).

• To estimate ρ (by gender and marital status), we take the grid:

τ ∈
{

1

10
,

2

10
, ...,

9

10

}
.

Figure 4: Wage quantiles (latent and observed), by gender
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Figure 5: Fit to wage quantiles, by gender
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Figure 6: Sample selection: estimated copulas (Frank family), by marital status
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Figure 7: Return to college (married), by gender
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Figure 8: Estimated copulas (generalized Frank family), by gender and marital status
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Figure 9: Wage quantiles, generalized Frank family
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Figure 10: Estimated bounds on latent wage quantiles, by gender
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7 Conclusion

Summary

• Selection-corrected quantile regression (“QR-S”!) is an interesting tool for empirical

research, as shown by our application.

• As in the well-known additive model, correcting for sample selection reveals relevant

features of the data.

• We have proposed a simple multi-step algorithm, based on a rotated “check” function,

to correct QR estimates for selection.

• The approach may be combined with recent advances on quantile regression (such as

unconditional quantiles, rearrangement, censoring, or endogeneity).

Future work

• Selection-corrected quantile regression requires 1) parametric specification of the cop-

ula, and 2) large support of the propensity score.

• When 2) is satisfied, one could take advantage of the fact that qτ (x) is the limit of

qd
τ (z) as p(z) → 1.

• In practice, qd
τ (z) could be estimated using penalized QR methods (e.g., Belloni and

Chernozhukov 09). The properties of this “estimator at infinity” are yet to be studied.

• When 2) is not satisfied, one could use a similar approach to flexibly estimate the

bounds on qτ (x).
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APPENDIX

A Asymptotic properties

A.1 Asymptotic properties

To derive the asymptotic distribution of the estimator β̂τ = β̂τ (ρ̂), where β̂τ (c) is given by (??),
let us first define:

giτ ≡ Di

(
1
{
Yi ≤ X ′

iβτ

}
−G (τ , p (Zi; θ) |Xi; ρ)

)
.

We make the following assumptions.

Assumption 1 The following conditions are satisfied.
i) There exists a positive definite matrix Στ such that:

√
N




1
N

∑N
i=1Xigiτ

θ̂ − θ

ρ̂− ρ


 d→ N [0,Στ ] .

ii) The cdf of Y given Z = Zi and Di = 1 is absolutely continuous, with continuous density fi

bounded away from zero and infinity at the points X ′
iβτ , i = 1, ..., N .

iii) The function G is almost surely differentiable with respect to its second and third compo-
nents, with derivatives ∂pG and ∂ρG, respectively.

iv) There exist a positive definite matrix Jτ , and matrices P1τ and P2τ , such that

Jτ = plim
N→∞

1

N

N∑

i=1

p (Zi; θ)XiX
′
ifi

[
X ′

iβτ

]
,

P1τ = plim
N→∞

1

N

N∑

i=1

p (Zi; θ)Xi (∂θp (Zi; θ))
′ ∂pG (τ , p (Zi; θ) |Xi; ρ) ,

P2τ = plim
N→∞

1

N

N∑

i=1

p (Zi; θ)Xi (∂ρG (τ , p (Zi; θ) |Xi; ρ))
′ .

Condition i) requires that 1
N

∑N
i=1Xigiτ , θ̂, and ρ̂ jointly satisfy a central limit theorem. Under

weak regularity conditions, it is easy to show that:

1√
N

N∑

i=1

Xigiτ
d→ N

(
0,E

[
Giτ (1 −Giτ ) p (Zi; θ)XiX

′
i

])
,

where we have denoted:
Giτ ≡ G (τ , p (Zi; θ) |Xi; ρ) . (A1)

The asymptotic covariance matrix of θ̂ will typically be straightforward to compute, e.g. if θ̂ is a
maximum likelihood estimator. The variance of ρ̂ and the covariance terms are harder to calculate.
Below we will compute the joint asymptotic distribution of β̂τ and ρ̂, when ρ̂ is the GMM estimator
(??).

