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ABSTRACT. This paper studies a macroeconomic model in which financial experts borrow 

from less productive agents. We pursue four sets of results: (i) The economy is prone to 

instability and occasionally enters volatile episodes. As volatility spikes agents 

precautionary motive increases depressing prices even further. Log-linear approximations 

fail to capture these non-linear effects that can cause economies to be significantly 

depressed for long periods of time. (ii) Endogenous risk during volatile episodes 

increases asset price correlations.  (iii) Financial experts impose a negative externality on 

each other and on the labor sector by not maintaining adequate capital cushion, and 

funding structure.  (iv) While risk sharing within the financial sector (through 

securitization and derivatives contracts) reduces many inefficiencies, it can also amlify 

systemic risks.   
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1. Introduction 

Many standard macroeconomic models are based on identical households that invest 

directly without financial intermediaries.  This representative agent approach can only 

yield realistic macroeconomic predictions if, in reality, there are no frictions in the 

financial sector.  Yet, following the Great Depression, economists such as Fisher (1933), 

Keynes (1936) and Minsky (1986) have attributed the economic downturn to the failure 

of financial markets.  The current financial crisis has underscored once again the 

importance of the financial sector for the business cycles.   

 

Central ideas to modeling financial frictions include heterogeneous agents and leverage.  

One class of agents - let us call them experts - have superior ability or greater willingness 

to manage and invest in productive assets.  Because experts have limited net worth, they 

end up borrowing from the second class of agents - let us call them households - who are 

less skilled at managing or less willing to hold productive assets.   

 

Existing literature uncovers two important properties of these models, persistence and 

amplification.  Persistence is related to the wealth distribution between the two types of 

agents: low net worth of experts in a given period results in depressed economic activity, 

and low net worth of experts in the next period.  The causes of amplification are leverage 

and the feedback effect of prices.  Through leverage, expert net worth absorbs a 

magnified effect of each shock, such as new information about the potential future 

earning power of current investments.  When the shock is aggregate, affecting many 

experts at once, it results in decreased demand for assets and a drop in asset prices, 

further lowering the net worth of experts, further feeding back into prices, and so on.  

Thus, each shock passes through this infinite amplification loop, and asset price volatility 

created through this mechanism is sometimes referred to as endogenous risk.  Bernanke, 

Gertler and Gilchrist (1999) and Kiyotaki and Moore (1997) build a macro model with 

these effects, and study linearized system dynamics around the steady state.   

 

In this paper, we emphasize the feedback between volatility dynamics and precautionary 

hoarding motive.  As volatility increases experts are increasingly concerned about hitting 

the funding constraint in the future, leading to depressed prices. The precautionary effects 

add to the prevalent loss spiral: an initial shock erodes net worth of leveraged expert 

investors leading to lower prices and even further losses. We build a model to study full 

equilibrium dynamics, not just near the steady state, and argue that steady-state analysis 

misses important effects.  Specifically, while the system is characterized by relative 

stability, low volatility and reasonable growth for the most part, occasional large losses 

can plunge the system into a regime with high volatility.  These crises episodes are highly 

nonlinear, and strong amplifying feedback loops during these incidents may take the 

system way below the steady state, resulting in significant inefficiencies, disinvestment, 

and slow recovery.  Interestingly, the stationary distribution is double-humped shaped 

suggesting that (without government intervention) the dynamical system spends a 

significant amount of time in the crisis state once thrown there. 
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The amplification of shocks through prices is much milder near the steady state than 

below the steady state in our model because experts choose their capital cushions 

endogenously.  In the normal regime, experts choose their capital ratios to be able to 

withstand reasonable losses.  Excess profits are paid out (as bonuses, dividends, etc) and 

mild losses are absorbed by reduced payouts to raise capital cushions to a desired level.  

Thus, normally experts are fairly unconstrained and are able to absorb moderate shocks to 

net worth easily, without a significant effect on their demand for assets and market prices.  

However, in response to more significant losses, experts choose to reduce their positions, 

affecting asset prices and triggering amplification loops.  The stronger asset prices react 

to shocks to the net worth of experts, the stronger the feedback effect that causes further 

drops in net worth, due to depressed prices.  Thus, it follows that below the steady state, 

when experts feel more constrained, the system becomes less stable as the volatility 

shoots up.   

 

While original shocks affect the values of individual assets held by experts, feedback 

effects affect the prices of all assets held by experts.  As a result, endogenous risk and 

excess volatility created through the amplification loop makes asset prices significantly 

more correlated cross-sectionally in crises than in normal times.  

 

There are externalities - generally experts lever up too much funded with short-term debt 

by taking on too much risk and by paying out funds too early.  Experts impose an 

externality on the labor sector since when choosing their leverage they do not take fully 

into account the costs of adverse economic conditions that result in crises.  Also, there are 

„firesale‟ externalities within the financial sector when households can provide a limited 

liquidity cushion by absorbing some of the assets in times of crises.  When levering up, 

experts do not take into account that they hurt other experts‟ ability to sell to households 

in times of crises.  On top of it, low fire-sale prices also lower the fraction of outside 

equity financial experts can raise from households in times of crisis.  Put together, this 

can also lead to overcapacity.  

 

Finally, we study the effects of securitization and financial innovation.  Securitization of 

home loans into mortgage-backed securities allows institutions that originate loans to 

unload some of the risks to other institutions.  More generally, institutions can share risks 

through contracts like credit-default swaps, through integration of commercial banks and 

investment banks, and through more complex intermediation chains (e.g. see Shin 

(2010)).  To study the effects of these risk-sharing mechanisms on equilibrium, we add 

idiosyncratic shocks to our model.  We find that when expert can hedge idiosyncratic 

shocks among each other, they become less financially constrained and take on more 

leverage, making the system less stable.  Thus, while securitization is in principle a good 

thing - it reduces the costs of idiosyncratic shocks and thus interest rate spreads - it ends 

up amplifying systemic risks in equilibrium.    

 

Literature review.  Financial crises are common in history - having occurred at roughly 

10-year intervals in Western Europe over the past four centuries, according Kindleberger 

(1993).  Crises have become less frequent with the introduction of central banks and 
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regulations that include deposit insurance and capital requirements (see Allen and Gale 

(2009) and Cooper (2008)).  Yet, the stability of the financial system has been brought 

into the spotlight again by the events of the current crises, see Brunnermeier (2009). 

 

The existence of the financial system is premised on the heterogeneity of agents in the 

economy – lenders and borrowers.  In Bernanke and Gertler (1989), entrepreneurs have 

special skill and borrow to produce. In Kiyotaki (1998), more productive agents lever up 

by borrowing from the less productive ones, in Geanakoplos (2003) more optimistic and 

in Garleanu and Pedersen (2009) less risk-averse investors lever up.  Intermediaries can 

facilitate lending – for example Diamond (1984) shows how intermediaries reduce the 

cost of borrowing.  Holmström and Tirole (1997, 1998) also propose a model where both 

where both intermediaries and firms are financially constrained.  Philippon (2008) looks 

at the financial system plays in helping young firms with low cash flows get funds to 

invest.  In these models, financial intermediaries are also levered.   

 

Leverage leads to amplification of shocks, and prices can play an important role in this 

process.  Negative shocks erode borrowers‟ wealth, and impair their ability to perform 

their functions of production or intermediation.  Literature presents different 

manifestations of how this happens.  Shleifer and Vishny (1992) argue that when physical 

collateral is liquidated, its price is depressed since natural buyers, who are typically in the 

same industry, are likely to be also constrained.  Brunnermeier and Pedersen (2009) study 

liquidity spirals, where shocks to institutions net worth lead to binding margin constraints 

and fire sales. The resulting increase in volatility brings about a spike in margins and 

haircuts forcing financial intermediaries to delever further.  Maturity mismatch between 

the assets that borrowers hold and liabilities can lead to runs, such as the bank runs in 

Diamond and Dybvig (1983), or more general runs on non-financial firms in He and 

Xiong (2009).  Allen and Gale (2000) and Zawadowski (2009) look at network effects 

and contagion.  In Shleifer and Vishny (2009) banks are unstable since they operate in a 

market influenced by investor sentiment.  

 

These phenomena are important in a macroeconomic context – and many papers have 

studied the amplification of shocks through the financial sector near the steady state, 

using log-linearization.  Prominent examples include Bernanke, Gertler and Gilchrist 

(1999), Carlstrom and Fuerst (1997) and Kiyotaki and Moore (1997) and (2007).  More 

recently, Christiano, Eichenbaum and Evans (2005), Christiano, Motto and Rostagno 

(2005, 2007), Cordia and Woodford (2009), Gertler and Karadi (2009) and Gertler and 

Kiyotaki (2009) have studied related questions, including the impact of monetary policy 

on financial frictions.   

 

We argue that the financial system exhibits the types of instabilities that cannot be 

adequately studied by steady-state analysis, and use the recursive approach to solve for 

full equilibrium dynamics.  Our solution builds upon recursive macroeconomics, see 

Stokey and Lucas (1989) and Ljungqvist and Sargent (2004).  We adapt this approach to 

study the financial system, and enhance tractability by using continuous-time methods, 

see Sannikov (2008) and DeMarzo and Sannikov (2006). 
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A few other papers that do not log-linearize include He and Krishnamurthy (2008 and 

2009) and Mendoza (2010).  Perhaps most closely related to our model, He and 

Krishnamurthy (2008) also model experts, but assume that only experts can hold risky 

assets.  They derive many interesting asset pricing implications and link them to risk 

aversion.  In contrast to He and Krishnamurthy (2008) we focus on the risk-neutral case 

and look at not only individual asset prices, but also in cross-section.  We also study 

system dynamics through its stationary distribution, and analyze externalities and the 

effects of securitization. 

 

Our result that pecuniary externalities lead to socially inefficient excessive borrowing, 

leverage and volatility can be related to Bhattacharya and Gale (1987) in which 

externalities arise in the interbank market and to Caballero and Krishnamurthy (2004) 

which study externalities an international open economy framework. On a more abstract 

level these effects can be traced back to inefficiency results within an incomplete markets 

general equilibrium setting, see e.g. Stiglitz (1982) and Geanakoplos and Polemarchakis 

(1986). In Lorenzoni (2007) and Jeanne and Korinek (2009) funding constraints depend 

on prices that each individual investor takes as given. Adrian and Brunnermeier (2008) 

provide a systemic risk measure and argue that financial regulation should focus on these 

externalities.  

 

We build our analysis around a basic model, which we present in Section 2.  The basic 

model has only two types of agents - borrowers and lenders - and it is purposefully 

designed to have no externalities.  We solve the basic model and illustrate how full 

equilibrium dynamics differs from steady-state dynamics.  In Subsection 2.2 we 

microfound the capital structure. Subsection 2.3 takes a detour to show how the basic 

model fits within a broader framework, which includes the chain of intermediation. 

Subsection 2.4 is devoted to asset pricing implications. We study externalities in Section 

3, and the effects of securitization in Section 4.  

 

2. The Model 

We follow a modular design principle. We start with a fairly simple framework and add 

new modeling elements and endogenize assumptions as we go along.  

 

2.1 The Baseline Model 

 

Model setup.   We consider an economy populated by households and financial experts 

(who in the later part of the paper pass their funds on to more productive households).  

