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1 Introduction

Several studies report interest rate elasticities for money demand below one half,
the value predicted by the Baumol-Tobin model. It is also widely documented that
money holdings decrease as new technologies to economize in the use of cash are
introduced. We also document other patterns that di¤er from the predictions of the
Baumol-Tobin model, as well as from the Miller and Orr model. One is that interest
rate elasticity of the average number of withdrawals is smaller than 1/2. The other is
that the average ratio of withdrawal to average cash holdings is between 1.2 and 1.4.
This paper develops a dynamic inventory model for cash balances that is consistent
with the features mentioned above.
In Section 2 we discuss some patterns of currency holding behavior based on a

panel data of Italian households. Section 3 analyzes the e¤ects of �nancial di¤usion
using a deterministic steady-state model that allows a close comparison with the
well known results of Baumol and Tobin. The core of this section is a simple model
where, as opposed to the case in Baumol and Tobin, agents have a deterministic
number of free withdrawals per period. We show that both the level of money
demand and the interest rate elasticity decrease as the number of free withdrawals
increases. Section 4 introduces our benchmark stochastic dynamic inventory model.
In this model agents have random meetings with a �nancial intermediary in which
they can withdraw money at no cost. This is a dynamic version of the model of
Section 3. The implications of this model concerning the distribution of currency
holdings, the aggregate money demand, the average number of withdrawals and the
average size of withdrawals are presented in Section 5. We show that, qualitatively,
the model reproduces the features of the data that we highlight in Section 2. A
comparison between the money demand implied by this model and the one used in
the steady state analysis of Section 3 is developed in Section 6 (To be completed).
Section 7 generalizes the model of Section 4 to a more realistic set up. Section 8
presents a calibration of the model to the Italian household data.
Before describing the data we brie�y discuss two related models in the literature.

These models provide a rationale for an interest rate elasticity smaller than 1/2, the
value obtained in the Baumol and Tobin model. The explanation we propose is
complementary to the ones in those papers because it focuses on the level and
interest rate elasticity of individual households demand for money.
Miller and Orr (1966) study the optimal inventory policy of cash for an agent

subject to stochastic cash in�ows and out�ows, and obtain an interest rate elasticity
of 1=3: Their model is more suitable for the problem faced by �rms, given the
nature of stochastic cash in�ows and out�ows. Instead, our paper focuses on a
problem that better describes individual consumers problem, since we study the
optimal inventory policy of cash for an agent that faces deterministic cash out�ows
(consumption expenditure) and no cash in�ows. To be consistent with our model,
when we analyze micro-level household data, we exclude households headed by self-
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employed.
Mulligan and Sala-i-Martin (2000) also study a model where the aggregate money

demand can feature interest rate elasticity smaller than 1/2. In their model agents
must pay a �xed cost to have a deposit account. Agents who face a low value for
the total bene�t of investing their wealth (either because wealth is low or because
its return is low) will not pay the �xed cost and hence locally they will show a
zero elasticity to changes in interest rates. Their model o¤ers an explanation for a
low interest elasticity of aggregate money demand. Instead, we concentrate on the
interest rate elasticity of individual demands, by using micro-level household data
and conditioning on the agents who do possess an interest bearing deposit account.

2 Cash Holdings Patterns of Italian Households

This section presents summary statistics of the cash holdings patters of Italian house-
holds from the Survey of Household Income and Wealth.1 We focus on the surveys
conducted from 1989 to 2004 because they include a section dedicated to the house-
hold cash management. Table 1 reports cross section averages of some key money
holdings statistics, normalized by daily cash expenditures.2

Two statistics of Table 1 are at odds with the simplest versions of two classic
money demand models: the one by Baumol and Tobin (BT henceforth) and the one
by Miller and Orr (MO henceforth). First, households withdraw even if their cash
balances are not zero, as they report that the minimum cash balances that triggers
a withdrawal is about one third of their average cash balances. Second, the average
ratio between the bank (and ATM) withdrawal and the currency holdings is just
below 1.4 for households without an ATM card and below 1.2 for those with an
ATM card. For comparison, this ratio is 2 in the BT model and 3/4 in the MO
model.
Table 2 reports summary statistics on the supply of bank services, such as the

di¤usion of bank branches and ATMs, and on the interest rate paid on deposits.3

Di¤erences in nominal interest rates across provinces (witnessed by the standard
deviations reported in parenthesis) are the result of segmentation in banking mar-

1This is a periodic survey of the Bank of Italy that collects information on several social and
economic characteristics of household members, such as age, gender, education, employment, in-
come, real and �nancial wealth, consumption and saving behavior. Each survey is conducted on a
sample of about 8,000 households.

2Cash consumption is only available since 1993. In Appendix F we display simlar informa-
tion de�ating the nominal quantities by daily consumption of non-durable and services, which is
available since 1989.

3These data are drawn from the Supervisory Reports to the Bank of Italy and the Italian Central
Credit Register. Elementary data on ATMs and interest rates are available at the province/year
level (the sample covers about 100 provinces; the size of a province is broadly comparable to that
of a U.S. county). Elementary data for bank branches are available at the city/year level (the
sample covers about 400 cities).
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Table 1: Households�currency holdings
Variable 1993 1995 1998 2000 2002 2004
Average currencya

Household w/o account 16.8 20.0 19.9 21.6 26.7 25.2
Household w. account
w/o ATM 15.6 17.1 19.0 17.4 16.9 17.7
w. ATM 10.8 11.4 13.2 12.5 13.0 13.9

Average withdrawala

Household w/o ATM 23.8 20.4 23.9 21.1 21.2 21.5
Household w. ATM 10.9 9.5 12.5 11.6 11.4 12.4

Withdrawal to Currency Ratioe

Household w/o ATM 1.4 1.3 1.3 1.3 1.4 1.3
Household w. ATM 1.2 1.1 1.1 1.2 1.2 1.1

Minimum currencya;b

Household w/o ATM 5.4 4.2 7.7 6.6 6.3 na
Household w. ATM 3.9 2.9 4.2 4.7 4.6 na

Number of withdrawalsc

Household w/o ATM 12.3 13.1 19.8 16.5 17.5 17.9
Household w. ATM 48.0 49.5 58.6 61.7 56.7 63.1

Non durable consumption and servicesd

Household w/o ATM 12,839 14,867 13,494 14,149 15,141 16,606
Household w. ATM 17,651 20,007 19,784 21,530 22,599 24,090

Share of cash expendituresf

Household w/o ATM 0.69 0.68 0.66 0.68 0.67 0.64
Household w. ATM 0.65 0.63 0.60 0.57 0.54 0.50

N. of Observations 8,089 8,135 7,147 8,001 8,011 8,012

Notes: aRatio to daily expenditures done in cash. - bReported level of currency holdings that
triggers a withdrawal. - cPer year. - dIn euros, in year 2000 prices. - eComputed excluding
households with a ratio bigger than 4. - fRatio of cash expenditure to consumption of
nondurables and services. Source: Bank of Italy - Survey of Household Income and Wealth;
entries computed using sample weights.

kets.4 Until the early nineties commercial banks faced restrictions to open new bank
branches in other provinces. A gradual process of liberalization has occurred since
then, which has led to a sharp increase in the number of bank branches and a reduc-
tion of the interest rate di¤erentials (see Casolaro, Gambacorta and Guiso (2006)
for a review of the main developments in the banking industry during the past two
decades).
Table 3 presents least square regressions of the currency to consumption ratio for

two groups of households: those with a deposit account but without an ATM card
(�rst and second column) and those with a deposit account and an ATM card (third
and fourth column). Since the model we present below focuses on the currency

4They do not re�ect di¤erences in the services or features of the underlying checking account
(these statistics are built with the main objective of ensuring comparability and thus focus on a
highly homogenous type of service).
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Table 2: Financial development and interest rates

Variable 1989 1991 1993 1995 1998 2000 2002 2004
Bank branchesa;b na 0.34 0.38 0.42 0.47 0.50 0.53 0.55

(na) (0.13) (0.13) (0.14) (0.16) (0.17) (0.18) (0.18)
ATMa;c na 0.22 0.31 0.39 0.50 0.57 0.65 0.65

(na) (0.13) (0.18) (0.19) (0.22) (0.22) (0.23) (0.22)

Interest ratec;d 6.96 6.74 6.10 5.23 2.15 1.16 0.77 0.32
(0.49) (0.52) (0.42) (0.32) (0.23) (0.22) (0.15) (0.11)

Notes: Cross-section mean (standard deviation in parenthesis). a Per thousand residents. -
b Elementary data available at the city / year level. - c Elementary data available at the
province / year level. d Net nominal interest rates expressed in percentages (Source: Central
credit register).

demand of consumers we remove from the sample the data of households whose
head is a self employed. 5

Table 3: The household (HH) demand for currency

Dependent variable: log(M=c) HH w/o ATM HH w. ATM
log(R) -0.02 -0.08 -0.06 -0.09

(0 .02) (0 .09) (0 .02) (0 .12)

log(R) � bank-branches 0.15 0.07
(0 .24) (0 .29)

bank-branches -0.84 -0.94 -0.96 -0.99
(0 .21) (0 .27) (0 .22) (0 .26)

Sample size 13,032 13,032 15,292 15,292

Notes: OLS regressions based on 1993-2002 surveys; the dependent variable is the (log of)
household average cash holdings relative to cash expenditures. Robust standard errors (in
parenthesis) are computed by clustering observations at the province*year, the �nest level
of disaggregation at which the interest rate is available. Bank-branches is de�ned as bank
branches per capita at the city level; The net nominal interest rate is measured in percent
(see Table 2).

The estimates display a systematic negative correlation between the (log of the)
level of currency holdings and the di¤usion of bank branches. The correlation of cash
holdings with the interest rate is small and imprecisely estimated. We think that
the identi�cation of the e¤ects of interest rate on cash holdings is complicated by the
fact that, as Table 2 shows, both variables display a time trend during the short time
period covered by this data set. The regressions in Table 4 use year and province

5Keeping these households, who make a great number of visits to the bank most probably for
business reasons, does not alter the regressions results substantially.
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dummies in an attempt to remove unobserved time and regional e¤ects a¤ecting
money demand, e.g. di¤erences in the incidence of small crime, a factor which likely
reduces currency holdings. The point estimate of the interest rate elasticity is about
1/4 in absolute value, which are much larger than the ones estimated in Table 3.
The coe¢ cient for bank branches remains negative, although it is about one third
as large. The regressions with an interaction term display the same patterns, with
interest rate elasticities that are decreasing (in absolute value) in the level of �nancial
di¤usion. Thus these regressions imply that more �nancial development imply less
response of currency holdings to interest rate variations. The size of the standard
errors for the regressions that include year and province dummies imply that these
e¤ects are imprecisely measured.

Table 4: The household (HH) demand for currency - year and province dummies

Dependent variable: log(M=c) HH w/o ATM HH w. ATM
log(R) -0.20 -0.36 -0.22 -0.35

(0 .15) (0 .17) (0 .14) (0 .18)

log(R) � bank-branches 0.36 0.28
(0 .18) (0 .21)

bank-branches -0.26 -0.46 -0.37 -0.45
(0 .25) (0 .28) (0 .22) (0 .24)

Sample size 13,032 13,032 15,292 15,292

Notes: OLS regressions based on 1993-2002 surveys; the dependent variable is the (log of)
average cash holdings relative to cash expenditures. Robust standard errors (in parenthesis)
are computed by clustering observations at the province*year, the �nest level of disaggre-
gation at which the interest rate is available. The regressors also include a constant, year
dummies and 103 province dummies. Bank-branches is de�ned as bank branches per capita
at the city level; The net nominal interest rate is measured in percent (see Table 2).

Table 5 and 6 report analogous estimates for the (log of the) average number of
withdrawals per year for households with and without ATM cards. The regressions
without year and province dummies in Table 5 display a systematic positive correla-
tion between the level of currency holdings and the di¤usion of bank branches. The
correlation with the interest rate is small and imprecisely estimated. The regressions
in Table 6 introduce year and province dummies, and obtain interest rate elastici-
ties of about 1/3, which are much larger than the ones estimated in Table 5. The
coe¢ cient for bank branches remains positive. The regressions with an interaction
term display the same patterns, with interest rate elasticities that are increasing
in the level of �nancial di¤usion. Thus these regressions imply that more �nancial
development imply less response of the average number of withdrawals to interest
rate variations. As in the case of the average currency holdings, the standard er-
rors for the regression with year and province dummies show that these e¤ects are
imprecisely measured.
The results in tables 3-6 are robust both to including a battery of demographics
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Table 5: Number of withdrawals
Dependent variable: log(n) HH w/o ATM HH w. ATM
log(R) -0.08 -0.02 -0.07 -0.13

(0 .02) (0 .11) (0 .01) (0 .06)

log(R) � bank-branches -0.16 0.17
(0 .27) (0 .16)

bank-branches 0.80 0.94 0.69 0.60
(0 .29) (0 .26) (0 .13) (0 .16)

Sample size 12,901 12,901 17,054 17,054

Notes: OLS regressions based on 1993-2002 surveys; the the dependent variable is the (log of)
number of withdrawals. Robust standard errors (in parenthesis) are computed by clustering
observations at the province*year, the �nest level of disaggregation at which the interest
rate is available. Bank-branches is de�ned as bank branches per capita at the city level; The
net nominal interest rate is measured in percent (see Table 2).

Table 6: Number of withdrawals - year and province dummies
Dependent variable: log(n) HH w/o ATM HH w. ATM
log(R) 0.29 0.14 0.34 0.34

(0 .12) (0 .15) (0 .11) (0 .12)

log(R) � bank-branches 0.31 0.01
(0 .19) (0 .13)

bank-branches 0.44 0.23 0.37 0.37
(0 .23) (0 .26) (0 .16) (0 .17)

Sample size 12,901 12,901 17,054 17,054

Notes: OLS regressions based on 1993-2002 surveys; the the dependent variable is the (log of)
number of withdrawals. Robust standard errors (in parenthesis) are computed by clustering
observations at the province*year, the �nest level of disaggregation at which the interest
rate is available. The regressors also include a constant, year dummies and 103 province
dummies. Bank-branches is de�ned as bank branches per capita at the city level; The net
nominal interest rate is measured in percent (see Table 2).

as well as adding the (log of) consumption cash expenditures to the regressors.6

Finally we compare the estimated interest rate elasticities with the predictions
of the BT and MO model. In the BT model, the interest rate elasticity of currency
holdings is -1/2 and the elasticity of the average number of withdrawals is 1/2, which
are larger in absolute value relative to the ones reported in the regression in Tables
3-6. In the MO model the interest rate elasticity of currency holdings is -1/3, a
value close to one estimated in the regressions in Table 4. Nevertheless, the MO
model predicts an interest rate elasticity of the average of number of withdrawals of
2/3, which is even larger than the one predicted by the BT model, and larger than

6The following demographic controls were considered: the number of children, adults and income
earners in the household and the age, education and occupational status of the household head.
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the one estimated in the regressions above.

3 Money demand : a deterministic steady state
problem

In this section we model a form of technological progress on the withdrawal tech-
nology and discuss its implications for money demand. We conduct the analysis by
focusing on steady state calculations. We minimize the steady state cost of attaining
a given constant �ow of consumption, as opposed to minimizing the expected dis-
counted cost. We do this to increase the comparability with the standard derivation
of the Baumol-Tobin money demand and to simplify the exposition of the e¤ect of
progress on technology for withdrawals from banks. In particular, this calculation
helps understand why the level of the money demand and its interest rate elasticity
are smaller for better withdrawal technologies.
Consider the following steady state problem. We let M be the average money

balances, and T (M; c) be the average (steady state) number of costly withdrawals
from the bank per unit of time required to �nance a consumption �ow c when
the average money balances are M . The function T depends on the withdrawal
technology available to agents. We assume that T is decreasing in M; so that
fewer withdrawals require higher average balances, and that T is convex, so the
minimization problem is well behaved. We letR be the net nominal interest rate, and
b the cost of each withdrawal. The average money demand solves the minimization
problem

min
M

R M + b T (M; c) (1)

The optimal choice ofM must balance the impact on the cost due to forgone interest,
R M with the e¤ect on the cost of withdrawals, T (M; c) : The formulation of this
problem, as in the traditional BT model, uses three simplifying assumptions:

(A1) Steady state assumptions

(i) average (steady state) money balances times the interest rate is used to measure
the cost, instead of the discounted interest rate cost, and

(ii) the average (steady state) number of withdrawals from the bank is used as
opposed to the discounted (expected) cost of withdrawals,

(iii) R is not an argument of the function T:

The assumptions behind this formulation make the comparative statics analysis
of the optimal M simple and intuitive. In particular the combination of iii) and
the Fisher equation (say that R = r + � for a �xed interest rate r), implies that
the in�ation rate � is not an argument of T . This is not completely satisfactory
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because if c and M denote real variables then the in�ation rate should appear as
an argument of T; as in�ation erodes the real value of money holdings.7 We will
remove these simplifying assumptions in the analysis of Section 4.
The �rst order condition for problem (1) is:

R + b T 0 (M (R) ; c) = 0:

In this �rst order condition T 0 (M) � @T (M; c) =@M is the decrease in the cost of
withdrawals due to an extra unit of money holdings, and R is the marginal cost of
forgone interest due to an extra unit of money. We will refer to T 0 as the marginal
cost of a withdrawal and to �R as the marginal bene�t of an increase in M .
We turn to the analysis of the elasticities of M with respect to c; b and R. We

consider withdrawal technologies T (M; c) which are homogeneous of degree zero on
(M; c) : The idea is that if an agent needs to �nance twice as much expenditure, it is
feasible to double the size of each withdrawal (leaving all other features of her plan
unaltered), hence keeping the average number of withdrawals T �xed. Using this
homogeneity, the problem can be rewritten so the object of choice the ratio M=c as
follows

min
M=c

�
cR

b

��
M

c

�
+ T

�
M

c
; 1

�
The next remark summarizes some key features of the money demand.