Condition ii) is standard in ordinary quantile regression (e.g., Theorem 4.2 in Koenker and
Bassett, 1978). The only difference here is that we work with the cdf of Y given Z, and not given
X. Condition iii) requires that the copula be differentiable. Most of the usual parametric families
of copulas are differentiable in both their arguments. An exception are piecewise-constant empirical
copulas, which are not continuous. Lastly, Condition iv) imposes the existence of moments.
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Theorem A1 Let τ ∈]0, 1[, and let Assumptions ?? and 1 hold. Then, as N tends to infinity:

√
N
(
β̂τ − βτ

)
d→ N

[
0, J−1

τ PτΣτP
′
τJ

−1
τ

]
,

where Pτ = [Idim β ,−P1τ ,−P2τ ], and Jτ , P1τ , P2τ are given in Assumption 1.

Theorem A1 provides the asymptotic distribution of quantile estimates, corrected for the fact
that θ̂ and ρ̂ have been estimated.1 Remark that, in the absence of sample selection, the formula
boils down to the standard expression (Koenker, 2005, p.120).

The theorem can be easily generalized to derive the asymptotic distribution of a finite number

of quantiles
[
β̂τ1

, ..., β̂τL

]
. An interesting extension is to derive the large sample theory of the

quantile process:
√
N
(
β̂(.) − β(.)

)
in a suitable metric space. This can be done along the lines of

Koenker and Xiao (2002) or Chernozhukov and Hansen (2006).

Asymptotic distribution of ρ̂. We now compute the joint asymptotic distribution of
√
N
(
β̂τ − βτ

)

and
√
N (ρ̂− ρ), in the special case where ρ̂ is given by (??). We use a finite counting measure:

K (τ) =

L∑

ℓ=1

πℓ1 {τ = τ ℓ} ,

where πℓ > 0,
∑L

ℓ=1 πℓ = 1, and τ1 < ... < τL is a set of elements of ]0, 1[.

Assumption 2 The following conditions are satisfied.
i) There exists a positive definite matrix H, and a function si ≡ s (Di, Zi) such that:

θ̂ − θ = −H−1
Ê [si] +Op

(
1

N

)
.

ii) For all ℓ, there exist a positive definite matrix J̃τℓ
, and matrices P̃1τℓ

and P̃2τℓ
, such that

J̃τℓ
= plim

N→∞

1

N

N∑

i=1

p (Zi; θ)ϕ (Zi)ϕ (Zi)
′ fi

[
X ′

iβτℓ

]
,

P̃1τℓ
= plim

N→∞

1

N

N∑

i=1

p (Zi; θ)ϕ (Zi) (∂θp (Zi; θ))
′ ∂pG (τ ℓ, p (Zi; θ) |Xi; ρ) ,

P̃2τℓ
= plim

N→∞

1

N

N∑

i=1

p (Zi; θ)ϕ (Zi) (∂ρG (τ ℓ, p (Zi; θ) |Xi; ρ))
′ .

iii) The following matrix inverse exists:

Aρ =

[
L∑

ℓ=1

πℓ

(
P̃2τℓ

− J̃τℓ
J−1

τℓ
P2τℓ

)]−1

. (A2)

Condition i) will be satisfied if θ̂ is asymptotically linear, for example when it is a regular
maximum likelihood estimator. Conditions ii) and iii) require that some moments exist.

We now state the main theorem.

1Proofs of the results in this section are given in Appendix D.
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Theorem A2 Let Assumptions ??, 1, and 2 hold. Then:

√
N

(
β̂τ − βτ

ρ̂− ρ

)
d→ N [0, Vτ ] ,

where the expression of Vτ is given in Appendix D.

Estimating the asymptotic variance. To construct empirical counterparts of the asymp-
totic variance appearing in Theorem A1, note that all matrices but Jτ can be estimated by sample
analogs, replacing the population expectations by empirical means. Moreover, following Powell
(1986), a consistent estimator of Jτ is:

Ĵτ =
1

2NhN

N∑

i=1

1 {|̂εi (τ) | ≤ hN} p
(
Zi; θ̂

)
XiX

′
i,

where ε̂i = Yi −X ′
iβ̂τ , and where hN is a bandwidth that satisfies hN → 0 and Nh2

N → +∞ as N
tends to infinity. We may proceed similarly to estimate Vτ that appears in Theorem A2.