Since, experts are better at managing capital, they find it profitable to invest in projects, 

such as productive firms, entrepreneurial ventures, home loans, etc.  This investment may 

be in form of an equity or risky debt stake, or in form of a derivative contract that allows 

the firm to manage risk more efficiently. 

 

We assume that experts and households are risk-neutral.  Households discount rate is r, 

while experts own discount rate is  > r.  We are imagining a story in which households 
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hold money to ensure themselves against future shocks (large purchases, accidents, etc).  

Because of the option value of holding money, households are willing to lend it to experts 

(banks) at rate r, which is lower than their discount rate.
1
  

 

Physical capital kt produces output at rate 

 

yt = a kt. 

 

where a is a parameter.   

 

Experts can create new capital through internal investment it.  When held by an expert, 

capital stock kt evolves according to  

 

dkt = (Φ(it/kt) – δ) kt dt +  kt dZt 

 

where the function Φ(it/kt) reflects (dis)investment costs. A higher internal investment 

rate, it, increases the capital stock. We assume that the function Φ(.) is concave reflecting 

the fact that the marginal impact of internal investment on capital is decreasing. 

Similarly, disinvestment lowers the capital stock. Due to “technological illiquidity” large 

scale disinvestments are less effective. We assume that Φ(0) = 0, so in the absence of 

new investment capital depreciates at rate  when managed by experts. Households are 

less productive and do not have an internal investment technology.  Also, when managed 

by households, capital depreciates at a faster rate 



  .  The law of motion of kt when 

managed by households is   

 

dkt = - 



  kt dt +  kt dZt. 
 

Capital is also subject to exogenous aggregate Brownian shocks Zt, which reflect the fact 

that one learns over time how “effective” the capital stock is.
2
 Note that kt reflects the 

“efficiency units” of capital, measured in output rather than in simple units of physical 

capital (number of machines). Hence, dZt also captures changes in expectations about the 

future productivity of capital. In this sense our model is also linked to the literature on 

connects news to business cycles.  

 

There is a market for physical capital, in which experts can buy and sell capital among 

each other, and sell it to households.  Denote the market price of capital, which is 

determined endogenously in our model, by pt, and its law of motion by  

 

dpt = t
p
 pt dt + t

p
 pt dZt. 

 

Note that pt follows a diffusion process without loss of generality. Since the option to sell 

                                                 
1 Of course, in a model with money rate r will depend on the banks‟ demand for deposits and the point in 

the economic cycle.  We ignore these effects in our model.  
2 Alternatively, one can also assume that the economy experiences aggregate TFP shocks at. However, in 

order to preserve the tractable scale invariance property one has to assume that at-shocks are persistent and 

modify Φ(.) to Φ(it/yt). 
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capital to households is always there, the Gordon growth formula tells us that in 

equilibrium pt  ),/(  rap  the households‟ valuation of capital.  Initially we assume 

that if households buy capital from experts, they cannot speculate and resell back the 

capital to the more productive experts.  

 

Experts’ balance sheets.  An essential ingredient of our model is that any expert who 

manages capital kt must absorb at least a fraction of risk that affects the value of the 

capital.  The total risk can be divided into exogenous risk from Brownian shocks that 

affect kt directly and endogenous risk that affects pt, the market valuation of kt.   

 

Under the simplest framework that delivers all the main results, experts hold capital on 

the asset side of their balance sheet and issue short-term debt, which is risk-free for one 

instant, and outside equity, as shown in Figure 1. Experts can only offload a fraction (1-

α) of the total risk. Note that cash flows to outside investors can be split arbitrarily 

between debt and equity-holders, by Modigliani and Miller (1958).  We choose a 

particular capital structure that makes debt risk-free, because it simplifies exposition.   

 

 
 

Figure 1.  Expert balance sheet with inside and outside equity. 

 

In Section 3 we justify balance sheets as an outcome of contracting, subject to 

informational problems.  In addition, we fully model the intermediary sector that 

monitors and lends to more productive households. 

 

The dynamic evolution of balance sheets.  The experts‟ decisions how much to lever up 

depend not just on the current price level and individual expert‟s net worth, but also on 

the whole future law of motion of prices.  That is, experts have to choose dynamic trading 

strategies to maximize their payoffs. There is a trade-off that greater leverage leads to 

both higher profit and greater risk.  Greater risk means that experts will suffer greater 

losses exactly in the events when they value funds the most - after negative shocks when 

prices become depressed and profitable opportunities arise.  The subsequent analysis 

shows how this trade-off leads to an equilibrium choice of leverage.  

 

Note that experts do not fully exploit their debt capacity since they are concerned whether 
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they can rollover their debt in the future and ultimately have to fire-sale their assets.  The 

experts‟ demand for capital and the aggregate amount of capital available in the economy 

together determine the spot price of capital pt, through the market-clearing condition.  

The experts‟ willingness to hold capital depends on their net worth.  Thus, exogenous 

shocks Zt feed into prices through their effect on the experts‟ net worth.   

 

The rate of profit and risk from holding capital can be quantified from the laws of motion 

of kt and pt.  Using Ito‟s lemma, without any sales or purchases of new capital the value 

of the assets on the balance sheet evolves according to  

 

d(ktpt) = (Φ(it/kt) – δ + t
p
 + t

p
) (ktpt) dt + ( + t

p
) (ktpt) dZt. 

 

The asset side of experts balance sheet increases with investment it by Φ(it/kt) minus 

depreciation δ and average price increase reflected by t
p
. The term, t

p
, is due to Ito‟s 

lemma and reflects the positive covariance between the Zt-shock to capital and price 

volatility.
3
 The equation also has two risk terms.  Exogenous risk (ktpt)  dZt comes from 

shocks dZt that directly affect kt.  In contrast, endogenous risk stems from the market 

valuation of capital pt, which depends on the experts‟ willingness to hold assets and their 

net worth‟s.  We will see how the level of endogenous risk in equilibrium depends on 

feedback effects within the financial sector and the experts‟ constraints.  In turn a high 

level of endogenous risk can lead to greater precautionary motive, as experts hoard more 

cash in volatile time waiting to pick up the assets at low prices at the bottom. 

 

In addition output akt net of investment it can be used to pay off debt.  Before payouts to 

equity holders, debt evolves according to  

 

ddt = (r dt + it - a kt) dt, 

 

where cash outflows like interest payment r dt and internal investment costs increase debt 

level, while a kt is output, it reduce debt level. As a result, the value of equity et = ptkt - dt 

changes according to  

 

det = r et dt + a kt dt - it dt + (ktpt) [(Φ(it/kt) – δ + t
p
 + t

p
 - r) dt + ( + t

p
) dZt]. 

 

While the risk is shared proportionately between inside and outside equity holders, the 

expected return is not the same.  Outside equity holders require an expected return of r on 

their investment of et
o
 = (1 - ) et, so the value of outside equity evolves as  

 

det
o
 = r (1 - ) et dt + (ktpt) (1 - ) ( + t

p
) dZt.  

 

The expert receives everything that is left after debt holders and outside equity holders 

are paid off.  The expert‟s net worth nt = ptkt - dt - et
o
 changes according to 

 

dnt = r nt dt + a kt dt - it dt + (ktpt) [(Φ(it/kt) – δ + t
p
 + t

p
 - r) dt + ( + t

p
) dZt]. 

                                                 
3 The version of Ito‟s lemma we use is the product rule d(XtYt) = dXt Yt + Xt dYt + X Y dt. 
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In addition, experts may consume their net worth (e.g. by paying out bonuses).  When 

this happens, the expert‟s net worth decreases by the amount of payout dct.   

 

Equilibrium.  Our strategy for solving for the equilibrium is to combine the experts‟ 

dynamic optimization problems (expressed via Bellman equations) with the market 

clearing conditions.  Among the choices experts make, the amount of internal investment 

it is a static choice: it is optimal to maximize 

 

kt pt Φ(it/kt) - it.  

 

The first-order condition is pt Φ(it/kt) = 1 (marginal Tobin‟s q) implies that the optimal 

level of investment and the resulting growth rate of capital are functions of the price, i.e.  

 

it/kt = (pt)   and   Φ(it/kt) -  = g(pt). 

 

Investment it = (pt) kt maximizes the drift of nt and has no effect on the volatility of nt for 

any amount of capital kt. 

 

In contrast, expert choices of the amount of capital to hold kt and the amount to consume 

dct are dynamic.  A condition for the optimality of these choices can be expressed in 

terms of the experts‟ value functions, which summarize how the experts‟ continuation 

values depend on their wealth.  The following lemma shows that expert value functions 

are proportionate to their wealth, because of the assumption that experts are atomistic and 

act competitively. 

 

Lemma 1.  There exists a process ft such that the value function of any expert with net 

worth nt is of the form ft nt. 

 

Proof.  Consider two experts 1 and 2 with net worth‟s nt
1
 and nt

2
.  Denote by ut

1
 and ut

2
 

the maximal expected utilities that these experts can get in equilibrium from time t 

onwards.  We need to show that ut
1
/nt

1
 = ut

2
/nt

2
.  Suppose not, e.g. ut

1
/nt

1
 > ut

2
/nt

2
.  Denote 

by {ks, dcs, s  t} the optimal dynamic trading and consumption strategy of expert 1, 

which attains utility ut
1
, i.e.  

 

  



ut

1  Et e(st )dcts

t












. 

Because the strategy is feasible, the process    

 

dns
1
 = r ns

1
 dt + a ks dt - (ps) ks dt + (ks ps) [(g(ps) + s

p
 + s

p
 - r) dt + ( + s

p
) dZs] - dcs 

 

stays nonnegative.  Let  = nt
2
/nt

1
, and consider the strategy {ks, dcs, s  t} of expert 2. 

This strategy is also feasible, because it leads to the non-negative wealth process nt
2
 = 

nt
1
, and it delivers the expected utility of ut

1
 to player 2.  Thus, ut

2
  ut

1
, leading to a 

contradiction.   
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Therefore, for all experts their expected utility under the optimal trading strategy is 

proportional to wealth.  It follows that ft = ut
1
/nt

1
 = ut

2
/nt

2
.   QED 

 

 

In equilibrium ft depends on the market conditions: current asset prices and price 

dynamics.  Denote the law of motion of ft by  

 

dft = t
f
 dt + t

f
 dZt. 

 

When taking positions, experts take into account expected profit and losses, as well as the 

values of ft in states where profit and losses are realized.  They are willing to pay price xt 

an asset that pays xt+s at time t+s, such that 

 

ft xt = Et [e
-s

 ft+s xt+s], 

 

since the value of a dollar of net worth at time t is ft and at time t+s, ft+s.  Thus, e
-t

 ft+s is 

the stochastic discount factor with which experts evaluate their investment opportunities 

at time t.  It should price any asset on the experts‟ balance sheets, and determine the 

optimal amount of investment in case of diminishing returns to scale from holding an 

asset (as it is the case in Section 4).  Also, experts should consume, converting a dollar of 

net worth into a dollar of utility, only when ft = 1.  The following lemma formalizes this 

logic, and characterizes the optimal strategy of any expert.   

 

 

Lemma 2.  Consider the process  

 

  



Ft  esdcs

0

t

  etnt f t .

 
Under the optimal strategy {kt, ct} of an expert with net worth nt, Ft is a martingale.  

Under any arbitrary strategy, Ft is a supermartingale. 