Remark 1 Assume that T is homogenous of degree zero in (M; c) ; thenM (R; c; b) is
homogenous of degree one in (b; c) , which implies that M

c
is a function of cR

b
; namely

M
c
= (T 0)�1

�
� cR

b

�
: This, in turn, implies the following result:

b

M

@M

@b
+

c

M

@M

@c
= 1;

� R

M

@M

@R
=

b

M

@M

@b
:

Moreover, if T is convex in the sense that:

@2T

@M2
> 0 and

@2T

@c2
� 0

then

0 � � R

M

@M

@R
� 1

2
� c

M

@M

@c
� 1 :

Proof. See appendix B.
7Alternatively, one might take c andM to denote nominal quantities, which is an unsatisfactory

characterazion of the consumption behavior. Yet another (not so satisfactory) interpretation is that
the in�ation rate does not change as R changes, which means that the model comparative statics
concern changes in the real rate r.
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The assumption that @2T=@M2 > 0 implies that minimization problem is well
posed. The quantity @T=@c measures the additional average number of withdrawals
that the agent needs to �nance an increase in the �ow of consumption c; keeping
the same average cash balances M: The assumption that @2T=@c2 � 0 implies that
there are decreasing returns to scale relative to withdrawals. In Sections 3.1 and 4 we
present technologies that parametrize the degree of decreasing returns, as related
to rate at which agents can meet with a �nancial intermediary. Notice that the
upper bound of 1=2 on the interest rate elasticity is attained in the classical BT
speci�cation, since there @2T=@c2 = 0:
A central point of our inquiry is to analyze the e¤ect of technological changes in

T on the money demandM: To do so we present two comparative static results, one
about the level of money demand, and the other about its interest rate elasticity.
Consider two withdrawal technologies Ti for i = 1; 2 and their corresponding money
demands, Mi for i = 1; 2:

Remark 2 If the marginal cost of withdrawals is higher, then the money demand
is lower. Formally, if

T 02 (M) � T 01 (M) for all M

then
M2 �M1 for all R � 0:

This remark follows from the foc of the problem using that T is convex in M .
Before stating the second result it is useful to understand the determinants of the
interest rate elasticity of the money demand. In this model the interest rate elasticity
is inversely related to the curvature of the cost function T: In particular,

� R

M

@M

@R
= 1 =

�
M

T 00

�T 0

�
: (2)

This follows from di¤erentiating the foc from the optimal money demand w.r.t. R :

1 + bT 00
@M

@R
= 0

using the foc again to replace R; and rearranging. The expression �M T 00=T 0 � 0 is
a measure of the local curvature of the cost function T: It is also the elasticity of the
marginal cost T 0: Thus, (2) says that if the marginal cost is more sensitive to M ,
then the money demand is less sensitive to interest rate changes. The next result
follows directly from (2)

Remark 3 If the interest rate elasticity of the marginal cost of withdrawals is
higher, the interest rate elasticity of the money demand is smaller. Formally, assume
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that at a given R

M2
T 002 (M2)

�T 02 (M2)
� M1

T 001 (M1)

�T 01 (M1)

then

� R

M2

@M2

@R
� � R

M1

@M1

@R
:

Notice that the assumption in Remark 3 is that the curvature of T2 is greater than
the one of T1 evaluated at the, potentially di¤erent values, of the money demands
M2 and M1:

3.1 A technology with (exactly) p free withdrawals

Now we use these results to analyze the e¤ect on money demand of a simple form
of technological progress in T: We consider

Tp (M; c) = maxf(c=2)
M

� p; 0g : (3)

The parameter p index the level of technology T; in particular it has the interpreta-
tion of the average number of free withdrawals per unit of time.
Setting p = 0 in (3) all the trips are costly, and we obtain as a baseline case the

classical Baumol-Tobin,

T0 (M; c) =
(c=2)

M

An agent with consumption �ow c; withdraws 2 M; which last 2M=c periods, and
hence has average balances M and makes (c=2M) trips to the bank. Notice that
T0 has a marginal cost function T 00 has a constant elasticity equal to 2; which implies
the well known result that the money demand elasticity is 1=2:
The interpretation of the case of p > 0 is that the agent has p free withdrawals,

so that if the total number of withdrawals is (c=2) =M; then she pays only for the
excess of (c=2) =M over p; which gives the expression (3).
Throughout the analysis in this section we allow T to take any real value. How-

ever, the speci�cation of the technology in (3) essentially puts a lower bound of
p on T: This is similar to the seminal analysis of Tobin (1956) where the integer
constraint on the number of transactions is carefully taken into account. Of course
the integer constraint puts a lower bound equal to zero on the number of transac-
tions. Our speci�cation of Tp can be thought of as allowing the lower bound on the
transactions to be a parameter that indexes technological change.
The following is a concrete set-up that gives rise to the assumption of p free

withdrawals used for the speci�cation of the technology Tp: Assume that the cost
b represents the opportunity cost of the time of a trip to a bank branch or an ATM.
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Think of an agent who, on her way to the ball game, passes by a bank branch or an
ATM, say once a week. In this case we can represent the technology Tp as saying
that she has one free withdrawal a week, or p = 1 per week. Now imagine that an
ATM is installed on the way of her job, and assume that she works 6 days a week.
This �technological improvement" can be represented by an increase in p; so that
she gets 7 free withdrawals a week, or p = 7 per week:
In Section 4 we discuss a model where agents get a possibility of a free withdrawal

at random times, a speci�cation that we think better captures the availability of
bank branches and ATM machines. This alternative technology is more di¢ cult to
analyze because the optimal pattern of cash holdings is not longer sawtooth (i.e.
one of withdrawing only when cash attains zero value). While we think that the
random withdrawal model is more realistic, the simple model using the Tp technology
captures the key features of the e¤ect of technological innovation on individual
money demand.
The money demand for technology p � 0 is given by

Mp (R) =

8<:
q

b c
2 R

for R � R�q
b c
2 R� for R < R�

(4)

where
R� � (p)2 2b=c : (5)

Consider the case where p = 0; so that it is the BT set-up: In this case, for low
R the forgone interest cost is small, so that agents decide to economize in costly
withdrawals, and hence choose a large value ofM: Now consider the case of p > 0: In
this case there is no reason to have less than p withdrawals per unit of time, since
these are, by assumption, free. Hence, for all R < R� agents will choose the same
level money holdings, namely, Mp (R) =Mp (R

�) ; since they are not paying for any
withdrawal but they are subject to positive forgone interest rate costs (hence the
interest elasticity is zero for R < R�). Since for p > 0 the money demand is constant
for R < R�; it is both lower in its level and it has a lower interest rate elasticity
than the money demand from the BT model. Indeed, (4)-(5) implies that the range
of interest rate R for which the money demand is lower and has lower interest rate
elasticity is increasing in p:
Improvements in the particular technology described in (3) produce a money

demand that is lower in level and has a smaller interest rate elasticity because it
indeed satis�es the assumptions for remarks 2 and 3 presented above. To see this,
consider two technologies indexed by 0 � p1 < p2: These technologies satisfy the
following three properties:

i) A greater value of p represents technological progress, because Tp is decreasing
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in p; formally
Tp2 (M; c) � Tp1 (M; c)

with strict inequality for M < (c=2) =p1:
ii)While a greater value of p gives a lower total cost, a higher value of p increases

the marginal cost T 0p; at least for some values of M: In particular,

0 = T 0p2 (M; c) > T 0p1 (M; c) for (c=2) =p2 < M < (c=2) =p1

and equal otherwise.
iii) A greater value of p increases the curvature of Tp: To see this, notice that

Tp2 can be obtained by applying an increasing and convex transformation to Tp1 : Formally,

Tp2 (M; c) = g (Tp1 (M; c))

for
g (�) = maxf� � (p2 � p1) ; 0g;

which is increasing and convex in � .
LetMp1 andMp2 be the money demand corresponding to the two technologies.

Given Property ii); applying remark 2, we have that a better technology yields a
lower money demand. Using Property iii) one can verify the conditions for remark
3, and hence that a better technology yields a lower interest rate elasticity of the
money demand.
The analysis of the money demand and remarks 2 and 3 were obtained assuming

that T was di¤erentiable as a function of M: The technology Tp is not di¤erentiable
at one point, but the analysis goes through with minor modi�cations. Notice also
that changes in this technology, i.e. changes in p; produce stark changes in the money
demand. In the rest of the paper we consider the case of random withdrawals where
the changes in p produce smooth changes in the money demand.

4 Money demand: a stochastic dynamic problem

This section extends the analysis along two dimensions. First, it takes an explicit
account of the dynamic nature of the cash inventory problem, as opposed to the
steady state analysis of Section 3. In doing so it also relaxes the steady state
assumptions in (A1). Second, it introduces a variation on the withdrawal technology
considered in Section 3.1. In particular, the technology considered here is one where
agents have a Poisson arrival of free opportunities to withdraw cash , as opposed to
the assumption of Section 3.1 of having a deterministic number of free withdrawals
per period. We think that, relative to the deterministic number of free withdrawals,
this assumption is a more realistic depiction of reality. Our maintained assumption
is that the main component of the cost for a withdrawal is the opportunity cost
of the households. We imagine that, for a given density of ATMs and bank desk,
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an agent bumps into them at certain rate per unit of time �denoted by p in the
model: These are chance meetings with an intermediary that involves zero cost of
withdrawal8. We argue that random meetings with a �nancial intermediary is a
more realistic depiction of the opportunities faced by households. Our hypothesis
is that, as the density of bank branches and ATMs increases, then households get
more of these free opportunities to withdraw.
This model has several advantages, besides realism in the modeling of the search

technology, over the one with a �xed deterministic number of withdrawals per pe-
riod. First, a piece of evidence in favor of the random meeting model is that house-
holds withdraw much before their cash balances reach zero (see the statistics on the
minimum currency in Table 1). A related feature, is that the model with random
meetings implies, as shown in the data of Table 1 �and contrary to the implication
of the basic BT model and of the model with exactly p free withdrawals�that the
ratio of the average withdrawal to the average cash balances is below 2. Second, the
model with random meetings smooths out some of the stark features of the model
with exactly p free withdrawals. For instance, it turns out that its interest elasticity
is lower than 1=2 for the whole range of interest rates, as opposed to be either 1=2 or
0: Third, the random meeting model implies that the interest rate elasticity of the
average number of withdrawals is, in absolute value, smaller than the interest rate
elasticity of the money demand, a feature that �nds some support in the Italian
households data (Tables 3 and 4).
Additionally, we think that the explicit dynamic nature of the model will allow

us to use it in future work as a building block of a more complete model of cash
management, where the decision of paying with cash is formally introduced. Finally,
it turns out that the cost of introducing random meetings in an explicitly dynamic
model is small, in the sense that the agent decision problem turns out to be very
tractable, with an almost close form solution, a feature that we plan to use in a
structural estimation of the model.
We turn now to the description of the agent problem. She faces a cash-in-advance

constraint and can withdraw or deposit from an interest bearing account. The
sequence problem is to choose an increasing sequence of stopping times f� jg at which
to withdraw (or deposit) money in an interest bearing account, and the amounts to
withdraw at each time, so as to minimize the expected discounted cost of �nancing
a given constant real consumption �ow c; denoted by TC0:

TC0 (� ;m) = E0

" 1X
j=0

e�r � j
�
b I�j +

�
m
�
�+j
�
�m

�
��j
��	#

(6)

where we use m (t) to denote the real value of the stock of currency. The stock of
currency jumps discontinuously up at the time of a withdrawal, so use m (t+) and

8In section 7 we extend the model by assuming that withdrawals that occur upon these chance
meetings, rather than being free, are subject to a small �xed cost.

14



m (t�) to denote the right and left limits of m: Thus the amount of a withdrawal at
� j is m

�
�+j
�
�m

�
��j
�
: The law of motion of the real value of the stock of money

between withdrawals is given by

dm (t)

dt
= �c�m (t)� (7)

where � is the in�ation rate and c the real consumption �ow . We assume that
the agent contacts a �nancial institution with an exogenous probability p per unit
of time. More precisely, contacts with the �nancial intermediary follow a Poisson
process with arrival rate p: In the case of a contact the agent can withdraw (or
deposit) money in an interest bearing account without incurring a cost. If the agent
wants to withdraw (or deposit) in the �nancial institution in any other time, it
must pay a real cost b: The indicator I�j takes the value of zero if the withdrawal (or
deposit) takes place at the time t = � j of a contact with a �nancial intermediary, and
takes the value of one otherwise. The agent chooses stopping times and withdrawals
as function of the history of contacts with the intermediary. We use r for the real
rate at which cash �ows are discounted. The initial conditions for the problem are
the real cash balances, m (0) = m0 and whether at time t = 0 the agent is matched
with a �nancial intermediary or not.
We de�ne the shadow cost of a policy f� j;mg as the expected discounted cost of

the withdrawals plus the expected discounted opportunity cost of the cash balances
held by the agent. We denote the shadow cost as SC0; which is given by:

SC0 (� ;m) = E0

" 1X
j=0

e�r � j
�
b I�j +

Z �j+1��j

0

R m (� j + t) e�rt dt

�#
(8)

where R is the nominal interest rate and m follows the law of motion (7). The
shadow costs is de�ned in terms of the opportunity cost R and the parameters used
to de�ne the total cost, (r; p; �; b): In the next Proposition we show that, provided
the Fisher equation R = r + � holds, then the total cost can be written as the
shadow cost plus the present value of c:

Proposition 1 Assume that R = r+ �: For any policy f� ;mg the total cost equals
the shadow cost plus the present value of c; or

TC0 =
c

r
+ SC0 :

Proof. See appendix B.

Proposition 1 implies that minimizing the shadow cost is equivalent to minimiz-
ing the total cost only when R = r+�. Nevertheless, below we consider the shadow
cost problem for the general case of arbitrary values for R; r and �. We keep this
general case for two reasons. One is to accommodate other costs and bene�ts of
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holding cash (such as the costs of petty crime). The second relates to the literature,
such as the classic papers by Baumol and Tobin, that does not impose the Fisher
equation as discussed above.
We use Vs (m) for the value function corresponding to the minimization of the

shadow cost:
Vs (m0) = min

�;m
SC0 (� ;m) (9)

subject to m (0) = m0 and where s = f denotes that the agent is matched to a
�nancial intermediary and s = u that she is not. The next section solves for V:
Finally, Proposition 1 also helps linking the dynamic model with the steady state

analysis done in Section 3. Each of the terms

b I�j +R

Z �j+1��j

0

m (� j + t) e�rt dt

in the summation of the shadow cost is similar to cost b T (M; c)+RM in the steady
state formulation of Section 3. The di¤erence is that here

R �j+1��j
0

m (� j + t) e�rt dt are
real balances, as opposed to the nominal M , and that the consumption �ow c in (7)
that is to be maintained constant is also real, as opposed to nominal, as discussed
above.

4.1 Bellman equation for V and optimal policies

We now describe the Bellman equation for Vs (�), �nd an analytical solution for it
and the associated optimal policy. We �rst write down the Bellman equation for an
agent unmatched with a �nancial intermediary and holding a real value of cash m.
The only decision that this agent must make is whether to remain unmatched, or
to pay the �xed cost b and be matched with a �nancial intermediary. If the agent
chooses not to contact the intermediary then, as standard, the Bellman equation
states that the return on the value function rVu (m) must equal the �ow cost, given
by the opportunity cost Rm; plus the expected change per unit of time. There
are two sources of expected changes per unit of time: The �rst is that she �nds a
�nancial intermediary with probability p; upon which she incurs in a change in value
Vf (m) � Vu (m) : The second is that in the next instant of time the real value of
cash balances decreases by the amount c+m� due, respectively, to her consumption
and the e¤ect of in�ation. Thus, denoting by V 0

u (m) the derivative of Vu (m) with
respect to m, the Bellman equation satis�es:

rVu (m) = Rm+ p (Vf (m)� Vu (m)) + V
0
u (m) (�c�m�) (10)

On the other hand, if the agent chooses to contact the intermediary, the Bellman
equation satis�es

Vu (m) = b+ Vf (m) (11)
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Notice that an agent can end up being matched with a �nancial intermediary
either because it exogenously "bumps" into it with probability p; or because she
pays the cost b: Regardless of how she is matched, an agent matched with a �nancial
intermediary chooses the optimal withdrawal, which we denote by w; as follows

Vf (m) = min
w
Vu (m+ w) (12)

subject to
w +m � 0 (13)

where the constraint stipulates that after the withdrawal, or deposit, the cash bal-
ances are non-negative. Inspection of (12) reveals that Vf (�) does not depend on
m; so from now we denote this value as V �:
We now turn to the characterization of the Bellman equations and its optimal

policy. We will guess and later verify that the optimal policy is described by two
parameters, 0 < m� < m��: The threshold m� is the value of cash that agents
choose at a �nancial intermediary; we refer to it as the cash replenishment level.
The thresholdm�� is a value of cash beyond which agents will pay the cost b; contact
the intermediary, and make a deposit so as to leave her cash balances at m�:
Given our guesses, m�;m��; Vu (m) and V � we will assume, and later verify, that

Vu (m) < V � + b for m 2 (0;m��)

so that for m 2 (0;m��) is not optimal to pay the cost and contact the intermediary.
We have that

Vu (0) = V � + b

This equality follows since at m = 0 the agent must withdraw, since if she does not
in the next instance either m (t) becomes negative or she will not be able to �nance
her consumption. Similarly,

Vu (m) = V � + b for m � m��

which follows from the assumption that agents contact the intermediary for m �
m��: Inserting these guesses into (10), (11), (12) implies that a solution of (9) is
given by numbers V �;m�;m�� and the function Vu (m) ; satisfying:

V � = Vu (m
�) = min

z
Vu (z) (14)

Vu (m) =

8>><>>:
V � + b if m = 0
Rm+ pV � � V 0

u (m) (c+m�)

r + p
if m 2 (0;m��)

V � + b if m � m��

(15)

In Appendix A we display the Bellman equations for the a discrete time version
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of the model. The appendix provides an alternative derivation of the continuous
time Bellman equations (14) and (15) by taking limits of the discrete time case as
the length of the time interval goes to zero.
The next proposition gives one non-linear equation whose unique solution deter-

mines the cash replenishment valuem� as a function of the parameters of the model:
R; �; r; p; c and b:

Proposition 2 Assume that r + � + p > 0: The optimal return point m� is given
by the unique positive solution to�

m�

c
� + 1

�1+ r+p
�

=
m�

c
(r + p+ �) + 1 + (r + p) (r + p+ �)

b

cR
(16)

for � 6= 0: See appendix B for a proof, and appendix C for the � = 0 case.

Note that, keeping r and � �xed, the solution form�=c is a function of (b=cR) ; as
it is in the steady state derivation of money demand of Section 3. The next propo-
sition gives a closed form solution for the function Vu (�) ; and the scalar V � in terms
of m�:

Proposition 3 Assume that r + � + p > 0: Let m� be the solution of (16):
(i) The value for the agents not matched with a �nancial institution; for m 2
(0;m��) ; is given by the convex function:

Vu (m) =

�
pV � �Rc= (r + p+ �)

r + p

�
+

�
R

r + p+ �

�
m+

�
c

r + p

�2
A
h
1 +

�

c
m
i� r+p

�

where the constant A is given by:

A =
r + p

c2

�
R m� + (r + p) b+

Rc

r + p+ �

�
> 0:

For m � m��

Vu (m) = V � + b

(ii) The value for the agents matched with a �nancial institution; V �; is given by:

V � =
R

r
m�

See appendix B for a proof and appendix C for the � = 0 case.

The following picture displays an example value function:
The next proposition uses the characterization of the solution for m� to conduct

some comparative statics.
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Proposition 4 The optimal return point m� (R; r; �; c; b; p) has the following prop-
erties:
1. m� is homogenous of degree one in (c; b) :
2. The elasticity of m� with respect to b

0 � b

m�
dm�

db
� 1

2

is decreasing in p; moreover m� ! 0 as b! 0
3. m� is increasing in c; and

c

m�
dm�

dc
= 1� b

m�
dm�

db
:
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4. The interest rate elasticity satis�es

0 � � R

m�
dm�

dR
=

b

m�
dm�

db
� 1

2

and hence it is decreasing in p:
5. For small b=c; we can approximate m� by the the solution in BT model, or

m�=c =

r
2

b

cR
+ o

 r
b

c

!

where o
�q

b
c

�
=
q

b
c
! 0 as

q
b
c
! 0:

6. Assuming that the Fisher equation holds, in that � = R � r; the elasticity of
m� evaluated at zero in�ation, i.e. at R = r; satis�es

0 � � p

m�
dm�

dp
jR=r �

p

p+ r
:

7. Assuming that the Fisher equation holds, in that � = R � r; the elasticity of
m� evaluated at zero in�ation, i.e. at R = r; satis�es

� R

m�
dm�

dR
jR=r �

1

2
:

with strict inequality i¤ r + p > 0:
Proof. See appendix B.