B Proofs

Proof of Proposition ??. We have:

P (qτ (x) , w, x) = Pr (Y ∗ ≤ qτ (x) , D = 1 |W = w,X = x)

= Pr (QU (Y ∗ | X = x) ≤ qτ (x) , V ≤ p (w, x) |W = w,X = x)

= Pr (U ≤ τ , V ≤ p (w, x) |W = w,X = x)

= Pr (U ≤ τ , V ≤ p (w, x)) , (B3)

where we have used Assumption ??a to derive the third equality, and Assumption ??b to derive
the fourth equality.

Let us denote as C (τ , p) = Pr (U ≤ τ , V ≤ p) the cdf of (U, V ). Taking derivatives in (B3) with
respect to x and w′, respectively, we obtain:

∂qτ (x)

∂x

∂P (qτ (x) , w, x)

∂r
+
∂P (qτ (x) , w, x)

∂x
=

∂p (w, x)

∂x

∂C (τ , p (w, x))

∂p
,

∂P (qτ (x) , w, x)

∂w′
=

∂C (τ , p (w, x))

∂p

∂p (w, x)

∂w′
.

Lastly, (??) follows from right-multiplying the first equality by ∂p(w,x)
∂w

, left-multiplying the

second by ∂p(w,x)
∂x

, and taking differences.

Proof of Proposition ??. As in the proof of Proposition ?? we have:

Pr
(
Y ≤ X ′βτ , D = 1 | Z

)
= C (τ , p (Z; θ) |X; ρ) ,

where C depends on X because Assumption ??a– instead of ??b– holds. Hence:

Pr
(
Y ≤ X ′βτ |Z,D = 1

)
=

C (τ , p (Z; θ) |X; ρ)

p (Z; θ)

= G (τ , p (Z; θ) |X; ρ) ,

where, by Assumption ??b, p (Z; θ) 6= 0 almost surely.
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Proof of Corollary ??. Denote as G−1 the function such that:

G
(
G−1 (u, p) , p

)
= G−1 (G (u, p) , p) = u.

Note that, by Assumption ??b, G does not depend on X.
The τ -quantile of Y |Z,D = 1 is X ′βG−1(τ,p(Z;θ);ρ). So it will be additive in X and p (Z; θ)

if and only if all coefficients of βτ but the constant are independent of τ , or G−1 (τ , p (Z; θ) ; ρ)
is independent of p (Z; θ). The latter situation happens only if C (τ , p; ρ) = pH (τ), for some
function H. But because C is a cdf with uniform marginals, it follows that C (τ , 1; ρ) = τ , hence
H (τ) = τ . Therefore, C is the independent copula and U and V are independent. The “if” part
of the proposition is immediate.

Proof of Proposition ??. As in the proof of Proposition ??.

C Extensions

In this section of the appendix we describe three extensions of our approach.

C.1 Endogeneity

To proceed, let us assume that the latent outcome is given by the following linear quantile model:

Y ∗ = E′αU +X ′βU , (C4)

where the percentile level U is independent of X, but may be correlated with the endogenous
regressors E. As before, the participation equation is given by (??).

We have the following result, which is an immediate corollary of Proposition ??.

Corollary 1 Suppose that (U, V ) is independent of Z given X. Assume also that q (u, x, e) =
e′α (u) + x′β (u) is strictly increasing in its first argument. Then, for any τ ∈ [0, 1]:

E
[
1
{
Y ≤ E′ατ +X ′βτ

}
−G (τ , p (Z; θ) |X; ρ) | Z,D = 1

]
= 0. (C5)

To estimate ρ, θ, and {ατ , βτ} for any τ ∈ [0, 1], one can use the following three-step estimation
method, which extends Chernozhukov and Hansen (2006)’s estimator to control for selection.

