Discussion on "Booms and Busts: Understanding Housing Market Dynamics" by Burnside, Eichenbaum and Rebelo

Veronica Guerrieri

Bank of Portugal, June 2010

What the paper is about

Question:

What drives boom and bust episodes in housing prices, which are both slow and unrelated to observable fundamentals?

3 key ingredients

- · search model of the housing market
- heterogeneous priors about LR fundamentals
- epidemic model of social interactions that determines beliefs' evolution

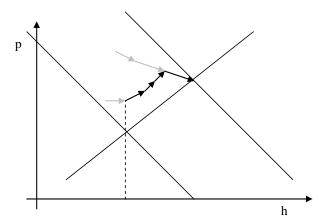
Epidemics

Alternative Models

- sequence of good and bad shocks, BUT observable fundamentals often not enough
- expectations about future changes in fundamentals: adjustment costs

if people expect more demand at time $T\to \text{prices}$ slowly increase and then slowly decrease

Adjustment Costs



Alternative Models (continued)

3. Piazzesi and Schneider (2009): few optimist may generate a big increase in price

search model without epidemic dynamics, BUT no slow boom

Set up

- continuum of measure 1 of agents
- two states: renter (r) or homeowner (h)
- two types: natural homeowners (H) and natural renters (R)
- flow value from owning is ε for H and zero for R
- flow value from renting is zero for everybody
- total amount of owned houses fixed to k

$$h^{H} + h^{R} = k$$
$$r^{H} + r^{R} = 1 - k$$

Type Switching

 agents can switch type according to transition matrix contingent on both type and state

$$\begin{array}{lll} \Pr(H|H,h) &=& 1-\eta \text{ and } \Pr(H|H,r)=1 \\ \Pr(R|H,h) &=& \eta \text{ and } \Pr(R|H,r)=0 \\ \Pr(H|R,h) &=& 0 \text{ and } \Pr(H|R,r)=\alpha \\ \Pr(R|R,h) &=& 1 \text{ and } \Pr(R|R,r)=1-\alpha \end{array}$$

- note: more standard if contingent only on type
- Focus on equilibrium where only h^R sell and r^H buy

Matching and Bargaining

- pairwise meeting according to CRS matching function
- define market tightness $\theta_t = h_t^R/r_t^H$
- $\mu(\theta_t)$ = prob. for a buyer to meet a seller
- $\mu(\theta_t)/\theta_t$ = prob. for a seller to meet a buyer
- price determined with Nash Bargaining
- all bargaining power to sellers

Bellman Equations

renters get 0 surplus from matching and 0 from renting

$$R_t^H = R_t^R = 0$$

value functions for owners:

$$H_{t}^{H} = \varepsilon + \beta \left[\eta H_{t+1}^{R} + (1 - \eta) H_{t+1}^{H} \right]$$

$$H_{t}^{R} = \frac{\mu\left(\theta_{t}\right)}{\theta_{t}} P_{t} + \left(1 - \frac{\mu\left(\theta_{t}\right)}{\theta_{t}}\right) \beta H_{t+1}^{R}$$

equilibrium price:

$$P_t = \beta H_{t+1}^H = f(\varepsilon, \theta_{t+2}, \dots)$$

with f increasing in ε and decreasing in $\theta_{t+2},...$

- renters learn that with prob. $1 a \varepsilon$ will change to $\tilde{\varepsilon}$
- few optimists (O) and the others pessimists (P)
- pessimists think $\tilde{\epsilon}=\epsilon$ and optimists think $\tilde{\epsilon}=\epsilon^*>\epsilon$
- notice: if no optimists, same model as before
- ullet after uncertainty is realized, everybody know true $ilde{arepsilon}$
- before uncertainty is realized, everybody knows ε
- no higher order expectations!

Value Functions

- call x_t the vector of buyers and sellers
- call $H^H(\tilde{\varepsilon}, x_t)$ and $H^R(\tilde{\varepsilon}, x_t)$ the values after $\tilde{\varepsilon}$ is realized
- Bellman value for i = O, P:

$$H_t^{H,i} = \varepsilon + \beta [\eta E_t[H_{t+1}^R|i] + (1-\eta) E_t[H_{t+1}^H|i]]$$

where

$$E_t[H_{t+1}^j|i] = aH_{t+1}^{j,i} + (1-a)E_t[H^j(\tilde{\varepsilon}, x_t)|i]$$

with j = R, H.