 

 

Proof.  The maximal payoff that an expert can obtain at time t is   

 

  



nt ft  Et e(s't )dcs'

t

ts

  esnts f ts









,

 

with equality if the agent follows an optimal strategy between time t and t + s, since nt+s 

ft+s is the maximal payoff that the agent can attain from time t + s onwards.  Therefore,  
 

  



Ft  esdcs

0

t

  etnt f t  Et es'dcs'

0

ts

  e(ts)nts f ts









 Et Fts ,

 

with equality if the agent follows the optimal strategy.  QED
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To draw a useful corollary from Lemma 2, let us differentiate Ft with respect to time t, 

and study the drift of Ft: 

 

  



dFt  et (dct nt ft  dnt f t  ntdf t (kt pt )(  t

p) t

f dt)

  

  



dFt

et
 dct (1 f t ) (  r)nt f tdt  kt (a ( pt ))dt 

(kt pt )[(g( pt ) t

p  t

p  r)dt (  t

p)dZt ] f t  ntdf t  t

f(kt pt )(  t

p)dt . 

 

The optimal strategy {dct, kt} maximizes the drift of Ft, and the maximal drift equals zero 

by Lemma 2. 

 
Proposition 1.  In equilibrium  

 

(a) ft  1 at all times, and experts consume only when ft = 1.  If ever ft were less 

than 1, the drift of Ft could be made arbitrarily large by choosing large dct 

(b) the first-order condition with respect to kt must hold for the market-clearing 

value of kt, which satisfies t = nt/kt.  Differentiating the drift of ft with respect 

to kt, we obtain
4
 

0)()(
)(


 p

t

t

f

tp

t

p

tt

t

t

f
rpg

p

pa







  (*)

 

 

(c) By setting the drift of Ft to zero and using the first-order condition with 

respect to kt, we find that the drift of ft satisfies  

 

  



t

f  (r) ft

     (**)

 

 

Proof.  This proposition is a direct corollary of Lemma 2.   

 

 

Can we characterize equilibrium prices pt and value functions ft from equations (*) and 

(**)?  In our economy, the key state variables are the aggregate expert net worth Nt 

across all expert of unit mass and the aggregate amount of capital Kt in the economy.  

Because everything is proportionate with respect to Kt, we get scale invariance and the 

key state variable is the ratio 

 

t = Nt/Kt. 

 

                                                 
4 Note that in our baseline model, if the first-order condition holds at the market-clearing value of kt, then it 

holds for all kt by linearity. This is not the case in a more general version of the model with idiosyncratic 

shocks ,which we study in Section 6. 
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Thus, in a Markov equilibrium
5
 in our economy pt and ft are functions of t, so  

 

pt = p(t) and ft = f(t). 

 

From this point onwards, our strategy for characterizing the equilibrium is 

straightforward: we plug functions p(t) and f(t) into equations (*) and (**), and 

through multiple mechanical applications of Ito‟s lemma derive differential equations that 

functions p and f must satisfy.   Lemma 3 derives the law of motion of t = Nt/Kt from 

the equations for dNt and dKt.   

 

Lemma 3.  The equilibrium law of motion of t is  

 

dt = (r - g(pt) + 
2
) (t - pt) dt + (a - ι(pt) + t

p
 pt) dt + ( ( + t

p
)

 
pt - t) dZt - dt, 

 

where dt = dCt/Kt and dCt is aggregate payout to experts. 

 

Proof.  Aggregating over all experts, the law of motion of Nt is  

 

dNt = r Nt dt + Kt [ (a - ι(pt) + (g + t
p 
+ t

p
 - r) pt) dt +  ( + t

p
) pt  dZt] - dCt, 

 

where Ct is are aggregate payouts, and the law of motion of Kt is 

 

dKt = g(pt) Kt dt +  Kt dZt. 

 

Combining the two equations, and using Ito‟s lemma, we get a desired expression for t. 

QED 

 

 

Proposition 2 uses Ito‟s lemma to derive t
p
, t

f
, t

p
, and t

f
, and plugs them into 

equations (*) and (**) to back out the differential equations for p() and f(). 

 

 

Proposition 2. The equilibrium domain of functions p() and f() is an interval [0, 
*
].  

For   [0, 
*
], these functions can be computed from the differential equations  

 

  



p' '() 
2[ ptt

p  ((r  g( pt )
2)( pt ) a ( pt ) ptt

p) p'()]

( t

 )2

 

 

  



f ' '() 
2[(  r) f t  ((r  g( pt )

2)( pt ) a ( pt ) ptt

p) f '()]

( t

 )2
 

 

where pt = p(t), ft = f(t) 

                                                 
5 We also prove that the equilibrium in our baseline model is unique and Markov without imposing Markov 

structure a priori - see Corollary to Proposition 5.  
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

t

p  
a ( pt )

pt

 g( pt ) t

p  r 
 t

f

f ()
(  t

p)








,

 

 

  



 t

 
(pt )

1p'()
,

     



 t

p 
p'()(pt )

pt (1p'())
,    and

   



 t

f 
f '()(pt )

1p'()
.

 
 

Function p() is increasing, f() is decreasing, and the boundary conditions are  

 

p(0) = p,  f(
*
) = 1,  p(

*
) = 0,  f(

*
) = 0 and lim0 f() = . 

 

Proof.  First, we derive expressions for the volatilities of t, pt and ft.  Using the law of 

motion of t from Lemma 3 and Ito‟s lemma, the volatility of pt is given by 

 

pt t
p 
= p() ( ( + t

p
)

 
pt - t)   

  



 t

p pt 
p'()(pt )

(1p'())
.

 
The expressions for t


 and t

f
 follow immediately from Ito‟s lemma. 

 

The expression for t
p
 follows directly from the first order condition with respect to kt in 

Proposition 1.  The differential equation for p() follows from the law of motion of t 

again and Ito‟s lemma: the drift of pt is given by  

 

t
p
 pt = p(t) [(r - g(pt) + 

2
) (t - pt) + (a - ι(pt) + t

p
 pt)] + ½ (t


)

2
 p(t). 

 

Also,   



t

f  (  r) f t  and similarly Ito‟s lemma implies that  

 

f(t) [(r - g(pt) + 
2
) (t - pt) + (a - ι(pt) + t

p
 pt)] + ½ (t


)

2
 f(t) = ( - r) f(t). 

 

Finally, let us justify the five boundary conditions.  First, because in the event that t 

drops to 0 experts are pushed to the solvency constraint and must liquidate any capital 

holdings to households, we have p(0) = p.  Second, because 
*
 is defined as the point 

where experts consume, expert optimization implies that f(
*
) = 1 (see Proposition 1).  

Third and fourth, p(
*
) = 0 and f(

*
) = 0 are the standard boundary condition at a 

reflecting boundary.  If one of these conditions were violated, e.g. if p(
*
) < 0, then any 

expert holding capital when t = 
*
 would suffer losses at an infinite expected rate.

6
  

Likewise, if f(
*
) < 0, then the drift of f(t) would be infinite at the moment when t = 


*
, contradicting Proposition 1.  Fifth, if t ever reaches 0, it becomes absorbed there.  If 

                                                 
6 To see intuition behind this result, if t = * then t+ is approximately distributed as * - , where  is 

the absolute value of a normal random variable with mean 0 and variance (t
)2 .  As a result, t+ ~ * - 

t
 sqrt(), so p(t+) = p(*) - p(*) t

 sqrt().  Thus, the loss per unit of time  is p(*) t
 sqrt(), and 

the average rate of loss is p(*) t
 /sqrt()   as   0. 
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any expert had an infinitesimal amount of capital at that point, he would face a permanent 

price of capital of p.  At this price, he is able to generate the return on capital of  

 

  



a ( p)

p
 g( p)  r

 

without leverage, and arbitrarily high return with leverage.  In particular, with high 

enough leverage this expert can generate a return that exceeds his rate of time preference 

, and since he is risk-neutral, he can attain infinite utility.  It follows that f(0) = . 

 

Finally, note that we have five boundary conditions required to solve a system of two 

second-order ordinary differential equations with an unknown boundary 
*
.  QED 

 

 

For completeness, we show that the equilibrium characterized in Lemma 3 is unique not 

only among equilibria that are Markov in t but among all competitive rational 

expectations equilibria. 

 

Proposition 2.  Our economy has a unique equilibrium, which is described by 

Proposition 1. 

 

We defer the proof until Section 3 - this proposition is a corollary of Proposition 5. 

 

Figure 2 shows an example, in which we computed functions f() and p() numerically.  

We set r = 5%, ρ = 6%,  = 2%,  = 5%, p = 10, a = 1, and  = 0.2 and assume an 

investment function Φ(.) such that the cost of generating growth g is   

 

p (g + ) – 0.1(r – g)
1/2

 + 0.1(r + )
1/2

. 

 

Note the investment cost is 0 when the capital depreciates at rate  (i.e. g = -), and it is 

possible to recover at least p units of output per unit of capital as capital is liquidated at 

the infinite rate (i.e. g = -). 

 

As expected, asset prices p(t) increase when experts have more net worth.  At the same 

time, experts get more value per dollar of net worth when prices are depressed and they 

can buy assets cheaply, so function f(t) is decreasing.  
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Figure 2. The marginal component of experts‟ value function and the price of capital as 

functions of .  

 

Equilibrium Dynamics.  Since f() is a decreasing function with f(
*
) = 1, experts are 

consuming only when t = 
*
.  Thus the equilibrium law of motion of t is given by  

 

dt = (r - g(pt) + 
2
) t dt + (a - ι(pt) - (r - g(pt) + 

2
)pt + t

p
) dt + ( ( + t

p
) pt - t) dZt 

 

on [0, 
*
), and it is characterized by a reflecting boundary at 

*
, which is caused by the 

aggregate consumption/payouts. 

 

To get a better sense of equilibrium dynamics, Figure 3 shows the drift and volatility of t 

for our computed example.  We see that the drift is positive for all t < 
*
, as experts earn 

interest on their funds and make profit in expectation from their risky investments.  The 

expected rate of profit per unit of net worth is particularly high for low t.  Since 
*
 is a 

reflecting boundary, it is the point of attraction of the system since in expectation the 

system gravitates towards 
*
.  Point 

*
 is analogous to the steady state in traditional 

macro models, such as BGG and KM.  Of course, while in expectation the system always 

moves towards 
*
 due to drift, it may be shocked away from 

*
 due to volatility.   

 

 

Figure 3.  The drift and volatility of  in equilibrium. 
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While the drift dynamics of the system is stabilizing, volatility dynamics exhibits salient 

instabilities.  From Figure 4 we see that volatility is -shaped.  In particular, near 
*
 

volatility is quite low, but below 
*
 volatility becomes much higher.  We need to discuss 

(1) what determines the volatility, (2) what are the implications of the shape of the 

volatility function on equilibrium dynamics and (3) how equilibrium dynamics predicted 

by our model are different from the dynamics under log-linearized solutions of BGG and 

KM.   

 

Volatility is determined by fundamental shocks (i.e. exogenous risk), and the degree to 

which they are amplified within the system (i.e. endogenous risk).  Endogenous risk is 

measured by the volatility if the valuation process pt.  From Lemma 3, the volatilities of 

t and pt are given by  

 

    



 t

 
(pt t )

pt (1p'(t ))
      and

     



 t

p 
p'(t )(pt t )

pt (1p'(t ))
     (***).