In the first estimation step, we compute θ̂. In the second step, we compute ρ̂ as:

ρ̂ = arg min
c

∥∥∥
∫ 1

0

N∑

i=1

Diϕτ (Zi)
(
1
{
Yi ≤ E′

iα̃τ (c) +X ′
iβ̃τ (α̃τ (c) ; c)

}

−G
(
τ , p

(
Zi; θ̂

)
|Xi; c

))
dK (τ)

∥∥∥,

where, for µτ (Zi) a dim (α) × 1 vector of instruments we have defined:

(
β̃τ (α; c) , γ̃τ (α; c)

)
= arg min

(b,g)

N∑

i=1

Di

{
G
(
τ , p̂

(
Zi; θ̂

)
|Xi; c

) (
Yi −X ′

ib− µτ (Zi)
′ g
)+

+
(
1 −G

(
τ , p̂

(
Zi; θ̂

)
|Xi; c

)) (
Yi −X ′

ib− µτ (Zi)
′ g
)− }

,

and:
α̃τ (c) = arg min

a
‖γ̃τ (a; c)‖ .

Lastly, once ρ̂ has been estimated, we compute

α̂τ = α̃τ (ρ̂) , and β̂τ = β̃τ (α̂τ ; ρ̂) .
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C.2 Censoring

Suppose that Y ∗ is censored when Y ∗ ≤ y0, where y0 is a known threshold, so that we observe
Y = max {Y ∗, y0} when D = 1. From the equivariance property of quantiles, the τ -quantile of
max {Y ∗, y0} is max {X ′βτ , y0}. So, the following identity holds under Assumptions ??a and ??

(the proof being as in that of Proposition ??):

Pr
(
Y ≤ max

{
X ′βτ , y0

}
|Z,D = 1

)
= G (τ , p (Z; θ) |X; ρ) . (C6)

In particular, this implies that the G (τ , p (Z; θ) |X; ρ)-quantile of observed outcomes coincides
with max {X ′βτ , y0}. The quantile regression coefficients can be estimated by the algorithm de-

scribed in Subsection ??, when replacingX ′
ib andX ′

iβ̂τ (c) by max {X ′
ib, y0} and max

{
X ′

iβ̂τ (c) , y0

}
,

respectively.
In particular:

β̂τ (c) = arg min
b

N∑

i=1

Di

{
G
(
τ , p̂

(
Zi; θ̂

)
|Xi; c

) (
Yi − max

{
X ′

ib, y0

})+

+
(
1 −G

(
τ , p̂

(
Zi; θ̂

)
|Xi; c

)) (
Yi − max

{
X ′

ib, y0

})− }
. (C7)

The optimization problem in (C7) is a selection-corrected version of Powell’s (1986) censored quan-
tile estimator.

C.3 An alternative estimator for ρ

Here we introduce an alternative estimator of the copula parameter ρ. We assume that G is strictly
increasing with respect to its first argument, and denote as G−1 its inverse. The estimator is based
on the fact that the τ -quantile of observed outcomes is, by (??):

X ′βG−1(τ ,p(Z;θ)|X;ρ).

When covariates are discrete we follow a standard minimum approach. Let q̂km (τ) denote the
τ -sample quantile of observed outcomes in the Zkm-cell. Motivated by (??) we estimate ρ by:

ρ̂ = arg min
c

∫ 1

0

K∑

k=1

M∑

m=1

ϕτkm

(
q̂km (τ) −X ′

mβ̂G−1(τ ,p̂km|Xm;c) (c)
)2
dK (τ) , (C8)

where β̂τ (c) is given by (??).
When a cell-by-cell approach is not tractable, we may use the following double check function

estimator:

ρ̂ = arg min
c

∫ 1

0

N∑

i=1

Diϕτ (Zi)
{
τ
(
Yi −X ′

iβ̂
[
G−1 (τ , p̂ (Zi) |Xi; c) ; c

])+

+ (1 − τ)
(
Yi −X ′

iβ̂
[
G−1 (τ , p̂ (Zi) |Xi; c) ; c

])− }
dK (τ) ,

where now β̂τ (c) is given by (??).
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D Asymptotic distribution

Proof of Theorem A1. Here we provide a simple sketch of the proof, using standard asymp-
totic arguments (see e.g. Newey and McFadden, 1994, p.2185).

First note that, by a standard result in ordinary quantile regression, the following approximate
moment condition is satisfied (Theorem 3.3. in Koenker and Bassett, 1978):

1

N

N∑

i=1

Xigi

(
β̂τ , θ̂, ρ̂

)
= Op

(
1

N

)
, (D9)

where
gi (b, a, c) ≡ Di

(
1
{
Yi ≤ X ′

ib
}
−G (τ , p (Zi; a) |X; c)

)
.