Properties 1-4 are the same as in the steady state money demand derived in
Section 3. Property 5. says that when b is small relative to c, the resulting money
demand is well approximated by the one for the BT model. Property 6. has its
analog in the model with p free trips of Section 3.1. The elasticities in 6. and 7. are
computed imposing the Fisher equation R = r+�; in particular we replace in�ation
using � = R � r: Instead in the elasticity computed in property 4, as R changes,
the in�ation rate � and the real rate r are kept constant. The fact that the interest
rate elasticity is smaller than 1=2 and decreasing (in absolute value) on p is is one
the main results of the model.

5 Distribution of cash balances, and average num-
ber and size of cash withdrawals

This section derives the distribution of real cash holdings when the policy character-
ized by the parameters (m�; p; c) is followed and the in�ation rate is �: The policy
is to replenish cash holdings up to the return value m�; either when a match with a
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�nancial intermediary occurs, which happens at a rate p per unit of time, or when
the agent runs out of money (i.e. real balances hit zero). In the previous section
we showed that this is the nature of the optimal policy and we characterized how
m� depends on the fundamental parameters (R; r; �; p; c; b):
Our �rst result is to compute the expected number of withdrawals per unit

of time, denoted by n. This includes both the withdrawals that occur upon an
exogenous contact with the �nancial intermediary and the ones initiated by the
agent when her cash balances reach zero.9

Proposition 5 The number of cash withdrawals per unit of time when � 6= 0 is

n (m�; c; �; p) =
p

1� (1 +m��=c)�
p
�

(17)

See appendix B for a proof and appendix C for the � = 0 case.

For future reference we notice that n is homogenous of degree zero in (m�; c) :As
can be seen from the expression the ratio n=p � 1 since in addition to the p free
withdrawals it includes the costly withdrawals that agents do when they exhaust
their cash. Notice that n=p is decreasing in m�; indicating that a greater value for
the return point allows the agent to �nance consumption over a longer time-span.
The reciprocal of n gives the expected time between withdrawals. We can see that
1=n is a concave and increasing function of m��=c: A second order approximation
of this function gives:

1

n (m�; c �; p)
=
m�

c
� 1
2
(� + p)

�
m�

c

�2
(18)

Note how this formula yields exactly the expression in the BT model when p =
� = 0: The formula shows, moreover, that the expected time between withdrawals
is decreasing in � and in p:
The next �gures displays the average number of withdrawals against the level

of interest rates R for di¤erent values of the parameter p: All the �ow variables are
expressed annually, except consumption which is expressed daily, so n is the average
number of withdrawals per year.
We use b = 0:03 as implying a cost of about 3 percent of daily cash consumption,

which is equivalent to less than 2 percent of consumption of non-durables an services
(see Table 2), or about 1 percent of daily income. Comparing the numbers in this
plot with the ones of Table 1, it seems that a value of p of about 40 is reasonable
for those households with an ATM card and one p about 10 may be appropriate for
those without an ATM card.

9For instance if n = 52 when all the parameters are measured per annum or equivalently if
nday = 52=365 = 1=7 if measured per day; then the agent withdraws 52 times in a year or,
equivalently, she withdraws every 7 days (1=nday = 7).
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The next Proposition derives the density of the distribution of real cash balances
as a function of p; �; c and m�:

Proposition 6 (i) The density for the real balances m when � 6= 0 is

h (m) =
�p
c

� �
1 + �

c
m
� p
�
�1�

1 + �
c
m�
� p
� � 1

!
(19)

(ii) Let H (m;m�
1) be the cumulative distribution of m for a given m�: Let m�

1 <
m�
2; then H (m;m

�
2) � H (m;m�

1) ; i.e. H (�;m�
2) �rst order stochastically dominates

H (�;m�
1).

See appendix B for a proof and appendix C for the � = 0 case.

In the proof of Proposition 6 we show that the density of m solves the following
ODE:

@h (m)

@m
=

(p� �)

(�m+ c)
h (m)

for any m 2 (0;m�) : There are two forces determining how the mass is spread out,
i.e. determining the shape of this density. One force is that agents meet a �nancial
intermediary at a rate p; where they replenish their cash balances. The other is
that in�ation eats away the real value of their nominal balances. Notice that if
p = � these two e¤ects cancel and the density is uniformly constant. If p < �; the
density is downward sloping, with more agents at low values of real balances due
to the greater pull of the in�ation e¤ect. If p > �; the density is upward sloping
due the the greater e¤ect of the replenishing of cash balances. To see this notice
that, as shown in the proof of Proposition 2 (in appendix B), �m� + c > 0; thus
�m+ c > 0 for all m in the invariant support (0;m�) and the sign of @h (m) =@m is
given by the sign of (p� �) :
We can now de�ne the aggregate money demand as

M =

Z m�

0

mh (m) dm:

The next proposition gives a formula for M as a function of p; �; c; and m�:

Proposition 7 (i) For a given m� ; the aggregate money demand is given by :

M = � (m�; c; �; p) � c

�
1 + �

c
m�� p� �m�

c
� (1+

�
c
m�)

p+�

�
+ 1

p+��
1 + �

c
m�
� p
� � 1

(20)

for � 6= 0.
(ii) M is increasing in m�.
See appendix B for a proof and appendix C for the � = 0 case.
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Figure 3: Money demand curves

The next �gure displays a plot of the aggregate money demand M as a function
of the nominal interest rate R at various levels of �nancial di¤usion p:
Very roughly, the numbers in this �gure suggest that p = 40 produces cash

balances of similar magnitudes that those of ATM card holders in our Italian data
set. On the other hand, matching the cash balances of those households without an
ATM, requires a much lower values of p; closer to 10:
The next proposition compares the interest rate elasticity of the aggregate money

demand, with the one for the average number of withdrawals. As a benchmark, recall
that in the Baumol Tobin model these two elasticities are �1=2 and 1=2 respectively.
In our model, for p > 0; the elasticity of the money demand is higher in absolute
value than the elasticity of the average number of withdrawals. The intuition for
this result is that the average money demand depends on both the target level for
cash replenishment m� and the average number of withdrawals, n: Indeed we have
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that if the replenishment policy described above is followed then:

M

c
=

1

p+ �
[n (m�=c)� 1] ; (21)

which can be veri�ed by inserting the expression for n given by (17) into the formula
for M in (20). But, since for p > 0 some withdrawals entail no cost, the households
always makes p withdrawals on average. Notice that this is di¤erent from the de-
terministic steady state model with p free withdrawals (Section 3.1), where the two
interest rate elasticities were the same. This is also di¤erent from the evidence in
Tables 4 and 6 for Italian households, where we �nd similar interest rate elasticities,
in absolute values, for M=c and n:

Proposition 8 The interest rate elasticity of the average cash balances is larger in
absolute value than the interest rate elasticity of the average number of withdrawals; evaluated
at � = 0:

�M (R; r; �; p)

R

@n (R; r; �; p)

@R
j�=0 �

n (R; r; �; p)

R

@n (R; r; �; p)

@R
j�=0

See the appendix for the proof.

The next two �gures display the interest rate elasticities of the average money
balances and the average number of withdrawals for di¤erent values of the parameter
p:
These �gures make clear that the interest rate elasticity of the money demand

is higher, in absolute value than the one for the average number of withdrawals.
These �gure also makes clear that to obtain an interest rate elasticity of the money
demand as low as 1=3 in absolute value the model requires a relatively large value of
p: For instance, with p = 80 and the same parameteres, the interest rate elasticity
is 1=3 when evaluated at an interest of 3 percent.
For future reference, the next proposition studies the relationship betweenM and

m� :

Proposition 9 The ratio M=m� is increasing in p with

M=m� =
1

2
for p = 0

M=m� ! 1 as p!1:

Proof. To be done.

For the case of � = 0; the ratio M=m� has the following a simple expression:

M=m� =
1

1� exp (�pm�=c)
� 1

p (m�=c)
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Since the right hand side is a decreasing function of (m�=c) p; and since we had
shown that the elasticity of m�=c is (in absolute value) smaller than p= (p+ r) ; then
it implies that M�=c is decreasing in p:
Now we turn to the analysis of the average number of withdrawals, which we

denote by W:

Proposition 10 The average withdrawal is given by:

W = m�
h
1� p

n

i
+
hp
n

i Z m�

0

(m� �m)h (m) dm (22)

where Z m�

0

(m� �m)h (m) dm =

(1+�
c
m�)

p
�+1�1

(p+�)=c
�m��

1 + �
c
m�
� p
� � 1

Proof. Follows from Proposition 19 below setting f = 0.

To understand the expression forW notice that n�p is the number of withdrawals
in a unit of time that occur because agents reach zero balances, so if we divide it
by the total number of withdrawals per unit of time (n) we obtain the fraction of
withdrawals that occur the agent reaches zero balances. Each of these withdrawals
is of size m�. The complementary fraction gives the withdrawals that occur due to
a chance meeting with the intermediary. A withdrawal of size m��m happens with
frequency h (m).
Combining the previous results we can see that for p > 0; the ratio of withdrawals

to average cash holdings is less than 2. To see this, using the de�nition of W we
can write

W

M
=
m�

M
� p

n
: (23)

SinceM=m� � 1=2; then it follows thatW=M � 2: Indeed notice that for p large
enough this ratio can be smaller than one. We mention this property because for
the Baumol -Tobin model the ratio W=M is exactly two, while in the data of Table
1 the average ratio is below 1.4 for those households without an ATM card and
about 1.2 for those with an ATM card. The intuition for this result in our model
is clear: agents take advantage of the free random withdrawals regardless of their
cash balances, hence the withdrawals are distributed on [0;m�] ; as opposed to be
concentrated on m�; as in the BT model.
The average amount of money that an agent has at the time of withdrawal, M;

is

M =
hp
n

i Z m�

0

m h (m) dm

Simple algebra shows that:
M = m� �W (24)
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The relevance of this statistic is that in the survey of Italian households there is
a question about the amount of money that triggers a withdrawal (see Table 1).
Depending on the interpretation of this question by the survey respondents, M is
the theoretical counterpart of this minimum.

6 The steady state money demand (To Be Com-
pleted)

In this section we derive the steady state money demand for the dynamic problem
of Section 4. This involves computing the model analogue of the T function used in
Section 3, from which a steady state money demand can be derived. This function
gives the expected number of costly withdrawals per unit of time when the real
money balances are M and the real consumption �ow is c. The function is derived
under the assumption that the policy followed by the agents is of the form analyzed
in Section 5. Using ��1 for the inverse of the function de�ned in (20), and using (17)
we have:

T (M; c; p; �) = n
�
��1 (M ; c; p; �) ; c; �; p

�
� p: (25)

In the previous expression we subtract p to obtain the number of costly withdrawals
per unit of time. Since � is homogenous of degree one in (c;m�) ; then ��1 is
homogeneous of degree one in (c;M) ; and hence T is homogenous of degree zero in
(M; c) : We de�ne the steady state money demand ~M (R; c; p; �) corresponding to
the technology (25), as the solution of the problem (1), analyzed in Section 3.
The next proposition compares ~M with the money demand for the dynamic

model.

Proposition 11 LetM (R; c; p; �; r) be the solution of the aggregate money demand
for the dynamic problem analyzed in Sections (4) and (5). Then

~M (R; c; p; �) =M (R; c; p; �; 0) :

See appendix B for a proof.

This result is intuitive, since as r ! 0 all the periods in the discounted shadow
cost are assigned the same weight, hence the shadow costs tends to the steady state
cost.
The point of this comparison is to isolate the features that makes our analysis

di¤erent from the standard Baumol-Tobin model. Quantitatively, given the values
for r that we use, the solution of the money demand for the dynamic model and the
steady state one, are virtually the same.
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7 Costly random withdrawals

The dynamic model discussed above has the unrealistic feature that agents withdraw
every time a match with a �nancial intermediary occurs, thus making as many
withdrawals as contact with the �nancial intermediary, many of which of a very small
size. In this section we extend the model to the case where the withdrawals (deposits)
done upon the random contacts with the �nancial intermediary are subject to a �xed
cost f: We assume that 0 < f < b:
As mentioned above, this model has a more realistic depiction of the distribution

of withdrawals, by limiting the minimum withdrawal size. On the other hand, if f is
large relative to b; the prediction of the model gets closer to the ones of the Baumol-
Tobin model. Indeed, if as f goes to b; then then there is no advantage of a chance
meeting with the �nancial intermediary, and hence the model is identical to the one
of the previous section, but with p = 0:
Agents face a cash-in-advance constraint, and they can withdraw or deposit from

an interest bearing account. The sequence problem is to choose an increasing se-
quence of stopping times f� jg at which to withdraw (or deposit) money in an interest
bearing account, and the amounts to withdraw at each time, so as to minimize the
expected discounted cost of �nancing a given constant real consumption �ow c: The
expected discounted total cost, denoted by TC0 is:

TC0 (� ;m) = E0

" 1X
j=0

e�r � j
n
b I�j + f Î�j +

�
m
�
�+j
�
�m

�
��j
��o#

(26)

where we use m (t) to denote the real value of the stock of currency. As before,
the stock of currency jumps discontinuously up at the time of a withdrawal (so the
amount of a withdrawal at � j is m

�
�+j
�
� m

�
��j
�
) and the law of motion of the

real value of the stock of money between withdrawals is given by equation (7).
As before we assume that contacts with the �nancial intermediary follow a Pois-

son process with arrival rate p: In the case of a contact the agent can withdraw (or
deposit) money in an interest bearing account at a real cost f . If the agent wants
to withdraw (or deposit) in the �nancial institution in any other time, it must pay
a real cost b: The indicator I�j takes the value of zero if the withdrawal (or deposit)
takes place at the time t = � j of a contact with a �nancial intermediary, and takes
the value of one otherwise. The indicator Î�j takes the value of one if the withdrawal
(or deposit) takes place at the time t = � j of a contact with a �nancial interme-
diary, and takes the value of one otherwise. The agent chooses stopping times and
withdrawals as function of the history of contacts with the intermediary.
As before, we de�ne the shadow cost of a policy f� j;mg as the expected dis-

counted cost of the withdrawals plus the expected discounted opportunity cost of
the cash balances held by the agent. We denote the shadow cost as SC0; which is
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given by:

SC0 (� ;m) = E0

" 1X
j=0

e�r � j
�
b I�j + f Î�j +

Z �j+1��j

0

R m (� j + t) e�rt dt

�#
(27)

The next Proposition is the analogous of Proposition 1:

Proposition 12 Assume that R = r+�: For any policy f� ;mg the total cost equals
the shadow cost plus the present value of c; or

TC0 =
c

r
+ SC0 :

Proof. The proof is completely analogous to the one for Proposition 1.

We use Vs (m) for the value function corresponding to the minimization of the
shadow cost:

Vs (m0) = min
�;m

SC0 (� ;m)

subject to m (0) = m0 and where s = f denotes that the agent is matched to a
�nancial intermediary and s = u that she is not. Let V � be the minimum attained
by the value function, i.e. V � � V (m�) = minz V (z) ; which is the value attained
at the optimal return point m� and is independent of the state s:
Using notation that is analogous to the one that was used above, the Bellman

equation for this problem when the agent is not matched is given by:

rVu (m) = Rm+ pmin fV � + f � Vu (m) ; 0g+ V 0
u (m) (�c�m�) (28)

where min fV � + f � Vu (m) ; 0g takes into account that it may not be optimal to
withdraw/deposit for all contacts with a �nancial intermediary. Indeed, whether
the agent chooses to do so will depend on her level of cash balances.
We will guess, and later verify, a shape for Vu (�) that implies a simple threshold

rule for the optimal policy. Our guess is that Vu (�) is strictly decreasing at m = 0
and single peaked attaining a minimum at a �nite value of m. Then we guess that
there will be two thresholds, m and �m; that satisfy:

V � + f = Vu (m) = Vu ( �m) (29)

Under these assumptions the minimized cost takes the form:

min fV � + f � Vu (m) ; 0g =

8<:
V � + f � Vu (m) < 0 if m < m
0 if m 2 (m; �m)
V � + f � Vu (m) < 0 if m > �m

Thus solving the Bellman equation is equivalent to �nding 5 numbersm�;m��;m; �m; V � and
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a function Vu (�) such that:

V � = Vu (m
�) = min

z
Vu (z)

which, given the convexity of Vu; we can write as the following two equations:

V � = Vu (m
�) (30)

0 = V 0
u (m

�) (31)

and

Vu (m) =

8>>>>><>>>>>:

Rm+ p (V � + f)� V 0
u (m) (c+m�)

r + p
if m 2 (0; m)

Rm� V 0
u (m) (c+m�)

r
if m 2 (m; �m)

Rm+ p (V � + f)� V 0
u (m) (c+m�)

r + p
if m 2 ( �m; m��)

(32)

and the conditions:

Vu (0) = V � + b (33)

Vu (m) = V � + b for m > m�� (34)

Hence the optimal policy in this model is to pay the �xed cost f and withdraw
cash when the agent contact the �nancial intermediary, if her cash balance are
in (0;m) or to deposit if the cash balances are larger than �m: In either case the
withdrawal or deposits is such that the post transfer cash balances are set equal
to m�: If the agent contacts a �nancial intermediary when her cash balances are in
(m; �m) then, no action is taken. If the agent cash balances get to zero, then the
�xed cost b is paid, and after the withdraw the cash balances are set to m�: Notice
that m� 2 (m; �m) : Hence, in this version the withdrawals will have minimum size,
namely m� �m: This is a more realistic depiction of actual management of cash.
Now we turn to the characterization and solution of the Bellman equation. The

solution of the model is similar to the one in the body of the paper, in Propositions
2 and 3. By using the analogous of lemma 1 we obtain the following:

Proposition 13 For a given V �;m; �m;m�� satisfying 0 < m < �m < m�� :
The solution of (32) for m 2 (m; �m) is given by:

Vu (m) = ' (m;A') � (35)

� �Rc= (r + �)

r
+

�
R

r + �

�
m+

�c
r

�2
A'

h
1 +

�

c
m
i� r

�

for an arbitrary constant A'
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Likewise, the solution of (32) for m 2 (0; m) or m 2 ( �m; m��) is given by:

Vu (m) = � (m;V �; A�) � (36)

� p (V � + f)�Rc= (r + p+ �)

r + p
+

�
R

r + p+ �

�
m+

�
c

r + p

�2
A�

h
1 +

�

c
m
i� r+p

�

for an arbitrary constant A�:
Proof. See appendix B.