 

 

These expressions can be understood through the cycle of amplification, shown in Figure 

4.  An exogenous shock of dZt changes Kt by dKt =  Kt dZt, and has an immediate effect 

on the net worth of experts of the size dNt =  pt  Kt dZt.  The immediate effect is that 

the ratio t of net worth to total capital changes by  ( pt - t) dZt, since
7
  

 

d(Nt/Kt) = (dNt Kt - Nt dKt)/Kt
2
 =  ( pt - t) dZt. 

 

Note that pt/t is the leverage ratio (total assets to total equity), and when pt is larger 

compared to t, shocks get magnified through leverage.  However, there is another effect 

- the feedback effect through prices.  When t drops by  ( pt - t) dZt, price pt drops by 

p(t)  ( pt - t) dZt, leading to further deterioration of the net worth of experts, which 

feeds back into prices, and so on.  Figure 5 illustrates this self-reinforcing feedback loop. 

 

                                                 
7 In this thought experiment, we consider how a shock to capital translates into t at a single instant of time, 

and therefore we ignore the effects of the drift.  
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Figure 4:  The cycle of amplification. 

 

The strength of the feedback effect is measured by the reaction of prices to the net worth 

of experts, p().  When p() is higher, then each exogenous shock to the system 

becomes more amplified as the feedback effects converge.  The amplification effect is 

captured by 1 - p() in the denominator of (***) (and if p() were ever greater than 

1/, then the feedback effect would be completely unstable, leading to infinite volatility).   

To summarize, while exogenous risk is constant in our model, endogenous risk depends 

on the strength of the feedback loops.   

 

It turns out that in our equilibrium there is no amplification at 
*
 and a lot of 

amplification below 
*
, leading to a -shaped form of volatility.  A crucial feature of our 

model that drives this result is that payouts are chosen endogenously.  As a result, 

payouts happen at point 
*
 where experts are relatively unconstrained.  At that point 

shocks to experts net worth‟s become absorbed through adjustments to payouts, and so 

they have no effect on the experts‟ demand for capital or prices.  Therefore, p(
*
) = 0, 

and there is no amplification at 
*
.  In contrast, below 

*
 experts become constrained, 

and so shocks to their net worth‟s immediately feed into their demand for assets.   

 

The -shaped form of volatility implies that the system is relatively stable near its 

“steady state” of 
*
, but becomes unstable below the steady state as the volatility shoots 

up.  Figure 5 shows the stationary distribution of t.  Starting from any point 0  (0, 
*
] 

in the state space, the density of the state variable t converges to the stationary 

distribution in the long run as t  .  Stationary density also measures the average 

amount of time that the variable t spends in the long run near each point.  We see that 

the stationary density is high near 
*
, which is the attracting point of the system, but very 

thin in the middle region below 
*
 where the volatility is high.  The system moves fast 

through regions of high volatility, and so the time spent there is very short.  As we can 

see from a sample path of t on the right panel of Figure 5, these excursions below the 

steady state are characterized by high uncertainty, and occasionally may take the system 

very far below the steady state.  At the extreme low end of the state space, assets are 
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essentially valued by unproductive households, with pt ~ p, and so the volatility is low.  

The stationary distribution has a large positive mass way below the steady state, so the 

system spends significant amounts of time there.  

 

 

Figure 5.  The stationary density of t and sample paths of t. 

 

Papers such as BGG and KM do not capture the distinction between relatively stable 

dynamics near the steady state, and much stronger amplification loops below the steady 

state - but why?  An amplification cycle like that presented in Figure 4 is a feature of both 

BGG and KM, but the solution method of log-linearizing near the steady state implicitly 

assumes that the strength of amplification effects is even throughout the state space.  

However, log-linearization is a valid approximation only if the system does not exhibit 

instabilities like those presented in Figure 5.  Log-linearized solutions can capture 

amplification effects of various magnitudes as the steady state is placed in a particular 

part of the state space by a choice of an exogenous parameter (such as exogenous 

drainage of expert net worth in BGG).  However, such an exogenous parameter forces the 

system to behave in a completely different way in order to zoom the magnifying glass of 

log-linearization to a particular region.  With endogenous payouts, the steady state 

naturally falls in the relatively unconstrained region where amplification is low, and 

amplification below the steady state is high.  

 

Proposition A1 in the appendix provides equations that characterize this stationary 

distribution. 

 

2.2 Endogenizing the capital structure 

 

In our baseline model we made several simplifying assumptions, which we try to relax or 

justify in the following two subsections. First, rather than simply assuming that 

entrepreneurs have to hold a fixed fraction  of the equity, we microfound this 

conclusion using a moral hazard argument. Second, we explicitly model the financial 

sector by introducing intermediaries that have the capability to reduce financial frictions 

between productive and unproductive households. In Subsection 2.4 we add idiosyncratic 

shocks to study various asset pricing implications. 
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So far, we simply assumed that experts have to retain “skin in the game” and hence can 

only offload a fraction 1- of risk. We now endogenously derive this restriction using 

informational frictions. For convenience, we model asymmetric information frictions as 

moral hazard, and assume that productive households can invest in a negative NPV pet 

projects from which he derives a private benefit of b < 1 per unit of value destroyed.  The 

financial expert will forgo his pet project if he is liable for a fraction  of this loss such 

that  

 

  b. 

 

This constraint is the one-shot deviation condition.  Appendix A justifies this constraint 

formally using the theory of optimal dynamic contracts, in which the contracting variable 

is the market value of assets kt pt.  By assuming that contracts depend on the market value 

of capital kt pt instead of kt directly, we allow for an amplification channel in which 

market prices affect the expert‟s net worth.  This assumption is consistent with what we 

see in the real world, as well as with the models of Kiyotaki and Moore (1997) and 

Bernanke, Gertler and Gilchrist (1999).  We assume that contracting directly on kt is 

difficult because we view kt not as something objective and static like the number of 

machines, but rather something much more forward looking, like the expected NPV of 

assets under a particular management strategy.  Moreover, even though in our model 

there is a one-to-one correspondence between kt and output, in a more general model this 

relationship could be different for different types of projects, and could depend on the 

private information of the expert.  Furthermore, output can be manipulated, e.g. by 

underinvestment.  In extensions of our model, we relax the contracting assumption by 

allowing the expert to hedge some of the risks of ktpt (e.g. see the Section 4 on 

securitization). 

 

The contracting problem determines fraction of risk  that has to be borne by the expert 

which, together with the requirement that outside investors must receive a required return 

of r, pins down the cash flows that go to inside equity nt.  The incentive constraint also 

implies a solvency constraint, since it is possible to reward and punish the expert only as 

long as nt > 0.   

 

Note that we assumed for simplicity that private benefits are proportional to the value that 

has been destroyed, and does not depend on the market valuation of capital. 

Alternatively, one could assume that experts get the benefit of b units of output per unit 

of capital destroyed, leading to the incentive constraint of t  b/pt.  In this case an 

additional amplification mechanism would emerge, as a price decline would tighten the 

moral hazard constraint further. That is, the incentive constraint requires a higher t in 

downturns, when equilibrium prices pt are depressed. This observation is consistent with 

higher informational asymmetry and lower liquidity in downturns.
8
  This property of t 

also creates an additional reason why experts find it harder to hold assets in downturns - 

                                                 
8 See Leland and Pyle (1977) where managers must retain a greater fraction of equity when the 

informational asymmetry is greater, or DeMarzo and Duffie (1999) where informational sensitivity leads to 

lower liquidity. 
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because they must retain a greater fraction of risk.
9
   

 

2.3 Modeling the financial sector explicitly 

 

In our baseline setting we modeled the financial intermediary sector is only implicitly. In 

this subsection we justify our baseline setting by arguing that all the insights carry over to 

a richer model with an explicit financial intermediary sector. Funds are channeled from 

the less productive households to more productive (experts) households through the 

financial sector. As before direct lending is subject to informational frictions. However, 

the financial sector has the ability to mitigate these frictions. Instead of the networth of 

the expert, now the combined networth of expert households and the financial sector will 

form the basis of our state variable. Indeed, we provide conditions under which the two 

networths are perfect substitutes.  

 

Figure 6 depicts a more general financing structure, in which more productive experts 

hold capital, lever up and receive funds from intermediaries. Financial intermediaries 

issue debt claims as well as outside equity towards less productive households.  

 

 
 

Figure 6. Balance sheets structures of experts and financial intermediaries 

 

Such a funding structure arises endogenously if one has to overcome two layers of moral 

hazard problems, as e.g. in Holmström and Tirole (1997). As before, productive 

households have to hold inside equity of at least  

 

t
E
  b(mt), 

 

where the productive households‟ private benefits from shirking b(mt) < 1 are now 

decreasing in the monitoring effort, mt, of the financial intermediary. Put differently, by 

                                                 
9 In a version of our model where t = b/pt and when households can provide liquidity support by buying 

assets temporarily in downturns (see Section 3), the equilibrium exhibits procyclical leverage in the region 

where households hold some of the assets.  The reason is that t increases when pt falls, making it harder 

for the financial sector to hold assets.  Procyclical leverage is consistent with what we observe in 

investment banks in practice.  
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increasing the monitoring intensity, mt, one can lower the productive households‟ inside 

equity share necessary to incentivize the productive households. Note that the above 

constraint always binds in equilibrium, i.e. t
E
 = b(mt), since otherwise the productive 

household would issue more outside equity and scale up its production.  

 

Assume that the monitoring intensity is not directly observable to outside investors.  By 

not monitoring, each financial intermediary can get a private benefit of c(m) < 1 per unit 

of value destroyed through faster depreciation of capital (as the productive household is 

also shirking due to the lack of monitoring).  Hence, financial intermediaries also have to 

be incentivized and they have to be exposed to a fraction  

 

t
I
  c(mt), 

 

of total risk.  Higher monitoring effort requires the financial intermediary to get more 

involved in running the project, and so c(mt) is increasing in mt.  Thus, more monitoring 

requires that intermediaries hold a larger fraction of the overall risk. Note that 

intermediaries‟ incentive constraint is also always binding since it otherwise would 

always be profitable to scale up the projects. 

 

Overall, productive households and financial intermediaries together hold a fraction of t 

:= t
E 

+ t
I
. The remaining fraction (1-t) of the risk is held by the unproductive 

households in form of outside equity. In our setting it is irrelevant to what extent the 

outside equity issued by productive households is directly held by unproductive 

households or indirectly through outside equity issued by financial intermediaries. The 

same holds for debt issuance. We assume that for all m, the total benefit that productive 

households and intermediaries can derive per unit of capital destroyed is less than 1 (b(m) 

+ c(m) < 1) and that the damage they can cause by shirking is significant, so that it is 

always suboptimal to allow them to consume benefits.   

 

One can easily see that the net worths of productive households and of the financial 

intermediaries are substitutes. Proposition 3 states if both groups of investors share the 

same preference ordering and the sum of b(m) + c(m) is a constant for all m, the two net 

worths are perfect substitutes. Hence, in this case we can without loss of generality 

collapse productive households and financial intermediaries to a single economic entity 

called “experts”, as we did in our baseline setting.  

 

Proposition 3. If the sum of b(m) + c(m) is constant for all m, productive households and 

financial intermediaries can be merged to single entities, “experts”, as their net worths are 

perfect substitutes.  