An expansion around the truth yields, evaluating the functions and their derivatives at true
values :

1

N

N∑

i=1

Xigi

(
β̂τ , θ̂, ρ̂

)
= Op

(
1

N

)

≈ Ê [Xigiτ ] +
∂E [Xigiτ ]

∂β′

(
β̂τ − βτ

)

+
∂E [Xigiτ ]

∂θ′

(
θ̂ − θ

)
+
∂E [Xigiτ ]

∂ρ′
(ρ̂− ρ) ,

where Jτ = ∂E[Xigiτ ]
∂β′ , P1 (τ) = −∂E[Xigiτ ]

∂θ′
, and P2 (τ) = −∂E[Xigiτ ]

∂ρ′
exist by Assumption 1 parts ii),

iii), and iv), and where ÊZ = 1
N

∑N
i=1 Zi denotes a sample mean. Hence, as Jτ is non-singular:

β̂τ − βτ ≈ −J−1
τ

[
Ê [Xigiτ ] − P1τ

(
θ̂ − θ

)
− P2τ (ρ̂− ρ)

]
(D10)

= −J−1
τ Pτ




Ê [Xigiτ ]

θ̂ − θ

ρ̂− ρ


 .

The result then comes from part i) in Assumption 1.

Asymptotic distribution of ρ̂. Define the following matrices:

Bρ = −Aρ

[
π1J̃τ1

J−1
τ1
, ..., πLJ̃τL

J−1
τL

]
, (D11)

Cρ = Aρ

(
L∑

ℓ=1

πℓ

[
P̃1τℓ

− J̃τℓ
J−1

τℓ
P1τℓ

]
H−1

)
, (D12)

and, for a given τ ∈]0, 1[:

Aβ (τ) = J−1
τ P2τAρ, (D13)

Bβ (τ) = J−1
τ P2τBρ, (D14)

Cβ (τ) = J−1
τ

(
P2τCρ − P1τH

−1
)
. (D15)

Lastly, let:

σiℓm = min {Giτℓ
, Giτm} −Giτℓ

Giτm ,

σiℓ (τ) = min {Giτℓ
, Giτ} −Giτℓ

Giτ ,

σi (τ) = Giτ (1 −Giτ ) ,
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where Giτ is given by (A1), and define:

Πi (τ) =




∑L
ℓ,m=1 πℓπmσiℓm

∑L
ℓ πℓσiℓ (τ)

∑L
ℓ πℓσiℓ1 ...

∑L
ℓ πℓσiℓL∑L

ℓ πℓσiℓ (τ) σi (τ) σi1 (τ) ... σiL (τ)∑L
ℓ πℓσiℓ1 σi1 (τ) σi11 ... σi1L

... ... ... ... ...∑L
ℓ πℓσiℓL σiL (τ) σiL1 ... σiLL



.

The main theorem is as follows.

Theorem D3 Let Assumptions ??, 1, and 2 hold. Then:

√
N

(
β̂τ − βτ

ρ̂− ρ

)
d→ N

[
0,∆τΩτ∆

′
τ

]
,

where

∆τ =

(
Aβ (τ) J−1

τ Bβ (τ) Cβ (τ)
Aρ 0 Bρ Cρ

)
,

and:

Ωτ =


 E

[
Πi (τ) ⊙

{
p (Zi; θ)

(
ϕ (Zi)

ιL+1 ⊗Xi

)(
ϕ (Zi)

ιL+1 ⊗Xi

)′
}]

0

0 E [sis
′
i]


 , (D16)

where ⊙ denotes the element-wise (Hadamard) matrix product, and ιL+1 is a (L+ 1)× 1 vector of
ones.

Proof of Theorem D3. As in the proof of Theorem A1, we start with an approximate moment
equation:

L∑

ℓ=1

πℓÊ

[
ϕ (Zi) gi

(
β̂τℓ

, θ̂, ρ̂
)]

= Op

(
1

N

)
.