Next we are going to list a system of 5 equations in 5 unknowns that describes
a C1 solution of Vu (m) on the range [0;m�]. The unknowns in the system are
V �; A�; A';m;m

�: Using proposition 13, and the boundary conditions (29),(30),(31)
and (33), the system is given by:

'm (m
�; A') = 0 (37)

' (m�; A') = V � (38)

� (m;V �; A�) = V � + f (39)

� (0; V �; A�) = V � + b (40)

' (m;A') = V � + f (41)

In the proof of proposition 14 we show that the solution of this system can be
found by solving one non-linear equation in one unknown, namely m: Once the
system is solved it is straightforward to extend the solution to the range: (m�;1) :

Proposition 14 There is a unique solution for the system (37)-(41). The solution
characterizes a C1 function that is strictly decreasing on (0;m�) ; convex on (0; �m)
and strictly increasing on (m�;m��). This function solves the Bellman equations
described above.
Proof. See appendix B.

The following picture displays an example value function
Next we present a proposition about the determinants of the range of inaction

m��m.

Proposition 15 The range of inaction (m� �m) relative to the drift of cash bal-
ances, c+ �m�; solves:

f

R (c+m��)
=

�
m� �m

c+m��

�2 "
1

2
+
X
k=1

1

(k + 2)!

�
m� �m

c+m��

�k
�k+1j=2 (r + j�)

#
(42)

Hence (m� �m) = (c+m��) is increasing in f=R (with elasticity smaller than 1=2)and
decreasing in r: Moreover it is decreasing (increasing) in � if � > 0 (� < 0).
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Finally, for small f = [R (c+ �m�)] we have

m� �m

c+m��
=

s
f

R (c+ �m�)
+ o

 �
f

R (c+ �m�)

�2!
: (43)

Proof. See appendix B.

Importantly, this proposition says that the scaled range of inaction (m� �m) = (c+m��)
is NOT a function of p or b: Its approximation implies that

R

(m� �m)

@ (m� �m)

@R
j�=0 = �

1

2
+
1

2

�
R
m�

c

�
@�

@R
:

The next proposition examines the expected number of withdrawals n:

Proposition 16 The expected number of withdrawals per unit of time, n is given
by

n =
p

(p=�) log (1 + (m� �m)�=c) + 1� (1 +m�=c)�
p
�

(44)

and the fraction of agents with cash balances below m is given by

H (m) =
1� (1 +m�=c)�

p
�

(p=�) log (1 + (m� �m)�=c) + 1� (1 +m�=c)�
p
�

(45)

Proof. See appendix B.

Inspection of equation (44) con�rms that when m� > m the expected number
of withdrawals (n) is no longer bounded below by p: Indeed, as p ! 1 then n !
[(1=�) log (1 + (m� �m)�=c)]�1 ; which is the reciprocal of the time that it takes
for an agent that starts with money holding m� (and consuming at rate c when the
in�ation rate is �) to reach real money holdings m:
Notice that the expected time between withdrawals can be approximated as:

1

n
=
m�

c
� �

2

 �
m�

c
� m

c

�2
+
hm
c

i2!
� 1
2
p
�m
c

�2
+ o





�mc ; m�

c

�



2
The next �gure plots n against the nominal interest rate for several values of p: To
highlight the role of f > 0 all the subsequent �gures have the same parameter values
for b; c and r; as the ones for the �gures presented above for the case where f = 0:
Compare this �gure with the one obtained for f = 0 . Notice that the number

of trips associated to the same values for p and R are much smaller; in particular
notice than in this case n < p: Given the parameters in this �gure, a value of p of
about 200 is required for the number of withdrawals to be similar to the ones in the
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Figure 9: n - elasticity (for f > 0)

case of f = 0 and p = 40; which are similar to the ones of households with an ATM
card in our data set.
This �gure shows that, interestingly, the interest rate elasticity of n is not

monotone on p: While this may not be obvious at �rst sight, it is to be expected
since the model with 0 < f < b is in between the BT model, when f = b, which has
interest rate elasticity of n equal to 1=2; and our previous model with f = 0; which
has much lower interest rate elasticity of n. Recall that, at least for � = 0; the range
m��m is independent of p; and has an interest rate elasticity close to 1=2: But
notice that as p ! 1; m! 0; since at at cost f < b agents can, with probability
one, �nd an ATM. Hence, for large enough p the interest rate elasticity of n goes
back to 1=2; the value corresponding to the BT model. We �nd this feature inter-
esting, because according to the regressions in Table 6, the interest rate elasticity
of n is increasing in the empirical measures of p; as it will be for this model if we
consider values of p higher than 40. Notice that this is di¤erent for the case where
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f = 0 where the interest rate elasticity of n was decreasing in p:
As before, for any m 2 [0;m] the density h (m) solves the following ODE:

@h (m)

@m
=

(p� �)

(�m+ c)
h (m)

The reason for this is that in this interval the behavior of the system is the same as
the one for f = 0: On the interval m 2 [m;m�] the density h (m) solves the following
ODE:

@h (m)

@m
=

��
(�m+ c)

h (m)

The reason for this is that locally in this interval the chance meetings with the
intermediary do not trigger a withdrawal, and hence it is as if p = 0:

Proposition 17 The density h (m) and CDF H (m) for m 2 [0;m] are given by:

h (m) = A0

�
1 +

�

c
m
� p
�
�1

(46)

H (m) =
c

p
A0

��
1 +

�

c
m
� p
� � 1

�
(47)

where

A0 =
p

c

H (m)�
1 + �

c
m
� p
� � 1

(48)

:
The density h (m) and CDF H (m) for m 2 [m;m�] are given by:

h (m) = A1

�
1 +

�

c
m
��1

(49)

H (m) =
c

�
A1 log

�
1 + �

c
m

1 + �
c
m�

�
+ 1 (50)

where

A1 =
�

c

1�H (m)

log
�
1 + �

c
m�
�
� log

�
1 + �

c
m
� (51)

Proof. See appendix B.

Using the previous density we compute average money holdings.

Proposition 18 The average (expected) real money holdings are:

M =

Z m

0

mh (m) dm+

Z m�

m

mh (m) dm
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or

M = m� � c

p
A0

"�
1 + �

c
m
� p
�
+1 � 1

(p+ �) =c
�m

#
(52)

�A1
� c
�

�2 n�
1 +

�

c
m�
� h
log
�
1 +

�

c
m�
�
� 1
i
�
�
1 +

�

c
m
� h
log
�
1 +

�

c
m
�
� 1
io

+(m� �m)
� c
�
A1 log

�
1 +

�

c
m�
�
� 1
�

where A0 and A1 are given in (48) and (51).
Proof. See appendix B.

The next �gure plots the level and elasticity of money demand for the same
parameter values.
While, as shown in the previous �gures, the introduction of f > 0 has a large
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e¤ect on the average number of withdrawals, it has a much smaller e¤ect on the level
and on the interest rate elasticity of money demand. This is quite natural, since the
e¤ect of the �xed cost f on the number of withdrawals comes from eliminating the
ones that are small in size.
As done in Section 5, we use the density to compute the average withdrawal:

Proposition 19 The average withdrawal W is given by:

W = m�
h
1� p

n
H (m)

i
+
hp
n
H (m)

i R m
0
(m� �m)h (m) dm

H (m)
(53)

where R m
0
(m� �m)h (m) dm

H (m)
= m� �m+

(1+�
c
m)

p
�+1�1

(p+�)=c
�m�

1 + �
c
m
� p
� � 1

To understand this expressions notice that n � pH (m) is the number of with-
drawals in a unit of time that occur because agents reach zero balances, so if we
divided it by the total number of withdrawals per unit of time, n; we obtain�

n� pH (m)

n

�
= 1� p

n
H (m)

i.e. the fraction of withdrawals that occur when agent reach zero balances. Each of
these withdrawals is of size m�. The complementary fraction gives the withdrawals
that occur due to a chance meeting with the intermediary. Conditional on having
money balances in (0;m) then a withdrawal of size (m� �m) happens with frequency
h (m) =H (m) :
The average amount of money that an agent has at the time of withdrawal, M;

is

M = 0
h
1� p

n
H (m)

i
+
hp
n
H (m)

i R m
0
m h (m) dm

H (m)

Simple algebra shows that:

M = m� �W (54)

8 A calibration of the model

This section presents a calibration of the theoretical model derived above to the
household data set described in Section 2. We analyze what model parametrization,
i.e. values of (b; f; p) ; produce values for (M=c;W=c; n) that are closer to the analo-
gous quantities in the data discussed in Section 2, and relate them to the empirical
measures of �nancial innovations presented in Table 2.
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More in detail, by calibration we mean the following. For a given observation
(say the average of all household of a given type during a year in a province) we

have values for
�
M̂; Ŵ ; n̂; �̂; R̂; ĉ

�
: Our objective is to �nd the parameters, b; f and

p so that the model reproduces the values of
�
M̂=ĉ; Ŵ =ĉ; n̂

�
; the average cash

balances, the average withdrawal, and the average number of withdrawals per year.
Our procedure consists on two steps. The �rst step �nds a solution to a system of
3 equations in 3 unknowns. The equations are given by the model expressions for
n; (44), M (52) and W (53) which are set equal to the corresponding observations
in the data. The three unknowns are (m�;m; p) : The second step consists on using

the values of (m�;m; p) together with the data for
�
R̂; �̂

�
and an assumed value for

r; to solve for the parameters b and f; so that m�;m are the optimal solution given�
R̂; �̂; r; p

�
:

One issue is whether this procedure can always obtain estimates to �t an arbi-
trary array in the data. In other words, are there always parameters (b; f; p) that

can rationalize such a choice of
�
M̂=ĉ; Ŵ =ĉ; n̂

�
? The answer to this question is,

in general, no. In Appendix D we show that given (m�; m; r; �; R; p) one can
always solve for the required b and f: The problem is in the �rst step. To better
understand this consider an extreme case of trying to �t the model to an observation
with n = 1 withdrawal per year, c = 365 (this households withdraws in average
once per year, but has a daily consumption of one dollar). Furthermore, assume that
this households says that her average withdrawal is one dollar, i.e. W = 1: Clearly,
such low values of W and n make impossible to �nance the annual consumption
�ow:
To explore this issue in more detail, let us consider �rst the simpler version of

the model with f = 0. In this case we imagine that in the �rst step we calibrate to
M and n only, as opposed to (M;W; n) : To further simplify the exposition, assume
that in�ation is zero, so that � = 0: For the BT model, i.e. for p = 0; we have

W = m�; c = m� n; and M = m� (1=2)

which implies
M=c = (1=2) = n :

Hence, if the data were generated by the BT model, M=c and n have to satisfy this
equation. Now consider the average cash balances generated by a policy like the one
of the model of Section 4 with zero in�ation, i.e. with f = � = 0; for an arbitrary
value of p: We have:

M=c =
1

p
[n m�=c� 1] and n = p

1� exp (�pm�=c)
(55)
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or, solving for M=c as a function of n :

M=c = � (n; p) � 1

p

�
�n
p
log
�
1� p

n

�
� 1
�
:

We stress that while for a given (R; b; p; r) there is a unique optimal value form� and
n (and hence M); here we are considering all the combinations of M=c and n that
are consistent with a cash management policy of replenishing cash either when the
balances reach zero, or when there is chance meeting with an intermediary (which
occurs with probability p per unit of time), and su¢ ces to �nance a consumption
�ow c: Notice �rst that setting p = 0 in this equation we obtain BT, i.e.

� (n; 0) = (1=2) = n

Second, notice that this function is de�ned only for n � p: Furthermore, note that
for p > 0 (see Appendix E for details):

@�

@n
=

�
1

p

�2 �
log

�
n

n� p

�
� p

n� p

�
� 0

@2�

@n2
=

�
1

p

�2
p

(n� p)2
p

n
> 0

@�

@p
=

1

p2
n

p

�
2 log

�
1� p

n

�
+ 1 +

p=n

1� p=n

�
> 0

Think about plotting the data on the (n; M=c) plane. For a given M=c; there is
a minimum n that the model can generate, namely the value (1=2) = (M=c) : Given
that @�=@p > 0; any value of n smaller than the one implied by the BT model
cannot be made consistent with our model, regardless of the values for the rest of
the parameters. By the same reason, any value of n higher than (1=2) = (M=c) can
be accommodated by an appropriate choice of p: This is quite intuitive: relative to
the BT model, our model can generate a larger number of withdrawals for the same
M=c if the agent meets an intermediary often enough, i.e. if p is large enough. On
the other hand there is a minimum number of expected chance meetings, namely
p = 0:
Speci�cally, �x a province-year-type of household combination, with its corre-

sponding values for the averages of M=c and n: Then solving M=c = � (n; p ) for p
gives an estimate of p: Then, taking this value of p and the corresponding values of
R and c for this province-year-type of household combination, we use (21) to �nd
the corresponding m�=c as follows:

m�=c =
p M=c+ 1

n
:
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Finally, we use (83) to �nd the value of b that rationalizes this choice. In particular,
we specialize the expression in Appendix D to the case of � = f = 0 to obtain:

b=c =

�
R

(r + p)2

�
(exp ((r + p)m�=c)� [1 + (r + p) (m�=c)] ) (56)

(see the appendix E for details). To understand this expression, consider two pairs
(M=c; n) ; both pairs in the locus de�ned by � (�; p) for a given value of p: The pair
with higher M=c and lower n corresponds to a higher value of b=R: This is quite
intuitive: agents will economize on trips to the �nancial intermediary if b=R is high,
i.e. if these trips are expensive relative to the opportunity cost of cash.
Figure 11 plots the function � (�; p) for several values of p; as well as the average

value of M=c and n for all households of a given type (i.e. with and without ATM
cards) for each province year in our data. Notice that 31 percent of province year
pairs for households without an ATM card are below the � (�; 0) line, so no parameters
in our model can rationalize those choices. The corresponding value for those with
an ATM card is only 1 percent of the pairs. The values of p required to rationalize
the average choice for most province year pairs for those households without ATM
cards are in the range p = 1 to p = 20: The corresponding range for those with ATM
cards is between p = 20 and p = 80:
So far we have consider the model with f = 0; or equivalently we set m= m�: It

can be shown that freeing up this margin does not increase the set of values that
the model can �t, since it makes the model closer to BT. Considering the case
of � > 0 makes the expressions more complex, but, at least qualitatively, does not
change any of the properties discussed above. Quantitatively, since the in�ation rate
in our data set is quite low, the expressions of the model for � = 0; approximates
the relevant range for � > 0 very well.
Now we turn to the analysis of the ratio of the average withdrawal to the average

cash balances, W=M . As before, consider �rst the case of an agent that follows an
arbitrary policy of replenishing her cash to a return level m�; either as her cash
balances gets to zero, or at the time of chance meeting with the intermediary. Again,
to simplify consider the case of f = � = 0: Using the expression for for W=M (23),
and replacing m� from (55) we can de�ne the function � as follows

W

M
= � (n; p) �

�
1

p=n
+

1

log (1� p=n)

��1
� p

n

for n � p; and p � 0 (see appendix E for details). After some algebra one can show
that

� (n; 0) = 2; � (n; n) = 0;

@� (n; p)

@p
< 0 and

@� (n; p)

@n
> 0

45



0 20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

 Theory vs Data (province year pairs): M/c vs. n
*: data of HH w/ATM cards, o: data of HHs w/o ATM cards, solid lines: theory for different p

M
/c

: a
ve

ra
ge

 m
on

ey
 h

ol
di

ng
s 

ov
er

 a
nn

ua
l c

as
h 

co
ns

um
pt

io
n

n: number of withdrawal per year

p = 0 p = 10 p = 20 p = 40 p = 60 p = 80
Baumol­Tobin

Figure 12: Figure. M=c versus n
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(see appendix for details). Notice that the ratio W=M is a function of the ratio
p=n:The interpretation of this is clear: for p = 0 we have W=M = 2; as in the BT
model. This is the highest value that can can be achieved of the ratio W=M: As
p increases for a �xed n; the replenishing level of cash m�=c must be smaller, and
hence the average withdrawal becomes smaller relative the average cash holdings
M=c. Indeed, as n converges to p �a case where almost all the withdrawals are due
to chance meetings with the intermediary�, thenW=M goes zero. As in the previous
case, given values ofW=M and n; we can use � to solve for the corresponding p: Then,
using the values of (W;M p; n) we can �nd a value of b to rationalize the choice of
W=M: To see how, notice that given W=M; M; n and p;we can �nd the value of
m�=c using

W

M
=
m�

M
� p

n
:

With the values of (m�=c; p; R) we can �nd the unique value of b that rationalize
this choice, using (56).
Figure 12 plots the function � (n; p) for several values of p; as well as the average

values of n and W=M for the di¤erent province-year-household type type combina-
tions for our data set. The implied values of p needed to rationalize these data is
similar to the one found using the information of M=c and n displayed in Figure
11. We note that this case, as opposed to the experiment displayed in Figure 11, no
data on c; the average consumption �ow, is used. We also note that about 2 percent
of the year province pairs of households with an ATM cards have W=M above 2,
while for those without ATM card the corresponding value is 11 percent.
Now we turn to describe the procedure that we use to calibrate the model. We

aggregate the data of
�
M̂=c; Ŵ =c; n̂

�
into the average for combination of province-

years, both for households with an ATM card and for those without one, We use
nominal interest rate R̂ measured at the province-year level as reported in Table 2,
and in�ation rates � common for each year for all provinces. This gives us about
103 � 6 = 618 observations to be �tted for each type of household (a bit fewer
since there are some missing values for some province years). As explained above,
even aggregating at this level,there are many observations for which the product
of n̂ and M̂=ĉ are too low (below 1=2) or for which the ratio of Ŵ=M̂ is too high
(above 2); for which there are no parameters for which we can �t the model exactly.
Additionally, in some cases both conditions can be met, but still may not be a
triplet (b; f; p) which can simultaneously solve forM=c; W=M and n: As an example

of this last case, consider an example where in the data
�
M̂=ĉ

�
n̂ > (1=2) ; but

Ŵ=M̂ = 2: Because of these features, instead of solving exactly for (b; f; p) to match
(M=c; W=c; n) for each observation, we minimize the distance between the model
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and the data:

(b; f; p) = argmin

24 M
c
�
cM
c

!2
+ w1 �

 
W

c
�
cW
c

!2
+ w2 � (n� bn)2

35 (57)

for some weights w1; w2: In future version we plan to formally model measurement
error in our variables as a better way to handle these issues. 10 Table 7 displays
statistics for the �tted parameters (b; f; p) for the model with costly random with-
drawals; Table 8 displays the corresponding statistics for (p; b) using the model where
the random withdrawals are costless (i.e. setting f = 0:): In each table we display
the statistic for the parameters �tted separately for those households with and with-
out ATM cards. We use weights w1 = w2 = 1; and discard those observations with
very high values of M̂=ĉ for the statistics, which we think are due to measurement
error11. The statistics in Tables 7 and 8 con�rm the information displayed in Figures
11 and 12: there are clear di¤erences between households types, those with ATM
cards have much higher average �tted values of p: The values of b and f are similar
for both type of households, only slightly higher for those without ATM cards. The
large standard deviations in Tables 7 and 8 imply a huge amount of heterogeneity in
the implied values of the parameters across province-years, a fact consist with the
large dispersion of the data displayed in Figures 11 and 12. Finally, notice that the
�tted values of f are very small, which suggest that the simpli�ed model of Section
4 captures most of the relevant variation of the data.