 

Proof: Since in equilibrium both incentive constraints t
E
  b(mt) and t

I
  c(mt) hold 

with equality, t = b(mt) + c(mt). Hence, the total share of the risk held together by 

productive households and financial intermediaries is invariant to changes in mt. QED 

 

Note that productive households need not have any net worth at all if maximum 

monitoring makes monitoring perfect such that private benefits b are pushed to zero. That 



 22 

is, in this case total net worth Nt can be equated with financial intermediaries‟ net worth 

and our baseline model holds literally. 

 

2.4 Idiosyncratic shocks and asset-pricing implications 

 

Our equilibrium analysis implies interesting results for asset pricing - predictability, 

excess volatility, and an increase in correlation across various assets in the cross section 

at times of crises.  To derive these important results we extend our model to allow expert-

specific idiosyncratic shocks.  It is important to distinguish between the price of physical 

capital, pt, and the price of outside equity held by households.  

 

Physical capital. The price of physical capital is determined by experts‟ Bellman 

equation and the first-order condition with respect to k. They imply that the value nt of 

any portfolio of risky capital and cash satisfies 

 

f(t)nt dt = E[d(f(t)nt)] 

 

when internal investment is done optimally, according to it/kt = (pt).  It follows that any 

portfolio held by an expert can be priced using the stochastic discount factor  

 

e
-t

 f(t)/f(0). 

 

Our model predicts excess volatility.  The volatility of ptkt is  + t
p
, where  is the 

volatility of earnings (per dollar invested).  Our model also implies that asset returns are 

predictable.  From the first-order condition (*), the excess expected return from investing 

a dollar into the risky asset is driven by the time-varying risk premium of  

 

t

 f(t)/f(t) α ( + t

p
),  

 

where we use t
f
 = f(t) t


.  The risk premium is zero at 

*
, since f(

*
) = 0.  Below 

*
, 

the risk premium is positive. 

 

To look at asset prices in cross section, we reinterpret the model to allow for multiple 

assets.  Suppose that there are many types of capital, and each is hit by aggregate and 

type-specific shocks.  Specifically, capital of type j evolves according to  

 

dkt
j
 = g kt

j
 dt +  kt

j
 dZt +  kt

j
 dZt

j
, 

 

where dZt
j
 is type-specific Brownian shock uncorrelated with the aggregate shock dZt.   

 

In aggregate, idiosyncratic shocks cancel out and the total amount of capital in the 

economy still evolves according to  

 

dKt = g Kt dt +  Kt dZt. 
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Then, in equilibrium financial intermediaries hold fully diversified portfolios and 

experience only aggregate shocks.  The equilibrium looks identical to one in the single-

asset model, with price of capital of any kind given by pt per unit of capital.   

 

Then 

 

d (ptkt
j
) = drift + (ptkt

j
) ( + t

p
) dZt + (ptkt

j
)  dZt

j
. 

 

The correlation between assets i and j is  

 

Cov(ptkt
i
, ptkt

j
)/(Var(ptkt

i
)Var(ptkt

j
))

1/2
 = ( + t

p
)
2
/(( + t

p
)
2
 + ()

2
). 

 

Near the steady state t = 
*
, there is only as much correlation between the prices of 

assets i and j as there is correlation between shocks.  Specifically, t
p
 = 0 near the steady 

state, and so the correlation is  

 


2
/(

2
 + ()

2
). 

 

Away from 
*
, correlation increases as t

p
 increases.  Asset prices become most 

correlated in prices when t
p
 is the largest, and as t

p
  , the correlation coefficient 

tends to 1. 

 

Outside equity. Experts‟ outside equity can be directly held by risk-neutral households 

and hence the price is determined by their discount factor e
-rt

. This implies that the 

discounted price processes follow a martingale. Nevertheless, the returns are negatively 

skewed as a negative fundamental macro shock is amplified in times of crisis. In the cross 

section, equity prices become more correlated at times of crises.
10

 This phenomenon is 

important in practice as many risk models have failed to take this correlation effects into 

account in the recent crisis.
11

  

 

Derivatives. Since data for crisis periods are limited, it is worthwhile to look at option 

prices that reflect market participants‟ implicit probability weights of extreme events. Our 

result that price volatility is higher for lower t-values also has strong implications for 

option prices.  

 

First, it provides an explanation for “volatility smirks” of options.  Since the values of 

options monotonically increase with the volatility of the underlying stock, option prices 

can be used to compute the “implied volatility” from the Black-Scholes option pricing 

formula.  One example of a “volatility smirk” is that empirically put options have a 

higher implied volatility when they are further out of the money.  That is, the larger the 

price drop has to be for an option to ultimately pay off, the higher is the implied volatility 

                                                 
10 For an empirical documentation see for example Erb, Harvey and Viskanta (1994). 
11 See “Efficiency and Beyond” in The Economist, July 16, 2009. 
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or, put differently, far out of the money options are overpriced relative to at the money 

options. Our model naturally delivers this result as volatility in times of crises is higher. 

 

Second, so called “dispersion trades” try to exploit the empirical pattern that the smirk 

effect is more pronounced for index options than for options written on individual stocks 

(Driessen et al. 2010).  Note that index options are primarily driven by macro shocks, 

while individual stock options are also affected by idiosyncratic shocks. The observed 

option price patterns arise quite naturally in our setting as the correlation across stock 

prices increases in crisis times. Note that in our setting options are redundant assets as 

their payoffs can be replicated by the underlying asset and the bond, since the volatility is 

a smooth function in pt.  This is in contrast to stochastic volatility models in which 

volatility is independently drawn.  

 

3. Externalities 

So far, we set up our baseline model intentionally in a way that has no externalities.  That 

is, a social planner who faces the same constraints would opt for the same unstable 

dynamics as the competitive outcome shown in Section 2. After establishing this 

equivalence we enrich our setting in two ways. First, we allow households to speculate. 

That is, they provide liquidity by buying capital with the intention to resell back to 

experts as soon as the economy recovers. While liquidity provision can act as a 

stabilizing force, it also introduces a firesale externality, which is an inefficient pecuniary 

externality in an incomplete markets setting.  The firesale externality appears when in the 

event of crises (i) experts are able to sell assets to another sector (e.g. vulture investors or 

the government) and (ii) the new asset buyers provide a downward-sloping demand 

function.  In this case, when levering up in good times financial institutions do not take 

into account that in the event of crises, its own fire sales will depress prices that other 

institutions are able to sell at.  This effect leads to excess leverage due to competition 

among the financial institution, i.e. a monopolist expert would lever up less. 

To illustrate externalities from the financial sector to the real economy, we add a labor 

market, in which households‟ labor income depends on the amount of capital in the 

economy.  When levering up and choosing bonus payouts, experts do not internalize the 

damages that crises bring onto the labor market.   

 

3.1 Social planner’s problem in baseline model 

We show that the competitive rational expectations equilibrium in our baseline model 

coincides with a policy that a social planner, who that faces the same constraints, would 

chose. Since less productive households are compensated for deferring their consumption 

with the discount rate r, the social planner‟s outcome equals the one of a monopolist 

expert with a discount rate . Debt and the total amount of capital in the economy evolve 

according to  
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dDt = (r Dt - a Kt + ι(g) Kt) dt - dCt and dKt = gKt dt + Kt dZt, 

where dCt is the monopolist‟s consumption.  It is convenient to express the monopolist‟s 

value function as h(t)Kt, where t = -Dt/Kt.
12

  The value function is homogenous in Dt 

and Kt of degree 1 because of scale invariance.  From the liquidation value of assets, the 

monopolist‟s debt capacity is Dt  aKt/(r+), and so t  -a/(r+). 

 

Using Ito‟s lemma  

dt = ((r - g + 
2
) t + a - ι(g)) dt - t dZt - dCt/Kt. 

The following proposition summarizes the Bellman equation and the optimal policy of 

the monopolist.   

Proposition 4.  The monopolist‟s value function solves equation  

( - g) h() = h() [(r - g)  + a - ι(g)] + ½ h()()
2
  

with boundary conditions h(-a/(r+)) = 0, h(
*
) = 1 and h(

*
) = 0.  The optimal policy 

has investment with ι(g) with ( + ι(g)) h() = h().  Payouts occur exactly when t 

reaches 
*
, and prevent t from exceeding 

*
.  Thus, technically, 

*
 is the reflecting 

boundary for the process t.
13

 

Proof.  The value function must satisfy the Bellman equation 

h()K dt = maxg,dC  dC + E[d(h()K)] =  

dC + h() ((r - g + 
2
)  + a - ι(g) - dC) K + ½ h()()

2
 K + h() gK - h() 

2
 K. 

When h() > 1, then dC = 0 is optimal and the equation reduces to (*).  The optimal 

choice of g is determined by ( + ι(g)) h() = h().   

To justify the boundary conditions, we extend function h() that satisfies them beyond 


*
 according to h() = h(

*
) +  - 

*
, and show that the Bellman equation holds on the 

entire domain [-a/(r+), ).  For  < 
*
, it holds because h() > 1 and so dC = 0 is the 

optimal choice.  The value function for   
*
 can be attained by making a one-time 

payment of dC/K =  - 
*
, and moreover, dC = 0 is suboptimal since      

h(
*
) = 1, h(

*
) = 0  ( - g) h(

*
) = (r - g) 

*
 + a - ι(g) 

                                                 
12 It convenient to analyze the monopolist‟s behavior using t, instead of the more economically 

meaningful variable t = Nt/Kt, because t depends on market prices, which are endogenous in equilibrium.  

Proposition 5 provides a one-to-one map between variables t and t in equilibrium.  
13 Our analysis here can be related to Bolton, Chen and Wang (2009).  They study optimal investment and 

payouts of a single firm, which faces output shocks (rather than capital shocks, as in our setting). 
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 ( - g) h() < (r - g)  + a - ι(g) for all  > 
*
, 

since  > r. QED 

Figure 7 illustrates the monopolist‟s value function.   
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Figure 7.  The value function of a monopolist expert. 

For a monopolist expert, the optimal payout point 
*
 is determined by the trade-off 

between the benefits of being able to borrow at rate r, which is less than his discount rate, 

to consume, and the liquidation costs that are incurred when t gets close to -a/(r+).  It 

is optimal to pay out when there is a sufficient amount of financial slack 
*
, which 

determined by Proposition 4. 

Proposition 5 shows that in our baseline model, the outcome with a monopolist investor 

is identical to that under competition.  The intuition is that even though in a competitive 

equilibrium experts do affect prices in the aggregate by their choices of compensation 

and investment, they are isolated from market prices because they do not trade in 

equilibrium (due to symmetry).
14

 

Proposition 5.  The competitive equilibrium in our baseline economy is equivalent to the 

outcome with a monopolist.  The following equations summarize the map between the 

two: 

t = h(t)/h(t), pt = h(t)/h(t) - t,  and ft = h(t). 

 

Proof.  First, since the monopolist chooses g and dCt to maximize his payoff, the sum of 

all experts‟ utilities in the competitive equilibrium cannot be greater than that of a 

monopolist.  On the other hand, each expert can guarantee his fraction of the 

                                                 
14 The argument of Proposition 5 can be easily generalized to show that in the baseline model, the 

equilibrium is the same under oligopolistic competition as well.   
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monopolist‟s utility (weighted by his net worth) by trading to a fraction of the aggregate 

portfolio at time 0, and by copying the monopolist‟s policy in isolation thereafter.  Thus, 

the sum of all experts‟ utilities in the competitive equilibrium must equal the 

monopolist‟s payoff.   