Expanding around the truth:

L∑

ℓ=1

πℓÊ

[
ϕ (Zi) gi

(
β̂τℓ

, θ̂, ρ̂
)]

≈
L∑

ℓ=1

πℓ

{
Ê [ϕ (Zi) giτℓ

] + J̃τℓ

(
β̂τℓ

− βτℓ

)

−P̃1τℓ

(
θ̂ − θ

)
− P̃2τℓ

(ρ̂− ρ)
}
.

So, by (D10):

Op

(
1

N

)
≈

L∑

ℓ=1

πℓ

{
Ê [ϕ (Zi) giτℓ

] − P̃1τℓ

(
θ̂ − θ

)
− P̃2τℓ

(ρ̂− ρ)

−J̃τℓ

(
J−1

τℓ

[
Ê [Xigiτℓ

] − P1τℓ

(
θ̂ − θ

)
− P2τℓ

(ρ̂− ρ)
])}

.

So:

ρ̂− ρ ≈
[

L∑

ℓ=1

πℓ

(
P̃2τℓ

− J̃τℓ
J−1

τℓ
P2τℓ

)]−1

×

{ L∑

ℓ=1

πℓÊ [ϕ (Zi) giτℓ
] −

L∑

ℓ=1

πℓJ̃τℓ
J−1

τℓ
Ê [Xigiτℓ

]

+

(
L∑

ℓ=1

πℓ

[
P̃1τℓ

− J̃τℓ
J−1

τℓ
P1τℓ

]
H−1

)
Ê [si]

}
.
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Hence:

ρ̂− ρ ≈ Aρ

(
L∑

ℓ=1

πℓÊ [ϕ (Zi) giτℓ
]

)
+BρÊ [Xigi] + CρÊ [si] ,

where Aρ, Bρ, and Cρ are given by (A2)-(D12), and:

Ê [Xigi] =




Ê [Xigiτ1
]

...

Ê [XigiτL
]


 .

Let now τ ∈]0, 1[. Using (D10):

β̂τ − βτ ≈ −J−1
τ

[
Ê [Xigiτ ] − P1τ

(
θ̂ − θ

)
− P2τ (ρ̂− ρ)

]

≈ −J−1
τ

[
Ê [Xigiτ ] + P1τH

−1
Ê [si]

−P2τ

(
Aρ

(
L∑

ℓ=1

πℓÊ [ϕ (Zi) giτℓ
]

)
+BρÊ [Xigi] + CρÊ [si]

)]
.

So:

β̂τ − βτ ≈ Aβ (τ)

(
L∑

ℓ=1

πℓÊ [ϕ (Zi) giτℓ
]

)
− J−1

τ Ê [Xigiτ ]

+Bβ (τ) Ê [Xigi] + Cβ (τ) Ê [si] ,

where Aβ (τ), Bβ (τ), and Cβ (τ) are given by (D13)-(D15).
Next, denote:

ψiτ =




ϕ (Zi)
∑L

ℓ=1 πℓgiτℓ

Xigiτ

Xigiτ1

...

XigiτL

si



.

From the above, we have:

√
N

(
β̂τ − βτ

ρ̂− ρ

)
d→ N [0, Vτ ] ,

with:

Vτ =

(
Aβ (τ) J−1

τ Bβ (τ) Cβ (τ)
Aρ 0 Bρ Cρ

)
E
(
ψiτψ

′
iτ

)( Aβ (τ) J−1
τ Bβ (τ) Cβ (τ)

Aρ 0 Bρ Cρ

)′

.
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Finally, we check that E
(
ψiτψ

′
iτ

)
= Ωτ given by (D16).

E
(
ψi1ψ

′
i1

)
≡ E



(
ϕ (Zi)

L∑

ℓ=1

πℓgiτℓ

)(
ϕ (Zi)

L∑

m=1

πmgiτm

)′



= E


ϕ (Zi)ϕ (Zi)

′
L∑

ℓ,m=1

πℓπmE
(
giτℓ

g′iτm
|Zi

)



=
L∑

ℓ,m=1

πℓπmE
[
(min {Giτℓ

, Giτm} −Giτℓ
Giτm) p (Zi; θ)ϕ (Zi)ϕ (Zi)

′]

=
L∑

ℓ,m=1

πℓπmE
[
σiℓmp (Zi; θ)ϕ (Zi)ϕ (Zi)

′] ,

and similarly:

E

[(
ϕ (Zi)

L∑

ℓ=1

πℓgiτℓ

)
(Xigiτm)′

]
=

L∑

ℓ

πℓE
[
σiℓmp (Zi)ϕ (Zi)X

′
i

]
,

E
[
(Xigiτℓ

) (Xigiτm)′
]

= E
[
σiℓmp (Zi)XiX

′
i

]
,

and, as si ≡ s (Di, Zi): E [giτℓ
s′i] = 0.