10Besides classical measurement error, which is probably important in this type of survey, there
is also the issue of whether households have an alternatively source of cash. An example of such as
source if if households were paid in cash. This will imply that they do require fewer withdrawals
to �nance the same �ow of consumption, or alternatively, that they e¤ectively have more trips per
periods.
11Depending of the case these are, at most 7 observations, for which average money holdings are

higher than a month of cash consumption.
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Table 7: Calibrated parameters for p, b and f

Household w. ATM
p b f

Mean 57 0.05 0.0004
Median 45 0.02 0.0000
STD 47 0.11 0.0011

Household w/o ATM
Mean 17 0.06 0.006
Median 9 0.03 0.001
STD 21 0.10 0.024

Notes: Descriptive statistics drawn from the distribution of
calibrated parameters at the year*province level (the sam-
ple size is 542 for HH w. ATM and 578 for HH without
ATM).

Table 8: Calibrated parameters for p and b when f = 0

Household w. ATM
p b

Mean 37 0.05
Median 36 0.02
STD 16 0.16

Household w/o ATM
Mean 8.1 0.05
Median 7.6 0.03
STD 6.9 0.06

Notes: Descriptive statistics drawn from the distribution of
calibrated parameters at the year*province level (the sam-
ple size is 587 for HH w. ATM and 590 for HH without
ATM).
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Table 9: Correlation between (p; b; f) and measures of �nancial development

Household w. ATM
p b f

bank-branch di¤usion 0.10 -0.12 -0.11
ATM di¤usion 0.05 -0.18 -0.17

Household w/o ATM
bank-branch di¤usion 0.03 -0.13 -0.11
ATM di¤usion 0.03 -0.24 -0.16

Notes: The table reports the correlation between the calibrated
parameters and di¤usion measures of, respecitvely, bank branches
and ATMs, at the year*province level (the sample size if 542 for
HH w. ATM and 578 for HH without ATM).

Table 10: Correlation between (p; b) and measures of �nancial development

Household w. ATM
p b

bank-branch di¤usion 0.13 -0.13
ATM di¤usion 0.07 -0.19

Household w/o ATM
bank-branch di¤usion 0.02 -0.3
ATM di¤usion 0.06 -0.4

Notes: The table reports the correlation between the calibrated
parameters and di¤usion measures of, respecitvely, bank branches
and ATMs, at the year*province level (the sample size is 587 for
HH w. ATM and 590 for HH without ATM).

Tables 9 and 10 compute correlations between the �tted values of (b; f; p) for
each year-province-household type with each of the two empirical measures of �nan-
cial innovations presented in Table 2. The correlations between p and the density
of bank branches or ATM are positive, while correlation between b and f and these
measures of �nancial innovation are negative. On one hand, we view the signs of
these correlations as an encouraging feature of our model, since no data on the den-
sities of bank branches or ATMs was used in the calibration exercise. On the other
hand, the correlation between the �nancial di¤usion measures and the �tted values
of p while positive, is very low for those households without ATM cards.
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A Appendix: Discrete Time Bellman Equation

Let � be the length of the time period, so that the probabilities of matching a
�nancial intermediary, the net nominal interest rate, the discount rate, the in�ation
rate and consumption are given by �p; �R; �r; �� and �c.
In this case the Bellman equation for an agent matched with the intermediary

with m � 0 is
Vf (m) =

min
w

�
�R (m+ w) +

1

1 + r�

�
p�Vf

�
m+ w

1 + ��
��c

�
+ (1� p�)Vu

�
m+ w

1 + ��
��c

���
subject to m+ w ��c � 0:
The following are the Bellman equations for an agent not matched with an

intermediary. First we consider the case of m � �c; so that the agent has the
option to stay unmatched.

Vu (m) =

min

�
Vf (m) + b; �R (m) +

1

1 + r�

�
p�Vf

�
m

1 + ��
��c

�
+ (1� p�)Vu

�
m

1 + ��
��c

���
Ifm < �c; then the agent has no option but to pay the �xed cost, since otherwise

it cannot �nance her consumption. In this case we have:

Vu (m) = Vf (m) + b :

Proposition 20 As �! 0; the discrete time Bellman equation becomes:

V � = Vu (m
�) = min

z
Vu (z)

Vu (m) = min

�
V � + b;

Rm+ pV � � V 0
u (m) (c+m�)

r + p

�
Proof of Proposition 20. Let assume that in a neighborhood of m it is not

optimal to go to the bank so

Vu (m) = min

�
V � + b; �R (m) +

1

1 + r�

�
p�V � + (1� p�)Vu

�
m

1 + ��
��c

���
= �R (m) +

1

1 + r�

�
p�V � + (1� p�)Vu

�
m

1 + ��
��c

��
for an interval around m: Rearranging

(1 + r�)Vu (m) = �R (m) (1 + r�) + p�V � + (1� p�)Vu

�
m

1 + ��
��c

�
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assuming that Vu is di¤erentiable

(1 + r�)Vu (m) = �R (m) (1 + r�)+p�V �+(1� p�)

�
Vu (m)� V 0

u (m)

�
m

��

1 + ��
+�c

�
+ o (�)

�
cancelling terms and rearranging and dividing by �

(r + p)Vu (m) = Rm (1 + r�)+pV �+(1� p�)

�
�V 0

u (m)

�
c+m

�

1 + ��

�
+
o (�)

�

�
taking the limit as �! 0

(r + p)Vu (m) = Rm+ pV � � V 0
u (m) (c+m�)

or

Vu (m) =
Rm+ pV � � V 0

u (m) (c+ �m)

r + p

Combining both branches we have:

Vu (m) = min

�
V � + b;

Rm+ pV � � V 0
u (m) (c+ �m)

r + p

�
:

Taking the limit as �! 0 on

V � = lim
�!0

min
w

�
�R (m+ w) +

1

1 + r�

�
p�V � + (1� p�)Vu

�
m+ w

1 + ��
��c

���
= min

w
fVu (m+ w)g = min

z
Vu (z)

gives the �rst equation.
QED.

B Appendix: Proofs

Proof of Remark 1
That M is homogenous of degree one on (c; b) follows from the homogeneity of

degree zero of T; and hence the elasticities w.r.t c and b add up to one. That the
elasticity w.r.t. b equals (minus) the elasticity w.r.t. R follows from the observation
that M=c is a function of (b=Rc) :
That M is increasing in b follows from di¤erentiating the foc:

@M

@b
= � @T

@M
(M; c) =

@2T

@2M
(M; c)

and using that, by assumption, @T=@M < 0 and @2T=@2M > 0:
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That the elasticity of M with respect to c is higher than 1=2 follows from di¤er-
entiating the foc and completing elasticities which gives:

c

M

@M

@c
= � @2T

@M@c

c

M
=
@2T

@2M
:

Using the homogeneity of degree zero of T we have:

@2T

@M@M
M2 + 2

@2T

@c@M
M c+

@2T

@c@c
c2 = 0

and hence, using the assumption that @2T=@c2 � 0;

� @2T

@c@M
� 1

2

@2T

@M@M

M

c
:

Using this inequality in the expression of the elasticity w.r.t. c we obtain the desired
result. Given that the elasticity w.r.t. b is positive, and the the elasticities w.r.t.
b and c add up to one, we know that the elasticity w.r.t. c is smaller than, or equal
to, one.
QED.

Proof of Proposition 1. Fix an arbitrary sequence of contacts with the inter-
mediary. For this sequence we show that:

1X
j=0

e��jr
�
b I�j +

�
m
�
�+j
�
�m

�
��j
��	

=
1X
j=0

e��jr
�
b I�j +

Z �j+1��j

0

R m (� j + t) e�rt dt

�
+
c

r

provided thatR = r+�: For this it is su¢ cient to show that, provided thatR = r+�;

1X
j=0

e��jr
�
m
�
�+j
�
�m

�
��j
��
=

1X
j=0

e��jr
Z �j+1��j

0

R m (� j + t) e�rt dt+
c

r
:

To establish this equality write

c

r
=

1X
j=0

e��jr
Z �j+1��j

0

c e�rt dt
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and using integration by parts we have

R

Z �j+1��j

0

m (� j + t) e�rt dt

= �R
r
m (� j + t) e�rtj�j+1��j0 � R

r

Z �j+1��j

0

[m (t)� + c] e�rtdt

= �R
r
m
�
��j+1

�
e�r(�j+1��j) +

R

r
m
�
�+j
�
� R

r

Z �j+1��j

0

[m (t)� + c] e�rtdt

so that (using R = r + �)

1X
j=0

e��jr
Z �j+1��j

0

R m (� j + t) e�rt dt+
c

r

=
1X
j=0

e��jr
�
�R

r
m
�
��j+1

�
e�r(�j+1��j) + R

r
m
�
�+j
�
� R

r

R �j+1��j
0

c e�rtdt

�R
r

R �j+1��j
0

m (� j + t)� e�rtdt+
R �j+1��j
0

c e�rt dt

�

=
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�R
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��j+1
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�+j
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�
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0

c e�rtdt
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r

R �j+1��j
0

m (� j + t)� e�rtdt+
R �j+1��j
0

c e�rt dt

�

=
1X
j=0

e��jr
�

�R
r
m
�
��j+1

�
e�r(�j+1��j) + R

r
m
�
�+j
�

�
�
�
r

� R �j+1��j
0

[c +m (� j + t)�] e�rtdt�
R �j+1��j
0

m (� j + t)� e�rtdt

�
letting

n (� j + t) = e�rtm (� j + t)

dn (� j + t)

dt
= �re�rtm (� j + t)� e�rt (c+ �m (� j + t))

=
�
�e�rt

�
[rm (� j + t) + c+ �m (� j + t)]

=
�
�e�rt

�
[Rm (� j + t) + c]

Compute the term

�
��
r

�Z �j+1��j

0

[c +m (� j + t)�] e�rtdt�
Z �j+1��j

0

m (� j + t)� e�rtdt

= �
��
r

��Z �j+1��j

0

[c +m (� j + t)�] e�rtdt+
r

�

Z �j+1��j

0

m (� j + t)� e�rtdt

�
=

��
r

��Z �j+1��j

0

(�) [c +m (� j + t)R] e�rtdt

�
=

��
r

�
(n (� j+1)� n (� j)) =

��
r

� �
e�r(�j+1��j)m

�
��j+1

�
�m

�
�+j
��
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Thus:

1X
j=0

e��jr
Z �j+1��j

0

R m (� j + t) e�rt dt+
c

r

=

1X
j=0

e��jr
�
�R
r
m
�
��j+1

�
e�r(�j+1��j) +

R

r
m
�
�+j
�
+
��
r

� �
e�r(�j+1��j)m

�
��j+1

�
�m

�
�+j
���

=

1X
j=0

e��jr
�
�r + �

r
m
�
��j+1

�
e�r(�j+1��j) +

r + �

r
m
�
�+j
�
+
��
r

� �
e�r(�j+1��j)m

�
��j+1

�
�m

�
�+j
���

=
1X
j=0

e��jr
�
�m

�
��j+1

�
e�r(�j+1��j) +m

�
�+j
�	

=
1X
j=0

e��jrm
�
�+j
�
�

1X
j=0

e��j+1rm
�
��j+1

�

and using that m
�
��0
�
= 0; then

=
1X
j=0

e��jrm
�
�+j
�
�

1X
j=0

e��jrm
�
��j
�

Thus

1X
j=0

e��jr
Z �j+1��j

0

R m (� j + t) e�rt dt+
c

r

=

1X
j=0

e��jrm
�
�+j
�
�

1X
j=0

e��jrm
�
��j
�

=
1X
j=0

e��jr
�
m
�
�+j
�
�m

�
��j
��

QED.

Proof of Proposition 2.
To solve for V �; m�; m�� and Vu (�) satisfying (14) and (15) we proceed as follows.

Lemmas 1 solves for Vu (A; V �), Lemma 2 gives A (V �) : Lemma 3 shows that Vu (�)
is convex for any V � > 0. Lemma 4 solves for m�; using that since Vu is convex,
m� must satisfy V 0

u (m
�) = 0: Finally, Lemma 5 gives V � (m�:)

Lemmas 2, 4 and 5 provide us with the following system of 3 equations in 3
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unknown constants (A;m�; V �) :

A =
V � (r + p) r +Rc=

�
1 + �

r+p

�
+ (r + p)2 b

c2
(58)

V � =
R

r
m� (59)

m� =
c

�

 �
R

Ac
=

�
1 +

�

r + p

��� �
r+p+�

� 1
!

(60)

As we show next, this system determines m� as the solution of one non-linear equa-
tion.
Replacing equation (59) into (58) yields:

A =
R (r + p)m� + Rc(r+p)

(r+p+�)
+ (r + p)2 b

c2

We can rearrange equation (60) to get

A =
R (r + p)

(r + p+ �)

�
m��

c
+ 1
�1+ r+p

�

By equating the last two equations, collecting terms and rearranging, we get:�
m��

c
+ 1
�1+ r+p

�
= 1 + (r + p+ �)

m�

c
+ (r + p) (r + p+ �)

b

Rc

which is equation (16) in the main text.
We now show that this equation has a unique non negative solution. The equa-

tion can be written as
f (m�) = g (m�)

where

f (m�) � (m�� + c)1+�

g (m�) � c�
�
m� (� + r + p) + c +

(r + p) b (r + p+ �)

R

�
:

Notice that

f (0) = (c)1+� < g (0) = c1+� + c� (r + p) b (r + p+ �) =R;
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that g is linear in m� with slope c� (� + r + p) : Since, by assumption r+ p+� > 0

f 0 (m�) = (� + r + p) (m�� + c)� > 0

f 00 (m�) = (� + r + p) (r + p) (m�� + c)��1 > 0

so f is strictly increasing and strictly convex in m�:

f 0 (0) = � (1 + �) (c)� = (� + r + p) (c)� = g0 (0) = (c)� (� + r + p)

there is a unique solution to f (m�) = g (m�) : If � < 0; the relevant range for
m� is (0;�c=�) ; since limm�!�c=� f (m

�) = 1; and hence the unique solution of
f (m�) = g (m�) occurs in the interior of this range.

For � = 0; consider solving the limit as � ! 0 of f (m�) =c�� g (m�) =c� = 0; or

f (m�) =c� � (m�� + c)1+
r+p
� =c

r+p
� = (m�� + c)

(�
1 +

m�

c
�

� 1
�

)r+p

g (m�) =c� � m� (� + r + p) + c +
(r + p) b (r + p+ �)

R
:

Taking the limit we have

lim
�!0

�
f (m�) =c�

�
= c

(
lim
�!0

�
1 +

m�

c
�

� 1
�

)r+p

= c

�
exp

�
m�

c

��r+p
= c exp

�
m�
�
r + p

c

��
so the equation becomes:

exp

�
m�
�
r + p

c

��
= 1 +m�

�
r + p

c

�
+
(r + p)2 b

cR
:

QED.

Lemma 1 Let V � be an arbitrary value. The di¤erential equation

rVu (m) = Rm+ p [V � � Vu (m)]� V 0
u (m) (c+ �m) (61)
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has solution for � 6= 0 :

Vu (m) =

24pV � (r + p)�Rc=
�
1 + �

r+p

�
(r + p)2

35 +

�
R

r + p
=

�
1 +

�

r + p

��
m (62)

+

�
c

r + p

�2
A
h
1 +

�

c
m
i� r+p

�

and for � = 0 :

Vu (m) =

�
pV � (r + p)�Rc

(r + p)2

�
+

�
R

r + p

�
m+

�
c

r + p

�2
A exp

�
�r + p

c
m

�
: (63)

for an arbitrary constant A:

Proof of Lemma 1. The ODF (61) has the form:

f (x) = a0 + a1x+ (a2 + a3x) f
0 (x)

a0 =
pV �

r + p

a1 =
R

r + p

a2 = � c

r + p

a3 = � �

r + p

which has the solution

f (x) = A0 + A1x+ A

�
1 +

A2
A3
x

�A3
To see that this is the solution, notice that

f 0 (x) = A1 + A A3

�
A2
A3

��
1 +

A2
A3
x

�(A3�1)
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and thus which requires:

A0 + A1x+ A

�
1 +

�
A2
A3

�
x

�A3
= a0 + a1x+ (a2 + a3x)

 
A1 + A A3

�
A2
A3

��
1 +

A2
A3
x

�(A3�1)!

which gives

A0 = a0 + a2A1

A1x = (a1 + a3A1)x

or

A1 = a1= (1� a3)

A0 = a0 + a2a1= (1� a3)

A

�
1 +

�
A2
A3

�
x

�A3
= (a2 + a3x) A A3

�
A2
A3

��
1 +

�
A2
A3

�
x

�(A3�1)
or �

1 +

�
A2
A3

�
x

�A3
= (a2 + a3x) A3

�
A2
A3

��
1 +

�
A2
A3

�
x

�(A3�1)
or �

1 +

�
A2
A3

�
x

�A3
= (a2 + a3x) A3

�
A2
A3

��
1 +

�
A2
A3

�
x

�(A3�1) h1 + �A2
A3

�
x
i

h
1 +

�
A2
A3

�
x
i

�
1 +

�
A2
A3

�
x

�
= (a2 + a3x) A3

�
A2
A3

�
or

1 = a2 A2 =) A2 = 1=a2�
A2
A3

�
x = a3 A3

�
A2
A3

�
x =) A3 = 1=a3

A2 = 1=a2

A3 = 1=a3
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Thus

V (m) = A0 + A1m+ A

�
1 +

A2
A3
m

�A3
= a0 + a2a1= (1� a3)

+a1= (1� a3) m

+A

�
1 +

a3
a2
m

�1=a3
=

pV �

r + p
�
�

c

r + p

R

r + p
=

�
1 +

�

r + p

��
+

+

�
R

r + p
=

�
1 +

�

r + p

��
m

+A
h
1 +

�

c
m
i� r+p

�

As � ! 0

lim
�!0

log
h
1 +

�

c
m
i� r+p

�
= � lim

�!0

r + p

�
log
h
1 +

�

c
m
i

= � lim
�!0

log
�
1 + �

c
m
�

�= (r + p)
= �

m
c

1= (r + p)

Thus

lim
�!0

h
1 +

�

c
m
i� r+p

�
= lim

�!0
exp

�
log
h
1 +

�

c
m
i� r+p

�

�
= exp

�
lim
�!0

log
h
1 +

�

c
m
i� r+p

�

�
= exp

�
�r + p

c
m

�
QED

Lemma 2 Let V � be an arbitrary non negative value. Let A be the constant that
solves the ODE in Lemma 1. Imposing that this solution satis�es Vu (0) = V � + b;
the constant A is given by

A =
V � (r + p) r +Rc=

�
1 + �

r+p

�
+ (r + p)2 b

c2
> 0
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Proof of lemma 2. Using lemma 1:

V � + b = Vu (0) =
pV � (r + p)�Rc=

�
1 + �

r+p

�
(r + p)2

+

�
c

r + p

�2
A

or

�
�

c

r + p

�2
A =

pV � (r + p)�Rc=
�
1 + �

r+p

�
(r + p)2

� (V � + b)

or

A = �
pV � (r + p)�Rc=

�
1 + �

r+p

�
� (r + p)2 (V � + b)

c2

=
V � (r + p) r +Rc=

�
1 + �

r+p

�
+ (r + p)2 b

c2
> 0:

QED.