 

It follows that the aggregate behavior in the competitive equilibrium is equivalent to the 

monopolist‟s optimal policy.  In particular, since growth chosen by the monopolist 

satisfies ( + ι(g)) h() = h(), the competitive equilibrium has prices  

 

pt = h(t)/h(t) - t. 

 

Under these prices, t = Nt/Kt = (ptKt - Dt)/Kt = pt - t = h(t)/h(t).  Finally, the sum of 

the experts‟ utilities is ft Nt = h(t) Kt  ft = h(t)/t = h(t). QED 

 

As a corollary of Proposition 5, we conclude that the competitive equilibrium in our 

baseline model is unique.  

Corollary.  In our baseline model, equilibrium prices, expert value function ft nt, and the 

law of motion of t are uniquely determined.    

 

Proof.  Note that the proof of Proposition 5 does not assume any properties of the 

competitive equilibrium (such as that it is Markov in t).  Uniqueness follows from the 

uniqueness of the monopolist‟s optimal policy. QED 

 

Proposition 5 provides an alternative convenient way to compute equilibria in our 

baseline setting, by solving a singe equation for h() instead of a system of equations for 

p() and f(). 

 

3.2 Speculative households and externalities within the financial sector 

 

Liquidity provision by speculative households. So far, we assumed that the sale of 

assets from experts to households in the event of crises is irreversible.  However, in 

practice the economy has resources to pick up some of the functions of the traditional 

financial sector in times of crises.  Investors like Warren Buffet have helped institutions 

like Goldman Sachs and Wells Fargo with capital infusions.  More generally, 

governments have played a huge role in providing capital to financial institutions in 

various ways and induced large shifts in asset holdings (see He, Khang and 

Krishnamurthy (2009)).
 
For example, in the spring of 2009, the Fed introduced the Term 

Asset-Backed Securities Loan Facility in order to entice hedge funds to buy some of the 

asset-backed securities. 

 

Formally, denote the fraction of capital that is held by experts by ψt. Hence, the total 

capital in the economy evolves according to  

 

dKt = (t g(pt) - (1 - t) ) Kt dt +  Kt dZt. 
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Aggregate experts„ networth follows 

 

dNt = rNt dt + (a-(ps)) tKt dt + t(Ktpt) [(g(ps) + t
p
 + t

p
 - r) dt +  (+t

p
) dZt] - dCt. 

 

Note that experts only hold a fraction α of the total exogenous and endogenous risk as 

they issue outside equity claims. Mechanical application of Ito‟s Lemma allows us to 

derive  

 

dt = (r - t g(pt) + (1-t)  + 
2
) t + t (a - (ps) + pt(g(pt) + t

p
 + (1-)t

p
 - 

2
 -r)) dt 

 

 + (t pt  ( + t
p
) -  t) dZt. 

 

Again, using Ito‟s lemma, t
p
 pt = p() t


  

  



 t

 
(tpt )

1tp'()
,

 

and also t
f
 = f()t


. 

 

Following the same steps as in Section 2, expert value functions must satisfy the first-

order condition  

 

  



a ( pt )

pt

 g( pt ) t

p  t

p  r 
 t

f

f t

(  t

p)  0

  

 (*4*) 

while households‟ expected excess return from investing in risky capital directly must be  

 

  



a

pt

  t

p  t

p  r  0, 

with equality when households invest a positive amount, i.e. t < 1.  Expert value 

functions also need to satisfy   



t

f  (  r) f t  (see Proposition 1). 

 

Figure 8 illustrates the functions ft, pt and asset holdings t by the financial sector for the 

parameter values a–i=1, ρ =.06, r =.05, g =.04, δ =.05 for three different exogenous risk 

values σ =.025 (blue), .5 (red), and .1 (black).  
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Figure 8:  Equilibrium when households provide liquidity support for three different σ = 

.025 (blue), .05 (red), .1 (black). 

 

We see that as t becomes small, t < 1 experts sell assets to households at market prices. 

As a consequence less productive households hold part of the capital. Also, market prices 

directly enter the experts‟ welfare. Several forms of externalities within the financial 

sector can emerge.  

 

Pecuniary fire sale externality. Externalities within the financial sector are pecuniary 

externalities in an incomplete market setting.
15

  They arise whenever experts‟ welfare 

depends directly on market prices, which are affected by the actions of other experts.  In 

our baseline model of Section 2 there are no pecuniary externalities because in 

equilibrium experts do not trade with each other at market prices, and prices do not enter 

the experts‟ payoffs or action sets through contracts. 

 

One type of an externality seems very prominent - the fire sale externality.  This 

externality arises when households offer a downward-sloping demand function for assets 

from the financial sector during crises.  Fire sale externalities stem from the fact that the 

economy has a bounded capacity to absorb assets when the financial sector fails.  When 

                                                 
15 Bhattacharya and Gale (1987) were among the first to highlight the inefficiency of a pecuniary 

externality. A recent application of this inefficiency within a finance context, see Lorenzoni (2007).  
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investing and levering up in good times, experts do not take into account that in the event 

of a crisis their fire-sales will depress the price at which other institutions are able to sell 

assets.   

 

More formally, suppose that there are two groups of households. Sophisticated 

households are able to buy and resell assets from experts, while unsophisticated 

households cannot speculate. Sophisticated households‟ funds are limited, while 

unsophisticated households have deep pockets. Both groups of households have discount 

rate r, capital held in their hands depreciates at a higher rate  >  and, for simplicity, 

cannot invest internally.   

 

If the value function of a sophisticated household with net worth nt is given by ftnt, with 

 

dft = t
f
 dt + t

f
 dZt, 

 

then the first-order condition for the optimal investment strategy of sophisticated 

households is  

 

a/pt -  + t
p
  + t

p
 + t

f
/ft ( + t

p
) = 0.  (*5*) 

 

Denote by Nt the total amount of sophisticated household capital in the economy.  Then 

equilibrium dynamics is characterized by two state variables, t = Nt/Kt and t = Nt/Kt. 

The following proposition extends our equilibrium characterization to a model with 

sophisticated households. 

 

Proposition 6.  If sophisticated households can provide liquidity support, then aggregate 

capital in the economy follows dKt and the state variable t follows the same evolution as 

described before. In addition, the second state variable t follows 

 

dt = (r - t g(pt) + (1 - t)  + 
2
) t dt + (1 - t) (a + (t

p
 -  - 

2
 - r)pt) dt + 

  

((1 - t) pt ( + t
p
) - t t) dZt. 

 

 

The equilibrium is characterized by four functions of (t,t), pt, (ft, ft) and t, which are 

determined by the equations (*4*), (*5*), ( - r)ft = t
f
 , and   



t

f
 0. 

  

Proof.  To be completed.  

 

 

Other externalities within the financial sector. If households are not financially 

constrained, the effect of these externalities is unclear: when the economy and the 

financial sector expand, the households‟ willingness to pick up assets also expands.  

When Kt grows, in equilibrium, households start absorbing assets at a larger value of Nt, 

and their capacity expands proportionately to the size of the economy. However, there are 

many natural extensions that give rise to externalities.  There are externalities when 
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experts trade, e.g. if they invest not internally but by buying capital from capital 

producers.  Externalities may exist even without trade when the experts‟ contracts depend 

on prices, such as in the following examples: 

 

 when experts can unload a fraction 1-t of risk to outside investors, there are 

externalities when t depends on prices, for example when t = b/pt  

 the terms of borrowing - the spread between the interest rate experts need to pay 

and the risk-free rate - may depend on prices.  For example, there are externalities 

in the setting of Section 4, where experts face idiosyncratic jump risk. 

 experts may be bound by margin requirements, which may depend both on price 

level and price volatility 

 in asset management, the willingness of investors to keep money in the fund 

depends on short-term returns, and thus market prices 

 

Overall, it may be hard to quantify the effects of many of these externalities directly, 

because each action has rippling effects through future histories, and there can be a mix 

of good and bad effects.  To see how this can happen, let us explore how increased 

internal investment by one expert affects future values of t for everybody.  Since 

volatility increases with higher leverage, investment leads to higher values of pt and 

lower values of t in good states and vice versa in bad states.  Given the mix of effects, it 

is best to study the overall significance of various externalities, as well as the welfare 

effects of possible regulatory policies, numerically on a calibrated model.  

 

3.4 Externalities between the financial sector and real economy 

 

To illustrate externalities of the financial sector to the real economy we model the labor 

market in a way that does not directly interfere with the equilibrium dynamics among 

financial intermediaries.   

 

As Bernanke and Gertler (1989), suppose that households in the economy supply a fixed 

and inelastic amount of labor L.  The production function is Cobb-Douglas in labor and 

capital, and it depends on the aggregate amount of capital in the economy,  

 

yt = (A Kt

) lt


 kt

1-
. 

 

The total amount of capital Kt in the production function reflects the idea from 

endogenous growth literature that technological progress increases productivity of 

everyone in the economy (e.g. see Romer (1986)).  Recall that we do not measure capital 

kt as the number of machines, but rather kt is the cash-flow generating potential of capital 

under appropriate management.  That is why it is difficult to quantify kt and contract on it 

directly - the quantification of kt involves something intangible.  Therefore, a part of Kt is 

the level of knowledge and technological progress of the economy as a whole, and that 

part enters the production function of everyone.   

 

In equilibrium, capital and labor is used for production proportionately, with lt = kt 

(L/Kt).  Wages per unit of labor and in the aggregate are given by  
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wt =  A/L
1-

 Kt and Wt =  A L

 Kt. 

 

Capital owners receive output net of wages, which is  

 

a kt = (1 - ) A L

 kt. 

 

We see immediately that there are externalities between households, who supply labor, 

and the financial sector.  Financial experts receive only a fraction 1- of total output.  

Therefore, when they take actions that increase the likelihood of a downturn, such as 

taking on too much risk for the sake of short-term profits or paying out bonuses, they do 

not take into account the full extent of the damage of these downturns to the labor 

market.  

 

To illustrate this point most clearly, we assume a constant marginal cost of capital 

production of (g) = a/(r + ) for g  g
*
, take (g) =  for g > g

*
, and normalize (g

*
) = 

0.  That is, without investment capital grows according to  

 

dkt = g
*
 kt dt +  kt dZt, 

 

it cannot be made to grow any faster, but it can be liquidated in any amount at a constant 

price of a/(r + ) per unit of capital.  Under these assumptions, the experts‟ investment 

decisions are totally passive - and capital grows at rate g
*
 - whenever pt > a/(r + ).  The 

only active decision involves bonus payouts.  We call it the passive investment economy.  

The following proposition characterizes the equilibrium, which is the same with 

competitive investors and with a monopolist.   

 

Proposition 7.  In the passive investment economy, the equilibrium law of motion of t 

= -Dt/Kt is given by  

 

dt = ((r - g
*
 + 

2
) t + a) dt - t dZt - dCt/Kt 

 

on the interval [-a/(r+), 
*
], with a reflecting boundary at 

*
 at which bonuses are paid 

out.  The aggregate expert payoff function h(t)Kt and point 
*
 can be found from the 

equation 

 

( - g) h()
 
= ((r - g

*
)  + a) h() + ½ ()

2
 h() 

 

with boundary conditions h(-a/(r+)) = 0, h(
*
) = 1 and h(

*
) = 0. 