Effects on Prices

three possible effects on prices if there are some optimists:

1. direct price effect:

average prices increase because optimists are willing to pay higher prices for higher expected fundamentals

2. speculative effect:

all prices increase because people know optimists are around and willing to pay higher prices

- 3. entry effect: renters of type R may find it optimal to buy
 - for speculative reasons
 - if they are optimists because they may switch to type H

Price Effect

- imagine all optimists are renters of type H
- renters of type R are pessimists and still won't buy
- two equilibrium prices:

$$P_t^{H,O} = \beta H_{t+1}^{H,O} > \beta H_{t+1}^{H,P} = P_t^{H,P}$$

expected price for sellers is higher

$$P_{t} = \frac{r^{H,O}P_{t}^{H,O} + r^{H,P}P_{t}^{H,P}}{r^{H,O} + r^{H,P}}$$

BUT matching probabilities unchanged

$$\theta_t = \frac{h^R}{r^{H,O} + r^{H,P}} = \frac{h^R}{r^H}$$

Entry Effect

- imagine all optimists are renters of type R who also buy
- two equilibrium prices depending on buyer's priors

$$P_t^{R,O} = \beta H_{t+1}^{R,O}$$
 and $P_t^{H,P} = \beta H_{t+1}^{H,P}$

expected price for sellers

$$P_{t} = \frac{r^{R,O}P_{t}^{R,O} + r^{H,P}P_{t}^{H,P}}{r^{R,O} + r^{H,P}}$$

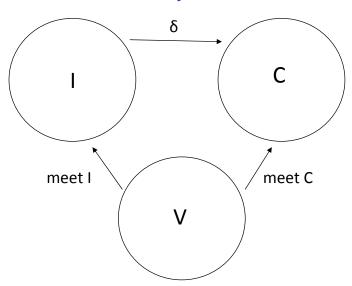
now more buyers → matching prob. change

$$\theta_t = \frac{h^R}{r^{R,O} + r^{H,P}} > \frac{h^R}{r^H}$$

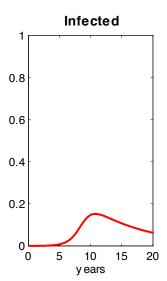
 positive feedback effect on prices that is long-lasting (buvers dynamics)!

- renters learn that with prob. 1 a, ε will change to $\tilde{\varepsilon}$
- there are three types of renters:
 - 1. **infected**: believe $E(\tilde{\varepsilon}) > \varepsilon$ and low entropy
 - 2. **vulnerable**: believe $E(\tilde{\varepsilon}) = \varepsilon$ and high entropy
 - 3. **cured**: believe $E(\tilde{\varepsilon}) = \varepsilon$ and low entropy
- renters now meet bilaterally and can switch type unexpectedly
- high entropy agents switch to low entropy type met

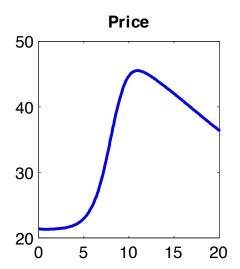
Social Dynamics



Search



Price Dynamics



What Behind Price Dynamics?

- The simulated paths of prices and infected guys are very similar
- Is it mainly driven by the direct price effect?
- Or the speculative effect and the entry effects may be quantitatively relevant?
- Both for levels and for propagation...

Asymmetric Belief Distribution and Humps

- try more Bayesian exercise
- population with beliefs about binary random variable X
- $E[X] = \pi$, but agents uncertain on π
- agent i has seen n_i signals, of which s_i good

$$E_i[X] = \frac{s_i}{n_i}$$

when two agents meet both update to

$$\frac{s_i + s_j}{n_i + n_j}$$

- each period they receive exogenous signals (2^t)
- start with 5% have 9/10 and 95% have 1/2

Belief Dynamics