Lemma 3 Let V � be an arbitrary value. The solution of Vu given in lemma 1, with
the value of A given in Lemma 2 is a convex function of m:

Proof of Lemma 3. Direct di¤erentiation of Vu gives

=
pV �

r + p
�
�

c

r + p

R

r + p
=

�
1 +

�

r + p

��
+

+

�
R

r + p
=

�
1 +

�

r + p

��
m

+A
h
1 +

�

c
m
i� r+p

�

V 0
u (m) =

�
R

r + p
=

�
1 +

�

r + p

��
�
�

c

r + p

�
A
h
1 +

�

c
m
i� r+p

�
�1

V 00
u (m) =

�
�

r + p

��
1 +

r + p

�

�
A
h
1 +

�

c
m
i� r+p

�
�2
> 0

since, as shown in Lemma 2, A > 0: QED.
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Lemma 4 Let A be an arbitrary value for the constant that indexes the solution of
the ODE for Vu in Lemma 1. The cash balances after a withdrawal, m�; that solves

V 0
u (m

�) = 0

is given by:

m� =
c

�

 �
R

Ac
=

�
1 +

�

r + p

��� �
r+p+�

� 1
!

for � 6= 0 and

m� = c
log
�
R
Ac

�
r + p

for � = 0:

Proof of Lemma 4. We de�ne m� as

m� = argmin
m

Vu (m)

so the FOC for Vu when � 6= 0 (using equation 62) is_

V 0
u (m

�) =

�
R

r + p
=

�
1 +

�

r + p

��
�
�

c

r + p

�
A
h
1 +

�

c
m�
i� r+p

�
�1
= 0

which gives �
R

Ac
=

�
1 +

�

r + p

��
=
h
1 +

�

c
m�
i� r+p

�
�1

or

m� =
c

�

 �
R

Ac
=

�
1 +

�

r + p

��� �
r+p+�

� 1
!

Following the same steps for the case in which � = 0 (using equation 63) yields:

m� = � c

r + p
log

�
R

Ac

�
QED.

Lemma 5 The value for the agents matched with a �nancial institution; V �; is
given by (for all m):

V � =
R

r
m�

Proof of Proposition 5.
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Recall the Bellman equation (10) :

rVu (m) = Rm+ p (V � � Vu (m))� V 0
u (m) (c+m�)

At m = m� we have:

V 0
u (m

�) = 0

Vu (m
�) = V �

replacing these values in (10) and evaluating the Bellman equation at m = m�

rV � = Rm� + p (V � � V �)� 0 (c+m��)

or
rV � = Rm�

QED.

Proof of Proposition 3.
(i) The function Vu (�) is derived in Lemma 1. The expression for A comes from

Lemma 2.
(ii) The solution for V � comes from Lemma (5).
QED.

Proof of Proposition 4
Proof of 1). If m� satis�es

0 = (m�� + c)1+
r+p
� � c

r+p
�

�
m� (r + � + p) + c + (r + p) (r + p+ �)

b

R

�
then

(m��� + �c)1+
r+p
� � (�c)

r+p
�

�
�m� (r + � + p) + �c + (r + p) (r + p+ �)

�b

R

�
=

�
�1+

r+p
� (m�� + c)1+

r+p
� � (�c)

r+p
� �

�
m� (r + � + p) + c + (r + p) (r + p+ �)

b

R

��
= �1+

r+p
�

�
(m�� + c)1+

r+p
� � (c)

r+p
�

�
m� (r + � + p) + c + (r + p) (r + p+ �)

b

R

��
= 0:

Proof of 2). We set c = 1 and write

f (m�) = g (m�)
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for

f (m�) � (m�� + 1)1+
r+p
�

g (m�) �
�
m� (r + � + p) + 1 + (r + p) (r + p+ �)

b

R

�
where f (0) < g (0) for b > 0; g0 (0) = f 0 (0) > 0; and g00 (m�) = 0; and f 00 (m�) >
0 for all m� > 0: Thus, since g is increasing in b; we have that m� is increasing in
b: For b = 0 we have

(m�� + 1)1+
r+p
� = (m� (r + � + p) + 1)

which implies that m� = 0:
For the next results we use the following:

f (m) = g (m)

is equivalent to

b

R
=

1

2
m2 +

1

3!
m3 (r + p� �) +

1

4!
m4 (r + p� �) (r + p� 2�) +

+
1

5!
m5 (r + p� �) (r + p� 2�) (r + p� 3�) + � � �

or
b

R
= m2

"
1

2
+

1X
j=1

1

(2 + j) !

�
�js=1 (r + p� s�)

�
mj

#
(64)

This result follows from expanding (m� + 1)1+
r+p
� around m = 0:

That the elasticity of m� with respect to b is smaller than 1=2 and decreasing in
p follows by di¤erentiating (64) with respect to b:

Proof of 3). It follows from 1 and 2.

Proof of 4). It follows by inspection of (64), where b and R enter only as a ratio
(b=R) :

Proof of 5). We notice that

m� =

r
2b

R
+ o

�p
b
�
:

is equivalent to

(m�)2 =
2b

R
+
h
o
�p

b
�i2

+ 2

r
2b

R
o
�p

b
�
:
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Inserting this expression into (64):

b

R
=

(
1

2

"
2b

R
+
h
o
�p

b
�i2

+ 2

r
2b

R
o
�p

b
�#)

�
(
1 + 2

1X
j=1

1

(2 + j) !

�
�js=1 (r + p� s�)

�
mj

)

dividing by b=R

1 =

8><>:12
2642 +R

h
o
�p

b
�i2

b
+ 2
p
2R

o
�p

b
�

p
b

375
9>=>;

�
(
1 + 2

1X
j=1

1

(2 + j) !

�
�js=1 (r + p� s�)

�
mj

)

as b! 0 we have: h
o
�p

b
�i2

b
! 0

o
�p

b
�

p
b

! 0

m ! 0

which veri�es our approximation:

1 = lim
b!0

8><>:12
2642 +R

h
o
�p

b
�i2

b
+ 2
p
2R

o
�p

b
�

p
b

375
9>=>;

� lim
b!0

(
1 + 2

1X
j=1

1

(2 + j) !

�
�js=1 (r + p� s�)

�
m� (b)j

)

=
1

2
[2 + 0 + 0]� f1 + 0g

Using the normalization that c = 1 and the homogeneity of degree one ofm� with
respect to (c; b) we obtain that

m�=c =

r
2 (b=c)

R
+ o

�p
(b=c)

�
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or

m� =

r
2 b c

R
+ c o

�p
(b=c)

�
:

Proof of 6). For � = R� r = 0 we have

b

r
=
1

2
m2 +m2

1X
j=1

1

(j + 2) !
(r + p)j mj

To see that m� is decreasing in p; notice that the RHS is increasing in p and m:
To see that m� (p + r) is increasing in p; write

b

r
= m2

"
1

2
+

1X
j=1

1

(j + 2) !
[(r + p)m]j

#

and notice that, as shown above, as p increases, m2 decreases, and thus

1

2
+

1X
j=1

1

(j + 2) !
[(r + p)m]j

which is a function of (r + p)m; must be increasing. This implies that the elasticity
of m with respect to p is smaller than p= (p+ r) since

0 <
@

@p
(m (p+ r)) = m+ (p+ r)

@m

@p
= m

�
1 +

(p+ r)

p

p

m

@m

@p

�
thus

(p+ r)

p

p

m

@m

@p
� �1

or

�(p+ r)

p

p

m

@m

@p
� 1

or

0 � � p

m

@m

@p
� p

p+ r
:

Proof of 7). Inserting R = r + � into (64) we can write

b

R
= m2 ' (m;R) (65)

68



for

' (m;R) � 1

2
+

1X
j=1

1

(2 + j) !
H (R; j) mj; (66)

H (R; j) �
�
�js=1 ( r + p� s (R� r) )

�
: (67)

We show below that di¤erentiating (65) yields

�R
m

dm

dR
=
1 + R

'
'R

2 + m
'
'm

(68)

which shows that " < 1=2 if 'R < 0 and 'm > 0:
We show below that

@H (R; j)

@R
j�=0 = � (r + p)j�1

�
(j + 1) j

2

�
< 0

'R =
1X
j=1

1

(2 + j) !

@H (R; j)

@R
j�=0 mj < 0 (69)

'm =
1X
j=1

1

(2 + j) !
H (R; j) j�=0 j mj�1 > 0 (70)

Thus for � = 0 the elasticity (�R=m) (dm=dR) < 1=2 since 'R < 0 and 'm > 0:
To see why (68) hold, rewrite (65) dividing both sides by b/R

1 = m2R

b
' (m;R)

Total di¤erential w.r.t. to R

0 = m
R

b
' (m;R)

dm

dR
+
m2

2

1

b
' (m;R) +

m2

2

R

b

�
'R + 'm

dm

dR

�
or (multiply both sides by b and collect terms)

�R
m

dm

dR

�
m2'+

m3

2
'm

�
=
m2

2
['+ 'RR]

or

�R
m

dm

dR
=

1
2

h
1 + 'R

'
R
i

h
1 + m

2
'm
'

i
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To see why:

@H (R; j)

@R
j�=0 = � (r + p)j�1

�
(j + 1) j

2

�
< 0

start with

@H (R; j)

@R
= �

X
j
s=1 s �

j
u=1;u 6=s ( r + p� u (R� r) )

= �
jX
s=1

s

( r + p� s (R� r) )
�ju=1 ( r + p� u (R� r) )

= �H (R; j)
jX
s=1

s

( r + p� s (R� r) )

which is smaller than zero at � = 0 :

@H (R; j)

@R
j�=0 = �H (R; j) j�=0

"
jX
s=1

s

( r + p� s (R� r) )

#
j�=0

= �H (R; j) j�=0

"
jX
s=1

s

( r + p )

#

= � (r + p)j�1
�
(j + 1) j

2

�
< 0:

QED

Proof of Proposition 5
Assume p > 0 and consider the case of the companion discrete time model (see

Appendix A), where � denotes the length of the time period. Let �n denote the
fraction of agents who withdraw in period of length �. These include �p agents
who withdraw when they meet the intermediary and �z agents who withdraw since
they reach zero cash balances. Note that �z is given by the agents with full balances
(�n) who do meet with an intermediary for the maximum number of periods that
the optimal cash withdraw allows them to �nance, denoted by � �=�; at which which
point they hit zero balances and withdraw at a bank desk. �z is thus given by:

�z = �n � (1��p)�
�=�

(for small �) which yields a recursion for �n :

�n = �p+�n � (1��p)�
�=� (71)
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We show below that � �=� is given by

� �

�
=
log
�
(m�=c) �

1+��
+ 1
�

log (1 + ��)
(72)

Thus the period before cash is replenished (in units of time), denoted by � �; is:

� � = lim
�!0

� �

�
� =

log [1 + (m�=c)�]

�
(73)

The real cash balances m (i) for an agent not matched with an intermediary for
i model periods satisfy:

m (1) =
m�

1 + ��
��c;

m (2) =
m (1)

1 + ��
��c; :::

m (i+ 1) =
m (i)

1 + ��
��c; ::

m

�
� �

�

�
=

m
�
��

�
� 1
�

1 + ��
��c

or, assuming that m
�
��

�

�
= 0 (actually for � > 0; it just has to be smaller than �c)

:

0 =
m�

(1 + ��)
��
�

��c
 
1 +

1

1 + ��
+

�
1

1 + ��

�2
+ � � �+

�
1

1 + ��

� ��
�
�1
!

=
m�

(1 + ��)
��
�

��c

241� � 1
1+��

� ��
�

1� 1
1+��

35
This gives

m�

(1 + ��)
��
�

�
��

1 + ��

�
= �c

"
1�

�
1

1 + ��

� ��
�

#
which, after collecting terms and rearranging, yields (72).
Then, from (71), the number of withdrawals per unit of time, n , is given by the

following expression:

n = p+ (1��p)
��
� n

which yields
n =

p

1� (1��p)
��
�
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Then

lim
�!0

n =
p

lim�!0

�
1� (1��p)

��
�

�
=

p

1� lim�!0

h
(1��p)

��
�

i = p

1� lim�!0

h
(1��p)

1
�

i��
=

p

1�
�
lim�!0

h
(1��p)

1
�

i� log[1+(m�=c)�]
�

=
p

1� (exp (�p))
log[1+(m�=c)�]

�

Note that

[exp (�p)]
log[1+(m�=c)�]

�
= exp

�
� p
�
log [1 + (m�=c)�]

�
= exp

�
log
h
(1 + (m�=c)�)�

p
�

i�
= (1 + (m�=c)�)�

p
�

Thus
lim
�!0

n =
p

1� (exp (�p))
log[1+(m�=c)�]

�

=
p

1� (1 + (m�=c)�)�
p
�

(74)

For � = 0; notice that

lim
�!0

(1 + (m�=c)�)�
p
� =

h
lim
�!0

(1 + (m�=c)�)
1
�

i�p
=

�
exp

�
m�

c

���p
= exp

�
�pm

�

c

�
For p = 0; we can either take the the limit of the solution for n (equation 74),

which gives
n =

�

log
�
1 + m��

c

�
or computed directly, since for p = 0 we have that n = � � solves

m� = c

Z ��

0

exp (� s) ds

which yields the same expression.
QED.

Proof of Proposition 6 .
(i) Let H (m; t) be the cdf for m at time t: Then, de�ne  (m; t; �) as

 (m; t; �) = H (m; t)�H (m��(m� + c) ; t) :
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Thus,  (m; t; �) is the fraction of agents with money in the interval [m; m �
�(m� + c) ) at time t: De�ne h as

h (m; t; �) =
 (m; t; �)

� (m� + c)

Then, limh (m; t; �) as �! 0 is the density of H evaluated at m at time t:
For a small � given the law of motion of cash we have that

 (m; t+� ;�) =  (m+�(m� + c) ; t ; �) (1��p)

Assuming that we are in the stationary distribution h (m; t; �) does not depend on
t; so we write h (m; �) : Using the de�nition of h :

h (m; �) = h (m+�(m� + c) ;�)
� ([m+�(m� + c)]� + c)

� (m� + c)
(1��p)

or
h (m; �) = h (m+�(m� + c) ;�) (1 + ��) (1��p)

Assuming that h is di¤erentiable in m we write

h (m+�(m� + c) ;�) = h (m ; �) +
@h

@m
(m ; �) [� (m� + c)]

thus

h (m; �) =

�
h (m ; �) +

@h

@m
(m ; �) [� (m� + c)] + o (�)

�
(1 + ��) (1��p)

or

h (m; �) = h (m ; �) (1 + ��) (1��p)+
�
@h

@m
(m ; �) [� (m� + c)] + o (�)

�
(1 + ��) (1��p)

or

h (m; �) = h (m ; �)
�
1 + � (� � p)��2p�

�
+

�
@h

@m
(m ; �) [� (m� + c)] + o (�)

�
(1 + ��) (1��p)

or

h (m ; �)� (p� � +�p�) =

�
@h

@m
(m ; �) [� (m� + c)] + o (�)

�
(1 + ��) (1��p)

dividing by � :

h (m ; �) (p� � +�p�) =

�
@h

@m
(m ; �) (m� + c) +

o (�)

�

�
(1 + ��) (1��p)
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and taking the limit as �! 0

h (m) (p� �) =
@h

@m
(m) (m� + c) (75)

The solution of this ODE is

h (m) = 1=m�

if p = � and

h (m) = A
h
1 +

�

c
m
i p��

�

for some constant A if p 6= �: The constant A solves:

1 =

Z m�

0

h (m) dm = A

Z m�

0

h
1 +

�

c
m
i p��

�
dm

where Z m�

0

h
1 +

�

c
m
i p��

�
dm =

(c=�)

1 + p��
�

h
1 +

�

c
m
i p��

�
+1

jm�

0

=
(c=�)

1 + p��
�

�h
1 +

�

c
m�
i p
� � 1

�
Thus

A = 1 =

��
c

p

��h
1 +

�

c
m�
i p
� � 1

��
Thus

h (m) =
�p
c

� �
1 + �

c
m
� p
�
�1�

1 + �
c
m�
� p
� � 1

!
for � 6= 0 and takes the form

h (m) =
p
c
exp

�
mp
c

�
exp

�
m�p
c

�
� 1

for � = 0:

(ii) We now show that the distribution of m that corresponds to a higher value
of m� is stochastically higher. Consider the CDFs H (m;m�) and let m�

1 and m
�
2 be

two values for the optimal return point with m�
2 > m�

1: We argue that

H (m;m�
1) > H (m;m�

2)
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for all m 2 [0;m�
2): This follows because the corresponding densities satisfy:

h (m;m�
2)

h (m;m�
1)
=

�
1 + �

c
m�
1

� p
� � 1�

1 + �
c
m�
2

� p
� � 1

< 1

in their common domain, m 2 [0;m�
1] : In the interval [m

�
1;m

�
2) we have

H (m;m�
1) = 1 > H (m;m�

2) :

QED.

Proof of Proposition 7.
(i) Given the density

h (m) =
�p
c

� �
1 + �

c
m
� p
�
�1�

1 + �
c
m�
� p
� � 1

!

we have

M =

Z m�

0

mh (m) dm =

Z m�

0

m
�p
c

� �
1 + �

c
m
� p
�
�1�

1 + �
c
m�
� p
� � 1

!
dm

Using integration by parts:

=
p
c�

1 + �
c
m�
� p
� � 1

Z m�

0

�
m
�
1 +

�

c
m
� p
�
�1
�
dm

=
p
c�

1 + �
c
m�
� p
� � 1

�
mc

p

�
1 +

�

c
m
� p
� jm�

0 �
Z m�

0

c

p

�
1 +

�

c
m
� p
�
dm

�

=
p
c�

1 + �
c
m�
� p
� � 1

�
mc

p

�
1 +

�

c
m
� p
� � c2

p

�
1

p+ �

��
1 +

�

c
m
� p
�
+1
�m�

0

=
p
c�

1 + �
c
m�
� p
� � 1

��
1 +

�

c
m
� p
� c

p

�
m� c

(p+ �)

�
1 +

�

c
m
���m�

0

=
1�

1 + �
c
m�
� p
� � 1

��
1 +

�

c
m
� p
�

�
m� c

(p+ �)

�
1 +

�

c
m
���m�

0

=
1�

1 + �
c
m�
� p
� � 1

��
1 +

�

c
m�
� p
�

�
m� � c

(p+ �)

�
1 +

�

c
m�
��
+

c

p+ �

�
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Thus the average stock of money is:

M =
1�

1 + �
c
m�
� p
� � 1

��
1 +

�

c
m�
� p
�

�
m� � c

(p+ �)

�
1 +

�

c
m�
��
+

c

(p+ �)

�
For � = 0

M =
1

em
� p
c � 1

�
em

� p
c

�
m� +

c

p

�
� c

p

�
=

=
1

1� e�
p
c
m�m

� � c=p

(ii) Follows immediately from result (ii) of Proposition 6
QED.