 

Proof.  The desired conclusions follow directly from Proposition 4, which characterizes 

the optimal policy of a monopolist, and Proposition 5, which shows that the monopolist 

solution coincides with the competitive equilibrium.  QED 

 

We would like to argue that a regulator can improve social welfare by a policy that limits 

bonus payouts within the financial sector.  Specifically, suppose that experts are not 
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allowed to pay themselves as long as financial experts are not sufficiently capitalized 

(formally, until t reaches some level 
**

 > 
*
).  This type of a regulation keeps capital 

within the financial system longer, and makes it more stable.  The following proposition 

characterizes the equilibrium with such a regulatory policy, as well as the value functions 

of the experts and the households.   

 

Proposition 8.  If experts are not allowed to pay out bonuses until t reaches 
**

 = 
*
, 

they will pay at 
**

. The process t
 
follows the same equation, but with a reflecting 

boundary at 
**

.  Expert value function is given by  

 

  



˜ h ()  h() /h'(**) , 

 

where h() is as in Proposition 5.  The household value function is H(t)Kt, where H() 

solves equation  

 

(r - g) H() = AL

 + ((r - g)  + a) H() + ½ ()

2
 H(),  (**) 

 

with boundary conditions H(-a/(r+)) = AL

/(r+) and H(

**
) = -1. 

 

Proof.  Then the household value function H(t)K satisfies  

r H(t)
 
Kt = (a + b) K + ((r - g + 

2
) t + a) H‟() K + ½ (t)

2
 H‟‟(t) K +  

H() g K - H‟() 
2
   

 

To be completed. 

 

How does such a regulatory policy affect welfare?  For experts, note that h(
**

) > 1 for 


**

 > 
*
.  Therefore, for a fixed level of t, a restriction on compensation practices 

reduces expert welfare.  However, since h(
*
) = 0, h(

**
) increases very little with 

** 

near 
*
, the effect on expert welfare is second-order.   

 

For households, for welfare analysis it is convenient to write H() as a linear 

combination of the solutions of the homogeneous equation  

  

(r - g) hi(t) = ((r - g)  + a) hi‟() + ½ ()
2
 hi‟‟(). 

 

Denote by h1 and h2 the functions that solve it with boundary conditions  

 

h1(-a/(r+)) = 0,  h1(-a/(r+)) = 1,  h2(-L) = AL

/(r + ) - AL


/(r - g)  and  h2(0) = 0. 

 

Functions h1 and h2 are illustrated in Figure 9. 
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Figure 9: Solutions to the homogenous version of the household Bellman equation. 

 

Lemma 4.  Household welfare function under the policy that limits compensation for t 

< 
**

 is given by  

H() = AL

/(r - g) + q h1() + h2(),  

 

with q = -(h2(
**

) + 1)/h1(
**

).   As 
**

 increases, q increases. 

 

Proof.  It is easy to see that any function of the form AL

/(r - g) + q1 h1() + q2 h2() 

satisfies the non-homogenous equation (**).  Coefficient q2 = 1 follows from the 

boundary condition H(-a/(r+)) = AL

/(r+), since h1(-a/(r+)) = 0.  Coefficient q1 can be 

found from the boundary condition H(
**

) = -1.   

 

Since h2 and h1 are concave functions and h2() < 1 for  > -a/(r+), … to be completed.  

QED 

 

Because q is increasing in 
**

, the effect of 
**

 on household welfare is first-order.  

Figure 10 shows the experts‟ and households‟ value functions for various choices of 
**

 

by the social planner.   
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Figure 10: Value functions of experts and households for different regulatory policies; 

the blue functions corresponds to 
**

 = 
*
. 

 

We see that the central planner can improve efficiency by setting 
**

 > 
*
.  When 

**
 is 

close to 
*
, the effect of policy on expert welfare is second-order, but the effect on 

households is first-order.  Relative to the equilibrium without regulation, a social planner 

can implement a Pareto improvement by a policy that combines a transfer from 

households to the financial sector together with a regulation that limits bonus payouts.  

When t is small, such a transfer can be interpreted as a bailout.   

 

Without an accompanying transfer, regulation always hurts the financial experts in our 

baseline model.  However, next we modify our baseline model to highlight possible 

externalities within the financial sector.  In such a context, regulation can be welfare-

improving even without accompanying transfers.   

 

  

4. Idiosyncratic Shocks and Securitization 

By securitization/hedging, we refer to various mechanisms by which financial institutions 

can share risks among each other.  These mechanisms include pooling and tranching, by 

which the issuer can diversify and slice risks.  Credit default swaps, and various options 

and futures contracts allow financial institutions to hedge specific risks.  Furthermore, 

more efficient risk-sharing can be attained by longer intermediation chains between 

households and borrowers (e.g. see Shin (2010)). 

A model with idiosyncratic shocks.  A natural simple way to capture these phenomena, 

is to augment our baseline model to allow idiosyncratic shocks, which may be hedged 

within the financial sector, in the same spirit as BGG.  Specifically assume that capital kt 

managed by expert i evolves according to  
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dkt = g kt dt +  kt dZt + kt dJt
i
, 

 

where dJt
i
 is an idiosyncratic Poisson loss process.  As BGG we make the simplifying 

assumption that when experts get bigger, their idiosyncratic shocks are amplified 

proportionately, that is, there is no diversification of idiosyncratic shocks within any 

expert.   

 

Losses after an idiosyncratic jump are characterized by the distribution function F : [0, 1] 

 [0, 1], which describes the percentage of capital that is recovered in the event of a loss.  

We can capture additional volatility effects by allowing the intensity of losses (t
p
) to 

depend on the volatility asset prices pt. This assumption is consistent with the general 

idea that interest rate spreads and margins are set by debt holders who worry about 

potential losses (which depend on volatility).  It can be justified through an informal story 

that idiosyncratic shocks have to do with liquidity (such as the difficulty to find an 

acceptable buyer and having to sell assets at fire-sale prices).  Note that this assumption 

would be vacuous under steady-state analysis, since price volatility is constant near the 

steady state. 

 

To extend our agency model to idiosyncratic losses, we assume that an expert may 

generate losses for benefit extraction, getting b units of private financial benefit from a 

single unit of lost physical capital.  While the expert‟s stake t in the assets prevents 

losses of size nt/b or less, we assume that costly state verification is possible to prevent 

larger losses.
16

  We assume that if verification is immediate when an expert simulates a 

loss in order to steal money, the fraud is revealed and the expert cannot get any private 

benefit.  As in BGG, we assume that the verification cost is a fraction c  (0,1) of the 

amount of capital recovered.
17

 

 

Default and costly state verification occur when the value of the assets v = ptkt falls 

below the value of debt d = v - nt/t i.e. kt falls by more than nt/(tpt) = nt/t.  Note that 

the expected loss in the event of default is  

 

 

v L(d /v)  v (d /v  x) d F(x)
0

d
v

  

 

where x is the fraction of assets left after loss.  Default occurs in the event that x < d/v.  

The expected verification cost is  

                                                 
16 It is optimal to trigger verification if and only if kt

i drops below nt/b because, as we will see later, in 

equilibrium the expert is risk-neutral towards idiosyncratic risk that does not lead to default.   
17 The basic costly state verification framework, developed by Townsend (1979) and adopted by Bernanke-

Gertler and Gilchrist (1999) is a two-period contracting framework.  At date 0, the agent requires 

investment I from the principal, and at date 1 he receives random output y distributed on the interval 



[0,y ]. The agent privately observes output y, but the principal can verify it at a cost.  The optimal contract 

under commitment is a standard debt contract.  If the agent receives y  D, the face value of debt, then he 

pays the principal D and there is no verification.  If y < D, the agent cannot pay D and costly state 

verification (bankruptcy) is triggered, and debtholders receive all of output.  
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 

v C(d /v)  v c x d F(x)
0

d
v

 .  

 

To break even, households who lend money to the expert must get not only the interest 

rate , but also compensation for the possible losses and verification costs at a total rate 

of (t
p
) V (L(d/v) + C(d/v)).  This quantity defines the spread that the expert needs to 

pay to borrow from households.   

 

As in the remainder of the paper, we now narrow down analysis to the case when t = 1, 

which occurs when the agent is able to fully extract the value of lost capital from the 

losses he generates.   

 

As before, the equilibrium is characterized by the state variable t, and prices pt = p(t) 

and the expert‟s value function ft = f(t) are functions of t.  The net worth of an 

individual expert evolves according to  

 

dnt = r nt dt + 

 

kt [(a - ι(g) - (r + (t
p
) (L(t) + C(t)) - g + dJt

i
) pt + t

p 
+ t

p
) dt + (pt + t

p
) dZt] - dct, 

 

where t = 1 - nt/(ptkt) is the expert‟s leverage ratio.   

 

In the aggregate, idiosyncratic losses cancel out and total expert capital evolves according 

to  

 

dNt = rNt dt + Kt [(a - ι(g) - (r + (t
p
)C(t) - g)pt + t

p 
+ t

p
) dt + (pt + t

p
) dZt] - dCt, 

 

where the term L(t) disappears because of limited liability. The modified law of motion 

of t = Nt/Kt is  

 

dt = (r - g + 
2
) t dt + (a - ι(g) - (r + (t

p
)C(t) - g + 

2
)pt + t

p
) dt  

 

+ (pt + t
p
 - t t) dZt - dt. 

 

The Bellman equation and the first-order condition with respect to kt are now 

 

( - r) f(t)t  = t
f
 t + f(t) (a - ι(g) - (r + (t

p
)C(t) - g)pt + t

p 
+ t

p
)) + t

f
 (pt +t

p
) 

  

and a - ι(g) - (r + (t
p
)(C(t) + (1-t)C(t)) - g)pt + t

p 
+ t

p
 + t

f
/f(t)  (pt +t

p
) = 0. 

 

As before, in equilibrium t evolves on the range [0, 
*
], with a different boundary 

*
.  

Experts pay themselves bonuses only when t is at 
*
. 
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In equilibrium experts borrow at a rate higher than r due to verification costs - they pay 

the rate r + (t
p
) (L(t) + C(t))/t.  This is the promised interest rate - due to limited 

liability in the event of default the actual cost of borrowing is only r + (t
p
)/t.  Higher 

cost of borrowing makes equilibrium leverage relative to our baseline model without 

idiosyncratic shocks.  

 

Securitization.  We model securitization as risk-sharing within the financial sector.  

Specifically, assume that all shocks, both idiosyncratic Jt
i
 and aggregate Zt, are 

observable and contractible among the experts, but not between experts and households.   

Denote by t the risk-premium on aggregate risk and by t
i
 the risk premium on 

idiosyncratic risk.  A hedging contract for aggregate risk adds  

t (t dt + dZt) 

to the law of motion of expert i‟s wealth, where t is the overall risk exposure.  A contract 

on expert j‟s idiosyncratic risk adds  

t
j
 (t

j
 dt + dJt

j
) 

to the law of motion of expert i‟s wealth, and may affect the verification region and 

verification costs.  The following proposition characterizes the equilibrium when hedging 

within the financial sector is possible. 

Proposition.  If hedging within the financial sector is possible, then in equilibrium 

experts will fully hedge idiosyncratic risk, which carries the risk premium of t
i
 = 0.  

Nobody hedges aggregate risk, which carries the risk premium of t  = -t
f
/ ft > 0.   

