Discussion of "A Model of Moral-Hazard Credit Cycles" by Roger Myerson

Mikhail Golosov

June 11, 2010

Golosov ()

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Moral hazard in investment
 - bankers pick projects, face moral hazard
- Bankers live *n* periods, $1 < n < \infty$
- Investors sign optimal long term contract with bankers
 - investment cycles emerge in equilibrium
 - may be suboptimal for the "workers" who cannot invest

Simple version of the model

- Two technologies
 - $\bullet\,$ simple risk-free saving with rate $(1+\rho)$
 - sophisticated with return F(K, L)
- A banker is needed to deliver investment K into sophisticated technology
 - no effort of banker is needed
 - banker can run away with capital before investing
- OLG bankers live for two periods, young and old.
- ullet Risk neutral, have discount factor $\left(1+
 ho
 ight)^{-1}$.

- Optimal static contract
 - Pay $b \ge K$ to banker if he makes an investment
 - Return on investment $\frac{1}{1+\rho}F(K,L) b$
- Optimal dynamic contact
 - Postpone paying b by one period with interest
 - Pay $(1+
 ho)\,b$ in period 2 if banker also makes investment ${\cal K}^{o} \leq (1+
 ho)\,b$
 - If investors promise b to banker when old
 - banker invests $\frac{1}{1+\rho}b$ when young
 - banker invests b when old

《曰》 《圖》 《문》 《문》

Putting everything into a model

- Consumers have utility c v(L)
- $\bullet~{\rm Discount}~{\rm factor}~{(1+\rho)}^{-1}$
- Treat them as if infinitely lived
 - in the paper they also OLG
 - do not think it matters

Social Planner's problem

• Planner solves

$$\max \sum_{t=0}^{\infty} \left(\frac{1}{1+\rho}\right)^t [c_t - v(L_t)]$$

s.t.

$$\begin{split} \mathcal{K}_{1,t+1} + \mathcal{K}_{2,t+1} + c_t + b_t &\leq F(\mathcal{K}_{1,t,}\mathcal{L}_t) + (1+\rho) \, \mathcal{K}_{2,t} \\ h_t^o + h_t^y &\geq \mathcal{K}_{1,t} \\ b_t &\geq h_t^o \\ b_t &\geq (1+\rho) \, h_{t-1}^y \\ b_0 \text{ is given} \end{split}$$

• Last constraint: implicit promised made to the initial old bankers

key for understanding cycles

Cycles

• First order conditions

$$1 = \left(\frac{1}{1+\rho}\right) F_{\mathcal{K}}(t+1) - \mu_t$$

Using other FOCs can show

$$\mu_{t+1} = 1 - \mu_t$$

• Thus, μ_t follows a cycles

• Initial multiplier μ_0 is pinned down by b_0 promised to the initial old banker

- there is unique b₀ leadings to constant investments
- any other b₀ lead to cycles

• Conjecture: same cycles emerge with aggregate shocks for any b₀

< = > < = > < = > < = >

- Suppose hired a lot of young bankers yesterday \Longrightarrow b_0 is high
- Today they all work for free \implies invest a lot, need to hire few young bankers
- $\bullet\,$ Tomorrow there are few old bankers working for free \Longrightarrow need to hire more costly young bankers
- Since overall investment is more costly tomorrow, investment tomorrow is low
- Day after tomorrow the cycle repeats itself

- Cycles are a generic property of the solution
 - cycles also Pareto efficient
- What if we could choose b_0 ?
 - set $b_0 = 0$
 - it is always better to hire young banker since tomorrow he will work for free
- The biggest cycle of all seems the most efficient
- It also lies in the background of some of the policy experiments in the paper

• The paper focuses on welfare of workers

$$F_L(K_t, L_t)L_t - v(L_t)$$

- ignore bankers
- Considers OLG workers
 - cycles are Pareto efficient
 - elimination of cycles may be desirable if focus on average welfare

Sac

< ロト < 回ト < 三ト < 三ト</p>

Conclusion

- Fascinating paper
- Optimal contracts naturally lead to cycles
 - examples in the paper: slow growth, then sudden crash
- Not sure about applications to the financial crisis in Japan and the US

Sar

・ロト ・日 ・ ・ モ ・ ・