Proof of proposition 8. Di¤erentiating

M=c =
1

p+ �

�
n
m�

c
� 1
�

we have

R
d

dR

�
M

c

�
=
n (m�=c)

p+ �

�
R

n
nR +

R
m�

c

�
m�

c

�
R

�
or

R

(M=c)

d

dR

�
M

c

�
=

n (m�=c)�
n m�

c
� 1
� �R

n
nR +

R
m�

c

�
m�

c

�
R

�
Using �xy for the elasticity of x w.r.t. y :

��M;R = ! (�nn R � �m�R)

and de�ning

! =
n (m�=c)�
n m�

c
� 1
�

we have: �
��M;R

�
� �nR = � (! + 1)nn R + ! (��m�R)

where
nn R = �n m� �m�R

Then we can write the di¤erent in the absolute value of the elasticities as:�
��M;R

�
� �nR = [! + (1 + !) �n m� ] (��m�R) > 0
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or, since (��m�R) > 0 as
!

1 + !
� ��n m� :

Developing the terms

!

1 + !
=

n(m�=c)

n m�
c
�1

1 + n(m�=c)

n m�
c
�1

=
n (m�=c)

n (m�=c)� 1 + n (m�=c)
=

1

2� 1
n(m�=c)

For � = 0 we have
n =

p

1� exp (�pm�=c)

hence

n
m�

c
=

p (m�=c)

1� exp (�pm�c)

��n m� = exp (�pm�=c)
p (m�=c)

1� exp (�p (m�=c))

The condition for � (�MR)� �nR � 0 is

!

1 + !
=

1

2� 1
p(m�=c)

1�exp(�pm�c)

� ��n m� = exp (�pm�=c)
p (m�=c)

1� exp (�p (m�=c))

or
1

2� 1
y

=
y

2y � 1 � y exp (�pm�=c)

where

y � p (m�=c)

1� exp (�p (m�=c))

which is equivalent to

1 � exp (�pm�=c)

�
2

p (m�=c)

1� exp (�p (m�=c))
� 1
�

or

1 � e�x
�

2 x

1� e�x
� 1
�

where x = pm�=c: We can write this condition as

ex �
�

2 x

1� e�x
� 1
�
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or
ex
�
1� e�x

�
�
�
2x� 1 + e�x

�
or

1 � e�x
�

2 x

1� e�x
� 1
�

or
ex � e�x � 2x

which is satis�ed since letting � (x) = ex � e�x we have � (0) = 0 and

�0 (x) = ex + e�x = 2

�
1 +

1

2!
x2 +

1

4!
x4 + :::

�
� 2:

QED.

Proof of proposition 11
The FOC of the steady state problem (1), using expressions (25) and (20), is:

�R = b
@T (M)

@M
= b

@n (��1 (M))

@m�
@��1 (M)

@M

or equivalently we could solve for ~m� satisfying

�R = b
@n (m�) =@m�

@� (m�) =@m�

Direct computation gives after some cancellations:

�R = b
� p
c2

~m��
c

p
p+�

�
1 + ~m��

c

� p
� � ~m�p

c
� p

p+�

�
1�

�
1 + ~m��

c

� p
�

�
Rearranging this expression one can show that ~m� solves for m�; in (16), for the
case of r = 0:
QED.

Proof of Proposition 13
It is easily derived following the logic of lemma 1

Proof of Proposition 14
We will use repeated substitution on the system (37)-(41) to arrive to one non-

linear equation in one unknown, namely m.
From (37) and (38) we have:

V � =
R

r
m�: (76)
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So now we replace V � by this expression and drop the equation (38), so we have
a system of 4 eqns in 4 unknowns. We solve for A' (m�) using (37) :

'm (m
�; A' (m

�)) = 0

or

0 =
R

r + �
=
c

r
A'

h
1 +

�

c
m�
i� r

�
�1

or

A' (m
�) =

rR

c (r + �)

h
1 +

�

c
m�
i1+ r

�
(77)

To solve for A� (m�) we use (40):

� (0; (m�R=r) ; A� (m
�)) = (m�R=r) + b

or

V � + b =
p (V � + f)�Rc= (r + p+ �)

r + p
+

�
c

r + p

�2
A�

or

A� =

�
r + p

c2

��
rV � + br + p (b� f) +

Rc

r + p+ �

�
and use rV � = Rm� to get:

A� (m
�) =

r + p

c2

�
Rm� + br + p (b� f) +

Rc

r + p+ �

�
(78)

Now we replace A� and A' into (39) and (41) so we get two non-linear equations:

� (m; (m�R=r) ; A� (m
�)) = (m�R=r) + f

' (m;A' (m
�)) = (m�R=r) + f

The �rst equation gives:

(m�R=r) + f =

�
p

r + p

�
m�R

r
+ f

�
� Rc

(r + p) (r + p+ �)

�
+

�
R

r + p+ �

�
m

+

�
c

r + p

�2
A� (m

�)
h
1 +

�

c
m
i� r+p

�

m�
�

R

r + p

�
+ f =

�
p

r + p
f � Rc

(r + p) (r + p+ �)

�
+

�
R

r + p+ �

�
m

+

�
c

r + p

�2
A� (m

�)
h
1 +

�

c
m
i� r+p

�

79



and substituting:

A� (m
�) =

r + p

c2

�
Rm� + br + p (b� f) +

Rc

r + p+ �

�
we get

m�
�

R

r + p

�
+ f =

�
p

r + p
f � Rc

(r + p) (r + p+ �)

�
+

�
R

r + p+ �

�
m

+

�
m� R

r + p
+ b�

�
c

r + p

��
pf

c
� R

r + � + p

�� h
1 +

�

c
m
i� r+p

�

or

m�
�

R

r + p

��
1�

h
1 +

�

c
m
i� r+p

�

�
=

�
p

r + p
f � Rc

(r + p) (r + p+ �)

�
+

�
R

r + p+ �

�
m+�

b�
�

c

r + p

��
pf

c
� R

r + � + p

�� h
1 +

�

c
m
i� r+p

� � f

or

m� =

h
p
r+p

f � Rc
(r+p)(r+p+�)

i
+
h

R
r+p+�

i
m+

n
b�

�
c

r+p

� h
pf
c
� R

r+�+p

io �
1 + �

c
m
�� r+p

� � f�
R
r+p

� h
1�

�
1 + �

c
m
�� r+p

�

i

m� =

�
c

r+p

� h
p f
c
� R

(r+p+�)

i h
1�

�
1 + �

c
m
�� r+p

�

i
+
h

R
r+p+�

i
m+ b

�
1 + �

c
m
�� r+p

� � f�
R
r+p

� h
1�

�
1 + �

c
m
�� r+p

�

i
Hence:

m�
1 (m) �

�
c

r+p

� h
p f
c
� R

(r+p+�)

i
�

R
r+p

� +

h
R

r+p+�

i
m+ b

�
1 + �

c
m
�� r+p

� � f�
R
r+p

� h
1�

�
1 + �

c
m
�� r+p

�

i
or

m�
1 (m) � � (m) =

�
r + p

R

�264 c

r + p

�
p f

c
� R

(r + p+ �)

�
+

�
R

r+p+�

�
m+ b

�
1 + �

c
m
�� r+p

� � f

1�
�
1 + �

c
m
�� r+p

�

375
(79)
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Notice that for � > 0; m�
1 (m) is continuous in (0;1) and that:

lim
m!0

m�
1 (m) = +1

lim
m!+1

m�
1 (m) = +1

lim
m!1

m�
1 (m)

m
=

�
r + p

r + p+ �

�
< 1 :

Now we solve the second equation:

(m�R=r) + f = �
�

Rc

(r + �) r

�
+

�
R

r + �

�
m+

�c
r

�2
A' (m

�)
h
1 +

�

c
m
i� r

�

and using expression (77) for A'we get:

m�R=r = �
�

Rc

(r + �) r

�
+

�
R

r + �

�
m+

Rc

(r + �) r

h
1 +

�

c
m�
i1+ r

�
h
1 +

�

c
m
i� r

� � f

or

m� = �
�

c

(r + �)

�
+

�
r

r + �

�
m+

c

(r + �)

�
1 + �

c
m��1+ r

��
1 + �

c
m
� r
�

� f
r

R

or

m� =

�
r

r + �

�
m+

c

(r + �)

 �
1 + �

c
m��1+ r

��
1 + �

c
m
� r
�

� 1
!
� f

r

R
(80)

which implicitly de�nes m�
2 (m) :

To establish the properties of m�
2 (m) de�ne � (m

�;m) as

� (m�;m) �
�

r

r + �

�
m+

c

(r + �)

 �
1 + �

c
m��1+ r

��
1 + �

c
m
� r
�

� 1
!
� f

r

R

so that m� = m�
2 (m) is the solution of

m� = � (m�;m) :
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Notice that � is increasing in m� with

@� (m�;m)

@m� =

�
1 + �

c
m�� r��

1 + �
c
m
� r
�

;

@� (m;m)

@m� = 1;

@� (m�;m)

@m� > 1 for m� > m

and
� (m;m) = m� f

r

R

Thus there is always a solution m� = m�
2 (m) ; of m

� = � (m�;m) with m�
2 (m) >m.

Since
@� (m�;m)

@m
=

�
r

r + �

� 
1�

�
1 + �

c
m��1+ r

��
1 + �

c
m
�1+ r

�

!
< 0 if m� > m

then
d

dm
m�
2 (m) =

@�(m�;m)
@m

1� @�(m�;m)
@m�

> 0 and
m�
2 (m)

m
> 1 :

Notice that m�
2 (m) is continuous in (0;1) and that:

lim
m!0

m�
2 (m) < 1

lim
m!1

m�
2 (m)

m
= 1

Hence, to summarize, we m�
1 (m) and m

�
2 (m) continuous in (0;1) and:

m�
1 (0) = 1 > m�

2 (0)

lim
m!1

m�
1 (m)

m
=

r + p

r + p+ �
< 1 � lim

m!1

m�
2 (m)

m

Thus by the intermediate value theorem, there is an m̂ such that

m�
1 (m̂)�m�

2 (m̂) = 0:

For � < 0 the range of the functions de�ned above is [0;��=c] : By a straightfor-
ward adaptation of the arguments above one can show the existence of the solution
of the two equations in this case.
That the solution is unique follows from the Principle of Optimality. If there

would be two solutions ofm�
1 (m̂)�m�

2 (m̂) = 0 there would be two bounded solutions
to the Bellman equation, a contradiction with the principle of optimality.
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Now we verify the guesses that the value function Vu (m) is decreasing in a
neighborhood of m = 0 and single peaked. The convexity of Vu (m) is equivalent to
showing that A' > 0 and A� > 0 which can be readily established from (77) and
(78) provided b > f: Moreover, since A' > 0 and A� > 0; then Vu (m) is strictly
decreasing on (0;m�) :

Finally we extend the value function to the range (m�;1) : Given the values
already found for V � and A' we �nd �m as the solution to

' ( �m;A') = V � + f

i.e. �m solves:�
R

r + �

�
�m+

�c
r

�2
A'

h
1 +

�

c
�m
i� r

�
= V � + f +

Rc= (r + �)

r
:

Now given V � and �m we �nd the constant �A� by solving

�
�
�m;V �; �A�

�
= V � + f

i.e. �A� is:

�A� =

�
r + p

c

�2 �
1 +

�

c
�m
� r+p

�

�
V � + f � p (V � + f)�Rc= (r + p+ �)

r + p
� R

r + p+ �
�m

�

Lastly, given V � and �A� we �nd m�� as the solution of �

�
�
m��; V �; �A�

�
= V � + b:

Now we establish that Vu is strictly increasing in (m�;m��) : For this notice that
since �

�
�m;V �; �A�

�
= ' ( �m;A') then by inspecting the Bellman equation (32) it

follows that they have the same derivative with respect to m at �m: Since ' ( �m;A')
is convex this derivative is strictly positive. There are two cases. If �A� is positive
then �

�
�m;V �; �A�

�
is convex in this range and hence Vu is increasing. If �A� is

negative then �
�
�m;V �; �A�

�
is concave but it is increasing since it cannot achieve a

maximum since it is the sum of a linear increasing and a bounded concave function.
QED.

Proof of Proposition 15 In proposition 13 we show that Vu (m) is analytical
in the interval [m; m�], so we can write:

Vu (m) = Vu (m
�) +

1X
i=1

1

i!
V i
u (m

�) (m�m�)i
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We will use that f = Vu (m)� Vu (m
�) to write:

f =
1X
i=1

1

i!
V i
u (m

�) (m�m�)i

The next step is to �nd an expression for the i�th order derivative: V i
u (m

�) : Considering
the Bellman equation in an interval of m� :

rVu (m) = Rm+ V 1
u (m) [�c� �m]

and di¤erentiating it w.r.t. m :

rV 1
u (m) = R + V 2

u (m) [�c� �m]� �V 1
u (m)

or

V
2

u (m) =
R� (r + �)V 1

u (m)

[c+ �m]
> 0

evaluating at m�; using that V 1
u (m

�) = 0 we obtain:

V 2
u (m) =

R

c+ �m�

Di¤erentiating again we have

[r + 2�]V 2
u (m) = �V

3

u (m) [c+ �m]

and hence, by induction we can show that

[r + (1 + i) �]V i+1
u (m) = �V i+2

u (m) [c+ �m]

for i = 1; :::: Then we can write:

V
i+1

u (m�) = (�1)i�1 V 2
u (m)

�
r + 2�

c+m��

� �
r + 3�

c+m��

�
� � �
�
r + i�

c+m��

�
= (�1)i�1 R

(c+m��)i
�ij=2 [r + j�]
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for i = 2; 3; ::: Hence we have

f =

1X
i=1

1

i!
V i
u (m

�) (m�m�)i

=
1

2

�
R

c+m��

�
(m�m�)2 +

+
X
i=2

1

(i+ 1)!
(�1)i�1 R

(c+m��)i
�
�ij=2 [r + j�]

�
(m�m�)i+1

=
1

2
R (c+m��)

�
m�m�

c+m��

�2
+

+
X
i=2

(�1)i�1

(i+ 1)!
R (c+m��)

�
�ij=2 [r + j�]

��m�m�

c+m��

�i+1
or

f

R (c+m��)
=
1

2

�
m�m�

c+m��

�2
+
X
i=2

(�1)i�1

(i+ 1)!

�
�ij=2 [r + j�]

��m�m�

c+m��

�i+1
and hence

f

R (c+m��)
=

�
m�m�

c+m��

�2 "
1

2
+
X
i=2

(�1)i�1

(i+ 1)!

�
m�m�

c+m��

�i�1 �
�ij=2 [r + j�]

�#

=

�
m� �m

c+m��

�2 "
1

2
+
X
k=1

1

(k + 2)!

�
�k+1j=2 [r + j�]

��
(�1) m�m�

c+m��

�k#

=

�
m� �m

c+m��

�2 "
1

2
+
X
k=1

1

(k + 2)!

�
�k+1j=2 [r + j�]

��m� �m

c+m��

�k#

To see how z = (m� �m) = (c+m��) > 0 depends on each of its 3 determinants we
write

� = z2  (z; r; �)

where

 (z; r; �) =

"
1

2
+
X
k=1

1

(k + 2)!

�
�k+1j=2 [r + j�]

�
zk

#

� =
f

R (c+m��)
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The function  is increasing in z; r and �; hence:

log � = 2 log z + log (z; r; �)

and
1

�
=
2

z

@z

@�
+
 z
 

@z

@�
or

1 = 2
�

z

@z

@�
+
 z
 
z
�

z

@z

@�
or

@z

@�

�

z
=

1=2

(1 + z  z= (2 ))

Since  z
 
> 0 then 0 < @z

@�
�
z
< 1

2
; i.e. the elasticity of z with respect to � (hence to

f
R
) is smaller than one half.

Note moreover that (for given m�)

0 =
2

z

@z

@r
+
1

 

�
 z
@z

@r
+  r

�
0 = 2

r

z

@z

@r
+
zr

z 
 z
@z

@r
+
r

 
 r

0 =
r

z

@z

@r

�
2 +

z z
 

�
+
r

 
 r

r

z

@z

@r
= �

r
 
 r�

2 + z z
 

� < 0
which implies that z (hence the inaction range) is decreasing in r .

Note �nally that (for given m�):

1

�

@�

@�
=

2

z

@z

@�
+
1

 

�
 z
@z

@�
+  �

�
�

�

@�

@�
= 2

�

z

@z

@�
+
z�

z 
 z
@z

@�
+
�

 
 �

�

�

@�

@�
� �

 
 � =

�

z

@z

@�

�
2 +

z z
 

�
or

�

z

@z

@�
= �

1
�
@�
@�
� 1

 
 �

2 + z z
 

which implies that z (hence the inaction range) is decreasing in r if � > 0; increasing
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otherwise.
QED.

Proof of Proposition 16
Let �n be the fraction of agents that withdraw during a period of time of length

� :
�n = �pH (m) + �n � (1��p)�

�=� (81)

where � �=� is the number of periods of length � that it takes for an agent with
cash m consuming �c to get cash m = 0 if it does not have any contact with the
FI. This quantity solves

m = c

Z ��

0

exp (� s) ds

or
� � =

1

�
log (1 +m�=c)

Let

H (m) = 1� n�
�̂

�
= 1� n �̂ =fraction with cash 2 (0;m)

= 1� fraction with cash 2 (m;m�)

where �̂ =� is number of periods of length � that an agent withm� takes to get cash
m = m consuming �c . Notice that the fraction with cash 2 (m;m�) equals the
fraction who withdraw � number of periods until cash reaches m; or n� � �̂ =� =
n � �̂ : We have

(m� �m) = c

Z �̂

0

exp (� s) ds

or
�̂ =

1

�
log (1 + (m� �m)�=c) (82)

Then
�n = �p (1� n�̂) + �n � (1��p)�

�=�

or
n
h
1 + p�̂ � (1��p)�

�=�
i
= p

or
n (�) =

ph
1 + p�̂ � (1��p)��=�

i
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or

lim
�!0

n (�) = lim
�!0

p

1 + p�̂ �
h
(1��p)1=�

i��
= lim

�!0

p

1 + p�̂ � exp (�p)��

since

log (1��p)
1=� =

1

�
log (1��p) = ��p+ o (�p)

�
= �p+ o (�p)

�

or
lim
�!0

exp
�
log (1��p)

1=�
�
= exp (�p)

and

exp (�p)�
�
= exp (�p)

1
�
log(1+m�=c)

= exp
�
log (1 +m�=c)�p=�

�
= (1 +m�=c)�

p
�

so
n =

p

(p=�) log (1 + (m� �m)�=c) + 1� (1 +m�=c)�
p
�

and

H (m) = 1� n �̂ = 1�
p 1
�
log (1 + (m� �m)�=c)

(p=�) log (1 + (m� �m)�=c) + 1� (1 +m�=c)�
p
�

=
(p=�) log (1 + (m� �m)�=c) + 1� (1 +m�=c)�

p
� � (p=�) log (1 + (m� �m)�=c)

(p=�) log (1 + (m� �m)�=c) + 1� (1 +m�=c)�
p
�

=
1� (1 +m�=c)�

p
�

(p=�) log (1 + (m� �m)�=c) + 1� (1 +m�=c)�
p
�

QED.