Hence the result.

E Frank and generalized Frank copulas

Let us consider the following two-parameter family of copulas, which we call the “generalized
Frank” family for reasons that will be clear below. The copula depends on two parameters γ ≥ 1
and θ ∈]0, 1], and is given by:

C (u, v; γ, θ) =
1

δ

[
1 −

{
1 − 1

γ

[
1 − (1 − δu)θ

] [
1 − (1 − δv)θ

]} 1

θ

]
, (E17)

where δ = 1 − (1 − γ)
1

θ . Joe (1997) refers to (E17) as the “BB8” copula.
It is convenient to introduce the following concordance ordering ≺ on copulas:

C1 ≺ C2 if and only if C1 (u, v) ≤ C2 (u, v) , ∀(u, v).

As ≺ is the first-order stochastic dominance ordering, C1 ≺ C2 unambiguously indicates that C1

induces less correlation than C2. Importantly for interpretation, the concordance of the generalized
Frank copula given by (E17) increases in θ and γ. In particular, θ = 1 or γ → 0 correspond to the
independent copula.

An interesting special case is obtained when θ → ∞, for fixed γ. Then

C (u, v; γ, θ) →
θ→∞

CF (u, v; γ) ,

where:

CF (u, v; γ) =
1

ln (1 − γ)
ln

[
1 − 1

γ
{1 − exp [ln (1 − γ)u]} {1 − exp [ln (1 − γ) v]}

]
. (E18)
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CF given by (E18) is the Frank copula (Frank, 1979), with parameter η = − ln (1 − γ). Here also,
concordance increases with η.

The density of the Frank copula is symmetric with respect to the point
(

1
2 ,

1
2

)
in the (U, V )

space. In comparison, the generalized Frank copula (E17) permits some asymmetries, by allowing
the dependence to increase on the main diagonal. However, the generalized Frank copula treats
symmetrically u and v, so that it is symmetric with respect to the main diagonal.

Taking negative η, the Frank copula exhibits negative dependence. This is important in our
empirical application, as we estimate that U and V are negatively correlated. To allow for negative
dependence in the generalized Frank copula, we simply consider:

C̃ (u, v; γ, θ) = v − C (1 − u, v; γ, θ) ,

which is the copula of (1 − U, V ) where (U, V ) is distributed as CF .2 In addition, by taking instead
the copula of (U, 1 − V ) we obtain:

C̃ (u, v; γ, θ) = u− C (u, 1 − v; γ, θ) .

In this way, we may allow for decreasing dependence along the second diagonal.
Figure ?? pictures various shapes of copula densities that can be obtained using a Frank or

a generalized Frank copula. On the figure, the marginal distributions are standard normal, and
contour plots are shown. The first two rows picture the Frank and Gaussian copula densities for the
same measure of rank (or “Spearman”) correlation. We see that the two densities are symmetric
with respect to the origin, and their shapes are quite similar although the Gaussian is somewhat
“rounder”.

The next two rows show the density of the generalized Frank copula, conveniently rotated in the
plane. We see that the generalized Frank can capture some interesting asymmetries. For example,
in the third row of the figure, there is more dependence on the upper-right quarter of the graph
than on the lower-left quarter. In addition, asymmetries tend to disapppear as θ tends to infinity,
in which case the generalized Frank tends to the original Frank copula.

2This is because:

Pr (1 − U ≤ u, V ≤ v) = Pr (V ≤ v) − Pr (1 − U > u, V ≤ v)

= v − Pr (U < 1 − u, V ≤ v)

= v − C (1 − u, v; γ, θ) .
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