Since idiosyncratic shocks are fully hedged, the equilibrium is identical to one in a 

setting without those shocks.   

 

Proof.  It is easy to see that the idiosyncratic risks are fully hedged and that the risk 

premia are zero, since market clears when each expert optimally chooses to offload his 

own idiosyncratic risk, and take on a little bit of everybody‟s risks (which cancel out).  

Once idiosyncratic risks are removed, the law of motion of individual expert‟s capital is  

 

dnt =  nt dt + kt ((a - ( - g) pt + t
p
 +  t

p
) dt + t (pt + t

p
) dZt) - t (t dt + dZt), 

 

where the optimal choice of t must be zero in order for hedging markets to clear.  The 

appropriate risk premium for aggregate risk can be found from the Bellman equation  

 

ftnt = maxk, t
f
 nt + ft ( nt + k (a - ( - g) pt + t

p
 + t

p
) + t) + t

f
 (kt(pt+t

p
) + ). 

 

In order for  = 0 to be optimal, we need t  = -t
f
/ft.  QED 

 

Experts fully hedge out idiosyncratic shocks when securitization is allowed, they face the 

cost of borrowing of only r, instead of r + (t
p
)/t.  Lower cost of borrowing leads to 



 39 

higher leverage quicker payouts.  As a result, the financial system becomes less stable.  

Thus, even though in principle securitization is a good thing, as it allows financial 

institutions to share idiosyncratic risks better, it leads to greater leverage and the 

amplification of systemic risks. 

 

Remark.  By varying the verification costs and the loss distribution, our framework can 

capture several other models.  Kiyotaki-Moore assume that financial experts can borrow 

only up to fraction  of the market value of assets.  Thus, someone with net worth nt can 

hold at most 1/(1-)nt worth of assets, by financing /(1-)nt of the assets with debt and 

the rest, nt, with personal wealth. This is captured in our framework by setting the 

verification costs to zero up to a certain level and infinity afterwards. Alternatively, one 

can assume that margins are set equal to the value-at-risk (VaR) as in Shin (2010).  In 

Brunnermeier and Pedersen (2009), margins increase with endogenous price volatility. 

These effects are captured in our model through the dependence of potential losses on 

price volatility.  The framework of BGG, who use the costly state verification model of 

Townsend (1979), corresponds to the assumptions that t = 1 and (t
p
) is a constant.  

 

 

5. Conclusions and Regulatory Implications 

Events during the great liquidity and credit crunch in 2007-09 have highlighted the 

importance of financing frictions for macroeconomics. Unlike many existing papers in 

macroeconomics, our analysis is not restricted to local effects around the steady state. 

Importantly, we show that non-linear effects in form of adverse feedback loops and 

liquidity spirals are significantly larger further away from the steady state. Especially 

volatility effects and behavior due to precautionary motives cause these large effects. 

Second, we identify and isolate several externalities both within the financial sector and 

also from the financial sector to the real sector of the economy. Due to these externalities, 

financial experts leverage and maturity mismatch is excessive. We argue that financial 

regulation should aim to internalize these externalities. For this purpose co-risk measures 

have to be developed.  

 
 
Appendix A: Our contracting space. 
 
Consider a principal-agent environment, in which the agent generates cash flows  

 

dXt = (et, kt, t) dt + (kt, t) dZt, 

 

where et  {0, -E} is the agent‟s effort, kt is the scale of production and t is the state of 

the economy that evolves according to  

 

dt = t


 dt + t

 dZt, 
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and cannot be controlled by the agent or the principal.  Brownian motions Z and Z may 

be correlated. 

 

In our model  

 

(et, t, kt) = kt (a - ι(g) - (r - g)pt + t
p 
+ t

p
 + pt et)  and  (t, kt) = kt (pt + t

p
). 

 

Both the principal and the agent are risk-neutral, and the agent‟s discount rate  is greater 

than the risk-free rate r.  The agent‟s payoff flow is dct - h(et, kt, t) dt, where h(e, k, ) = 

b f()ke in our setting.  We assume that b < a/(r + ), so it is never optimal to let the 

agent not put effort (because it is always better to liquidate capital).   

 

There is a standard way to solve these problems using the agent‟s continuation value as a 

state variable, but those solutions may be challenging to relate to real world.  Much more 

intuitive is the approach of Fudenberg, Holmström and Milgrom (1990), who propose an 

implementation of the optimal contract with the agent‟s wealth as a state variable, in 

which the principal breaks even at any moment of time. Such an implementation exists 

whenever the principal‟s profit function F(wt, t) is decreasing in the agent‟s continuation 

value Wt, and the agent‟s continuation payoff as a function of wealth nt and the state of 

the economy t is  

 

wt = H(nt, t),  such that F(wt, t) = -nt. 

 

Agents enter short-term contracts with principals, characterized by variables t, kt and t.  

Under this contract the agent collects a fraction of output t, the principal collects 1 - t 

and pays the agent the fee  (1 - t) (et, kt, t) (so the principal breaks even) and the agent 

hedges t of aggregate risk, so that  

 

dnt = t dXt + (1 - t) (et, kt, t) dt + t dZt - dct 

 

Optimal short-term contracts (t, kt, t) can be found from the Bellman equation  

 

H(nt, t)dt = max, k, ,c,e dct - h(e, k, t) + E [ dH(nt, t) ] 

 

subject to the incentive-compatibility constraint that e maximizes 

 

 H1(n,) (e, k, ) - h(e, k, ). 

 

We do not allow the full contracting space in our paper, but limit the hedging of 

aggregate risk by forcing  to be 0.  With limited instruments, optimization leads to the 

value functions  

 

H(nt,t) = f(t) nt and F(wt,t) = -wt/f(t), 
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with F(wt,t) decreasing in wt as required by Fudenberg, Holmström and Milgrom 

(1990).  Thus, contracts in our paper are optimal dynamic contracts from a smaller 

contracting space, so we have contract incompleteness. 

 

In the section on securitization, we allow hedging of aggregate risk through a market 

mechanism within the financial sector.  This leads to a risk premium t on aggregate risk, 

so the agent‟s wealth evolve according to  

 

dnt = t dXt + (1 - t) (et, kt, t) dt + t (dZt + t dt) - dct. 

 

 

Appendix B: Contracting at kt  

Appendix B analyzes the case in which contracting directly on kt is possible instead of 

ktpt. For simplicity, we focus on the case where α=1. Expert manages capital that follows  

 

dkt = g kt dt +  kt dZt 

 

(if he puts effort) and produces output (a-i) dt.  Furthermore, suppose that the expert can 

“divert” capital, and get the marginal benefit of 1 units of capital per unit diverted 

(note: our baseline model corresponds to  = 1; we call it  in the paper).  The price of 

capital is pt and, because this is an expert, his outside value of funds is ft per dollar.  What 

is the optimal contract, if kt is used as the measure of performance? Consider contracts 

based on the agent‟s net worth as a state variable 

 

dnt = r nt dt + t (dkt - g kt dt) - t
f
/ft t  kt dt, 

 

where the incentive constraint is  

 

t   pt, 

 

since the expert gets  pt units of net worth (that can be used elsewhere to gain utility  pt 

ft) for one unit of capital diverted.   

Just to make sure that ft nt is a martingale, we have 

 

d(ntft) = (r nt dt + t  kt dZt - t
f
/ft t  kt dt) ft + (t

f
 dt + t

f
 dZt) nt +  t  kt t

f 
dt = 

 

d(ntft) = (r nt dt + t  kt dZt) ft + (( - r) ft dt + t
f
 dZt) nt =  (ntft) dt + volatility term, 

 

where we used the property that t
f
 = ( - r) ft (the same as in the main paper). 

 

Now, how about market price of capital?  If contracting is based on kt only, then 

households hire experts to manage their capital, but households themselves take on the 

price risk.  The market price of capital still depends on the experts‟ risk-taking capacity.  

The net worth of a household that holds capital kt evolves according to  
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(a - i) kt dt + d(ptkt) - t kt  dZt + t
f
/ft t  kt  dt =  

(a - i) kt dt + (ptkt) [(t
p
 + g +  t

p
) dt + ( + t

p
) dZt] -  ) - t kt  dZt + t

f
/ft t  kt  dt 

 

In expectation households should get the return of r ptkt, so we need 

 

(a - i)/pt + t
p
 + g +  t

p
 - r + t

f
/ft    = 0. 

 

This equation is different from the one in the paper because the risk premium is based 

only on exogenous risk (for which households must compensate the experts that manage 

their capital). 

Also, the law of motion of t will be different, since (combining the law of motion of nt 

and the condition that the households must get return r)  

 

dnt = r nt dt + (ktpt) [((a - i)/pt + t
p
 + g +  t

p
 - r) dt +   dZt ] 

 

has a missing endogenous risk term.  As a result,  

 

dNt = r Nt dt + Kt [ (a - i + (g + t
p 
+ t

p
 - r) pt) dt +   pt  dZt] 

 

and in combination with  

dKt = g Kt dt +  Kt dZt  d(1/Kt) = - g/Kt dt + 
2
/Kt dt - /Kt dZt

 
  

 

dt = r t dt + (a - i + (g + t
p 
+ t

p
 - r) pt) dt +   pt  dZt + t (-g dt + 

2
 dt -  dZt) -  


2
 pt dt =  

 dt = (r - g + 
2
) t dt + (a - i + (g + t

p 
+ t

p
 - r - 

2
) pt) dt +   (pt - t) dZt   

 

For the case when  = 1 (which is what we assume in our paper), 

 

t

 = (pt - t),  t

p
 = p(t)/pt (pt - t), 

 

so there‟s still amplification through leverage (that‟s the difference between the price of 

capital pt and experts‟ net worth t), but no more feedback effect through prices.  

 

t
p
 pt = p(t) [(r - g + 

2
) (t - pt) + (a - i + (t

p
 + t

p
)pt) ] + ½ (t


)

2
 p(t)   

  



t

p 
p'(t )[(r  g  2)(t  pt ) a  i  t

p pt ]
1
2
( t

 )2 p' '(t )

pt (1 p'(t ))
 

 

and the equilibrium can be characterized via ODEs just like in our model.  First, p() 

can be found from  

 

  




a  i

pt

 g  t

p  r 
 t

f

f t

 
p'(t )[(r  g  2)( pt ) a  i  t

p pt ]
1
2
( t

 )2 p' '()

pt (1 p'())
 

 

and f, from  
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( - r) ft = f(t) [(r - g + 
2
) (t - pt) + (a - i + (t

p
 + t

p
)pt) ] + ½ (t


)

2
 f(t). 

 

Of course, these equations don‟t look very insightful (but they can be used to compute 

equilibria) but the volatility formula t
p
 = p(t)/pt (pt - t) definitely is.  

 

Appendix C.  

 

Proposition A1. There is a stationary distribution of t only if the system never becomes 

absorbed at -a/(r+) because assets are liquidated sufficiently fast when t approaches -

a/(r+).  In that case, the stationary density must satisfy the standard equation  

 

½ d
2
/d

2
 (


()

2
 d()) + d/d (


() d()) = 0, 

 

where 

 = ((r - g + 

2
)  + a - (g)  and 


 = - .  The relevant boundary conditions 

are d(
*
) = 0 (because it is a reflecting boundary) and  



d()d
L

*

 1.
 

Proof.  To be completed.  
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