Proof of Proposition 17
I. Case m 2 (0;m) :
The density for real cash balances satis�es:

@h (m)

@m
=

(p� �)

(�m+ c)
h (m)
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so that

h (m) = A0

�
1 +

�

c
m
� p
�
�1

for some positive constant A0 with CDF

H (m) =
c

p
A0

h
1 +

�

c
m
i p
� �B0

where B0 is a constant to determine.
The CDF has to satisfy two boundary conditions:

H (0) = 0;

H (m) =
1� (1 +m�=c)�

p
�

(p=�) log (1 + (m� �m)�=c) + 1� (1 +m�=c)�
p
�

These conditions imply:

H (m) =
c

p
A0

�
1 +

�

c
m
� p
� �B0

A0 =
p

c

1h�
1 + �

c
m
� p
� � 1

iH (m)
B0 =

c

p
A0

which yield equations (46) and (47) in the proposition.

Case II. For m 2 (m;m�).

The density satis�es
@h (m)

@m
=

��
(�m+ c)

h (m)

so it is given by

h (m) = A1

�
1 +

�

c
m
��1

for some constant A1 with CDF

H (m) =
c

�
A1 log

�
1 +

�

c
m
�
�B1

for some constant B1:
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The CDF has to satisfy two boundary conditions:

H (m�) = 1;

H (m) =
1� (1 +m�=c)�

p
�

(p=�) log (1 + (m� �m)�=c) + 1� (1 +m�=c)�
p
�

These conditions imply:

H (m) =
c

�
A1 log

�
1 +

�

c
m
�
�B1

A1 =
(1�H (m)) (�=c)

log
�
1 + �

c
m�
�
� log

�
1 + �

c
m
�

B1 =
c

�
A1 log

�
1 +

�

c
m�
�
� 1

which yield equations (49) and (91) in the proposition.
QED.

Proof of Proposition 18Z m

0

mh (m) dm =

�
H (m)m�H (0) 0�

Z m

0

H (m) dm

�
Z m

0

H (m) dm =

Z m

0

A0
p=c

�
1 +

�

c
m
� p
�
dm�B0 (m)

=
A0

(p=c) (p+ �) =c

��
1 +

�

c
m
� p
�
+1

� 1
�
�B0m

=
A0
p=c

"�
1 + �

c
m
� p
�
+1 � 1

(p+ �) =c
�m

#

and Z m�

m

mh (m) dm =

�
H (m�)m� �H (m)m�

Z m�

m

H (m) dm

�
=

�
m� �H (m)m�

Z m�

m

H (m) dm

�
Z m�

m

H (m) dm =

Z m�

m

c

�
A1 log

�
1 +

�

c
m
�
dm�B1 (m

� �m)
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where Z m�

m

log
�
1 +

�

c
m
�
dm =

c

�

�
1 +

�

c
m
� h
log
�
1 +

�

c
m
�
� 1
i
jm�

m

HenceZ m�

m

H (m) dm

= A1

� c
�

�2 n�
1 +

�

c
m�
� h
log
�
1 +

�

c
m�
�
� 1
i
�
�
1 +

�

c
m
� h
log
�
1 +

�

c
m
�
� 1
io
�B1 (m

� �m)

Thus

M = m� �
Z m

0

H (m) dm�
Z m�

m

H (m) dm

=
A0
p=c

"�
1 + �

c
m
� p
�
+1 � 1

(p+ �) =c
�m

#
+B1 (m

� �m) +

�A1
� c
�

�2 n�
1 +

�

c
m�
� h
log
�
1 +

�

c
m�
�
� 1
i
�
�
1 +

�

c
m
� h
log
�
1 +

�

c
m
�
� 1
io

QED.

Proof of Proposition 19
The expression R m

0
(m� �m)h (m) dm

H (m)

is the expected withdrawal conditional on being done by an agent with m > 0; or
conditional on being a withdrawal that happens due to a chance meeting with the
intermediary. Z m

0

(m� �m)h (m) dm = m�H (m)�
Z m

0

mh (m) dm

Z m

0

mh (m) dm = mH (m)�
Z m

0

H (m) dm

with Z m

0

H (m) dm =
A0
p=c

"�
1 + �

c
m
� p
�
+1 � 1

(p+ �) =c
�m

#

91



ThusZ m

0

(m� �m)h (m) dm = (m� �m)H (m) +
A0
p=c

"�
1 + �

c
m
� p
�
+1 � 1

(p+ �) =c
�m

#
�
A0
p=c

�
=H (m) =

1�
1 + �

c
m
� p
� � 1

so R m
0
(m� �m)h (m) dm

H (m)
= (m� �m) +

A0
p=c

"�
1 + �

c
m
� p
�
+1 � 1

(p+ �) =c
�m

#

= (m� �m) +

(1+�
c
m)

p
�+1�1

(p+�)=c
�m�

1 + �
c
m
� p
� � 1

QED.

C Appendix: Expressions for zero in�ation (� = 0)

This appendix collects the expression that are obtained in the case of � = 0: In
most cases they have to be obtained by using L�Hopital rule in the corresponding
formulas for the general case.
The expression for m� in Proposition 2:which for � = 0 takes the form:

exp

�
m�

c
(r + p)

�
= 1 +

m�

c
(r + p) + (r + p)2

b

cR
: (83)

The expression for the value function in Proposition 3 for � = 0 takes the form

Vu (m) =

�
pV � (r + p)�Rc

(r + p)2

�
+

�
R

r + p

�
m+

�
c

r + p

�2
A exp

�
�r + p

c
m

�
:

The expression for the expected number of trips per unit of time n in Proposition
5 for � = 0 takes the form

n (m�; c; 0; p) =
p

1� e�m
� p
c

(84)

The expression for the density of the distribution of real cash balances in Propo-
sition 6 for � = 0 takes the form

h (m) =
p
c
exp

�
mp
c

�
exp

�
m�p
c

�
� 1

(85)
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The expression for aggregate money balances in Proposition 7 for � = 0

M = � (m�; c; �; p) � c

�
1

1� e�
p
c
m�

m�

c
� 1=p

�
: (86)

C.1 The model with costly random withdrawals for the � =
0 case

Proposition 21 When � = 0; for a given V � and 0 < m < �m the solution of
Vu (m) for m 2 (m; �m) is given by:

Vu (m) = ' (m;A') �

�
�
�Rc
r2

�
+

�
R

r

�
m+

�c
r

�2
A' exp

�
�r
c
m
�
:

and

Vu (m) = � (m;V �; A�) ��
p (V � + f) (r + p)�Rc

(r + p)2

�
+

�
R

r + p

�
m+

�
c

r + p

�2
A� exp

�
�r + p

c
m

�
:

for m 2 (0; m) or m 2 ( �m; m��).

Proposition 22 For � = 0 the range of inaction (m� �m) is given by:

f c

R
= [m� �m]2

 
1

2
+

1X
j=3

1

j!

h
(m� �m)

r

c

ij�2!
(87)

C.1.1 Range of inaction when � = 0

Calculations for m��m for the case of � = 0: To see how we obtain the result
for � = 0; start with the expression for z� = m��m :

z� =
1

r=c

�
exp

h
z�

r

c

i
� 1
�
� f

r

R
:

Write this expression as:

exp
h
z�

r

c

i
= 1 +

h
z�

r

c

i
+
1

2

h
z�

r

c

i2
+
1

3!

h
z�

r

c

i3
+ :::

= 1 +
h
z�

r

c

i
+
h
z�

r

c

i2 1
2
+

1X
j=3

1

j!

h
z�

r

c

ij�2!
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hence

z� =
1

r=c

 
1 +

h
z�

r

c

i
+
h
z�

r

c

i2 1
2
+

1X
j=3

1

j!

h
z�

r

c

ij�2!
� 1
!
� f

r

R

or

f
r

R
=

 
[z�]2

�r
c

� 1
2
+

1X
j=3

1

j!

h
z�

r

c

ij�2!!
or

f c

R
= [m� �m]2

 
1

2
+

1X
j=3

1

j!

h
z�

r

c

ij�2!
QED.

C.1.2 CDF for � = 0

For m 2 (0;m) we have:
h (m) = A0 exp (pm=c)

and

H (m) =
A0
p=c

exp (pm=c)�B0

hence:

H (m) =
A0
p=c

exp (pm=c)�B0 (88)

H (m) =
1� exp (�p (m=c))

p (m� �m) =c+ 1� exp (�p (m=c))

A0 =
H (m) (p=c)

[exp (pm=c)� 1] (89)

B0 =
A0
p=c

(90)

For m 2 (m;m�) we have
h (m) = A1c

H (m) = A1m=c�B1
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Hence

H (m) =
A1
�
log
�
1 +

�

c
m
�
�B1 (91)

[1�H (m)] =
p (m� �m) =c

p (m� �m) =c+ 1� exp (�pm=c)

A1 =
1�H (m)

(m� �m) =c
(92)

B1 = A1m
�=c� 1 (93)

C.1.3 Average money holdings for � = 0

Proposition 23 The average (expected) real money holdings for � = 0 is

M = m� � A0
(p=c)

�
[exp (pm=c)� 1]

(p=c)
�m

�
(94)

�A1
c

�
(m�)2 � (m)2

�
+ [A1m

�=c� 1] (m� �m)

where A0; A1 and B1 are given in (89),(92) and (93).

Proof. For � = 0 we have

M = m� �
Z m

0

H (m) dm�
Z m�

m

H (m) dm

= m� � A0
(p=c)

�
[exp (pm=c)� 1]

(p=c)
�m

�
�A1
c

�
(m�)2 � (m)2

�
+ [A1m

�=c� 1] (m� �m)

Z m

0

H (m) dm =

Z m

0

�
A0
p=c

exp (pm=c)�B0

�
dm

=
A0

(p=c) (p=c)
[exp (pm=c)� 1]�B0m

=
A0
(p=c)

�
[exp (pm=c)� 1]

(p=c)
�m

�
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Z m�

m

H (m) dm =

Z m�

m

[A1m=c�B1] dm

=
A1
c

�
(m�)2 � (m)2

�
� [A1m�=c� 1] (m� �m)

C.1.4 Average withdrawal for � = 0

Proposition 24 If � = 0 the average withdrawal W is given by:

W = m�
h
1� p

n
H (m)

i
+
hp
n
H (m)

i R m
0
(m� �m)h (m) dm

H (m)
(95)

where R m
0
(m� �m)h (m) dm

H (m)
= m� �m�

[exp(pm=c)�1]
(p=c)

�m

exp (pm=c)� 1

D Appendix: Calibration for b and f

How to �nd b and f given (m�; m; r; �; R)

For convenience we rewrite equation (80) for m�
2 (�) :

m� =

�
r

r + �

�
m+

c

(r + �)

 �
1 + �

c
m��1+ r

��
1 + �

c
m
� r
�

� 1
!
� f

r

R

to �nd f: It is given by:

f =

�
r

r+�

�
m+ c

(r+�)

�
[1+�

c
m�]

1+ r
�

[1+�
c
m]

r
�
� 1
�
�m�

r=R

Given f and (m�; m; r; �; R; p) use equation (79) for m�
1 (�) :

m� =

�
c

r+p

� h
p f
c
� R

(r+p+�)

i
�

R
r+p

� +

h
R

r+p+�

i
m+ b

�
1 + �

c
m
�� r+p

� � f�
R
r+p

� h
1�

�
1 + �

c
m
�� r+p

�

i
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to �nd b: It is given by

b =

�
m� � (

c
r+p)[

p f
c
� R
(r+p+�) ]

( R
r+p)

��
R
r+p

� h
1�

�
1 + �

c
m
�� r+p

�

i
�
h

R
r+p+�

i
m+ f�

1 + �
c
m
�� r+p

�

E Appendix: Properties of function �

To see why @�
@n
< 0 notice that

@�

@n
=

�
1

p

�2 �
log

�
n

n� p

�
� p

n� p

�
=

�
1

p

�2 �
log

�
1 +

p

n� p

�
� p

n� p

�
�

�
1

p

�2 �
p

n� p
� p

n� p

�
= 0

To see why @�
@p
> 0 write

@�

@p
= � 1

p2

�
�n
p
log
�
1� p

n

�
� 1
�
+
1

p

�
n

p2
log
�
1� p

n

�
+
n

p

1

n� p

�
= � 1

p2

�
�n
p
log
�
1� p

n

�
� 1
�
+
1

p2

�
n

p
log
�
1� p

n

�
+

n

n� p

�
=

1

p2

�
2
n

p
log
�
1� p

n

�
+ 1 +

n

n� p

�
=

1

p2

�
2
n

p
log
�
1� p

n

�
+
n

p

p

n
+
n

p

p

n� p

�
=

1

p2
n

p

�
2 log

�
1� p

n

�
+ 1 +

p=n

1� p=n

�
or

@�

@p
=
1

p2
n

p
h (p=n)

where we de�ne h as

h (x) = 2 log (1� x) + 1 +
x

1� x
:

Notice that
h (0) = 1;
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and
h0 (x) = � 2

1� x
+

1

(1� x)2
=

1

(1� x)2
[�2 (1� x) + 1]

so

h0
�
1

2

�
= 0; h0 (x) < 0 for x < 1=2; h0 (x) > 0 for x > 1=2:

thus the minimum of h is achieved at x = 1=2: Hence

h

�
1

2

�
= 2 log

�
1

2

�
+ 1 + 1 = 2

�
log

�
1

2

�
+ 1

�
> 0

and thus
@�

@p
=
1

p2
n

p
h (p=n) � 1

p2
n

p
h

�
1

2

�
> 0:

Setting f = � = 0 into the expression for b :

b =

�
c m�=c+

�
c

r+p

���
R
r+p

�
[1� exp (� (r + p)m�=c)]� c

h
R
r+p

i
m�=c

exp (� (r + p)m�=c)

or

b=c =

�
m�=c+ c

r+p

��
R
r+p

�
[1� exp (� (r + p)m�=c)]�

h
R
r+p

i
m�=c

exp (� (r + p)m�=c)

=

1
r+p

�
R
r+p

�
[1� exp (� (r + p)m�=c)]�

�
R
r+p

�
(m�=c) exp (� (r + p)m�=c)

exp (� (r + p)m�=c)

=

�
R

r + p

� 1
r+p

�
h

1
r+p

+ (m�=c)
i
exp (� (r + p)m�=c)

exp (� (r + p)m�=c)

=

�
R

(r + p)2

�
1� [1 + (r + p) (m�=c)] exp (� (r + p)m�=c)

exp (� (r + p)m�=c)

=

�
R

(r + p)2

�
( exp ((r + p)m�=c)� [1 + (r + p) (m�=c)] )

To obtain the expression for � use

W

M
=
m�

M
� p

n

and
M

m� =
1

p

�
n � 1

m�=c

�
;
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W

M
= p

�
n � 1

m�=c

��1
� p

n

=

�
n

p
� 1

pm�=c

��1
� p

n

and using that

n=p =
1

1� e�m
� p
c

or
m�p

c
= � log (1� p=n)

we have

W

M
=

�
n

p
� 1

� log (1� p=n)

��1
� p

n

= � (n; p) =

�
1

p=n
+

1

log (1� p=n)

��1
� p

n

De�ne

� (x) �
�
1

x
+

1

log (1� x)

��1
� x

=

�
x log (1� x)

log (1� x) + x

�
� x

� (x) =

�
x log (1� x)

log (1� x) + x

�
� x =

x
�
�x� 1

2
x2 + o (x2)

�
�x� 1

2
x2 + o (x2) + x

� x =

�
�x� 1

2
x2 + o (x2)

�
�1� 1

2
x+ o(x2)

x
+ 1

� x

=

�
�x� 1

2
x2 + o (x2)

�
�1
2
x+ o(x2)

x

� x =

�
�1� 1

2
x+

o(x2)
x

�
�1
2
+ o(x2)

x2

� x

lim
x!0

� (x) =
�1
�1
2

= 2

� (x) =
x log (1� x)

log (1� x) + x
� x =

x

1 + x
log(1�x)

� x

so
� (1) =

1

1 + 1
log(0)

� 1 = 1

1 + 1
�1

� 1 = 0 :

To see why �0 (x) < 0 notice that [TO BE COMPLETED]
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F Appendix: Additional evidence

Table 11: Households�currency holdings
Variable 1989 1991 1993 1995 1998 2000 2002 2004
Average currencya

Household w/o account 20.5 20.1 12.7 14.9 14.1 14.9 19.1 15.8
Household w. account
w/o ATM 14.5 14.2 10.2 11.4 11.9 11.5 10.9 10.6
w. ATM 11.6 9.0 6.5 6.9 6.9 6.2 6.1 6.1

Average withdrawala

Household w/o ATM na 11.2 15.7 12.7 14.7 13.8 13.3 13.2
Household w. ATM na 6.1 6.6 5.7 5.9 5.5 5.5 5.6

Minimum currencya;b

Household w/o ATM 3.1 3.1 3.4 2.5 4.6 4.2 4.0 na
Household w. ATM 2.9 2.4 2.3 1.7 2.2 2.3 2.1 na

Number of withdrawalsc

Household w/o ATM na 18.4 12.3 13.1 19.8 16.5 17.5 17.9
Household w. ATM na 49.6 48.0 49.5 58.6 61.7 56.7 63.1

N. of Observations 8,274 8,188 8,089 8,135 7,147 8,001 8,011 8,012

Notes: aRatio to non-durable daily consumption. - bReported level of currency holdings
that triggers a withdrawal. - cPer year. Source: Bank of Italy - Survey of Household Income
and Wealth; entries computed using sample weights.

Table 12: The demand for currency and �nancial di¤usion
Dependent variable: log(M) OLS estimates empty col
log(consumption) 0.46 0.45

(0 .01) (0 .01)

log(interest rate) -0.24 -0.44
(0 .05) (0 .06)

log(interest rate) � bank-service di¤usion 0.41
(0 .07)

bank-service di¤usion -0.56
(0 .09)

Dummy ATM card -0.24 -0.24
(0 .01) (0 .01)

Sample size 28,244 28,244
R2 0.20 0.20

Note: OLS regressions based on 1993-2002 surveys; standard errors in parenthesis. The
regressors also include a constant, year dummies and 103 province dummies. Bank-service
di¤usion is de�ned as bank branches per capita at the province level (see the text).
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Table 13: Number of withdrawals (c/o Bank and ATMs) per unit of consumption

Dependent variable: log(n=c) Household w/o ATM Household w. ATM
Bank wdrl. Atm wdrl. Bank + Atm wdrl.

log(interest rate) 0.33 0.36 0.40
(0 .17) (0 .13) (0 .12)

log(interest rate) � bank-branch di¤usion 0.13 -0.09 -0.09
(0 .07) (0 .06) (0 .05)

bank-branch di¤usion 0.06 0.20 0.18
(0 .09) (0 .08) (0 .08)

Sample size 9,834 14,160 15,030

Notes: OLS regressions based on 1993-2002 surveys; the dependent variable is the number
of bank (ATM) trips scaled by the household real consumption. Robust standard errors
(in parenthesis) are computed by clustering observations at the province*year, the �nest
level of disaggregation at which the interest rate is available. The regressors also include
a constant, year dummies and 103 province dummies. Bank-branch di¤usion is de�ned as
bank branches per capita at the city level; The net nominal interest rate is measured in
percent (see Table 2).
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