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Abstract

We propose a method to measure the welfare cost of economic fluctu-
ations without full specification of consumer preferences, and instead uses
asset prices. The method is based on the marginal cost of consumption
fluctuations, the per unit benefit of a marginal reduction in consumption
fluctuations expressed as a fraction consumption. We show that this mea-
sure is an upper bound to the benefit of reducing consumption fluctuations.
We also clarify the link between the cost of consumption uncertainty, the
equity premium and the slope of the real term structure. To measure the
marginal cost of fluctuations we fit a variety of pricing kernels that repro-
duce key asset pricing statistics. We show that the pricing kernel has to be
non-stationary in order to explain simultanously the slope of the real term
structure and the equity premium. We find that consumers would be willing
to pay a very high price for eliminationg all the uncertainty in aggregate
consumption. However, for consumption fluctuations corresponding to the
business cycle frequencies, we estimate the marginal cost to be about 0.55%
of lifetime consumption based on the period 1889-1997 and about 0.30%
based on 1954-1997.
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1. Introduction

In a seminal contribution, Lucas (1987) proposes a measure of the welfare cost
of economic fluctuations. His measure is defined as the compensation required to
make the representative agent indifferent between consumption plans with busi-
ness cycle fluctuations and without. He finds a very small cost of business cycles.
Subsequently, several studies have proposed estimates of this cost of business cy-
cles under alternative assumptions on preferences and the consumption processes.
Primarily as a function of the specification and parameterization of preferences,
these estimates vary widely across studies.! In this paper, we propose to measure
the welfare cost of business cycles without fully specifying consumer preferences,
instead we directly use financial market data. We believe that by directly mea-
suring the premia for aggregate risk we can circumvent some of the difficulties
related to specifying a utility function.

We start by generalizing Lucas’ cost of business cycles along two dimensions.
First, we derive the marginal cost of consumption fluctuations. Lucas’ cost of
business cycles measures the welfare gain from removing all the business cycle risk,
it can be thought of as a total cost. We define a cost that measures the welfare
benefits from reduced fluctuations at the margin. We find two useful features to
this definition. First, because it is a marginal cost we can use asset prices to
estimate the cost of business cycles for a representative agent. Second, given that
most economic policies would not intend to eliminate business cycle fluctuations
entirely, knowing the potential benefits at the margin may be useful in itself. Our
second dimension of generalization concerns the type of consumption fluctuations
that one associates with business cycles. Lucas’ consumption was subject to only
temporary deviations from a deterministic trend. Several later studies specified
consumption as a nonstationary process (for instance, Obstfeld (1994), Campbell
and Cochrane (1995)), while the cost of business cycles continued to be measured
as the gain from eliminating consumption uncertainty entirely, including the risks
associated with the permanent stochastic components. Our definition is general
enough to encompass this case, but also allows for business cycle fluctuations to be

!Lucas’ estimates were well below one percent of consumption. Obstfeld (1994) finds slightly
higher costs than Lucas when allowing for stochastic growth trends and preferences that distin-
guish between risk aversion and intertemporal elasticity of substitution. Campbell and Cochrane
(1998) find larger costs of business cycles by using habit-formation preferences that are also able
to explain the equity premium. Atkeson and Phelan (1994) present an example of an incomplete
markets economy that can generate the equity premium, but nevertheless has only small costs of
business cycles. Other examples include: Dolmas (1998), Hansen, Sargent and Tallarini (1998),
Krusell and Smith (1999), Otrok (1998), Tallarini (1998); and for the related literature about
the welfare gains from international integration: Lewis (1996) and Van Wincoop (1999).



defined differently, for instance, as the cyclical consumption volatility excluding
a possibly stochastic trend. We find this distinction useful because a priori we
think that many policies affect primarily economic behavior at business cycle
frequencies without affecting the low frequency behavior of the economy. Even if
one disagrees with this distinction about the effect of many policies, it may still
be interesting to know the costs of the relatively short lived fluctuations versus
the costs of all consumption uncertainty.

Before presenting our estimates, we derive some analytical results. Under
general specification we show that the marginal cost of reducing fluctuations is
higher than the total cost of these fluctuations, hence our estimates are upper
bounds. For more specific cases, such as expected discounted utility, we obtain
a sharper bound where the marginal cost of consumption uncertainty is twice
the total cost. The marginal cost is also an upper bound with consumption
externalities of a general class we label as envy.

Several of the above cited studies have highlighted the relationship between
Lucas’ low cost of business cycles and the equity premium puzzle. In particular,
studies with preference specifications that can solve the equity premium puzzle
report usually costs of business cycles larger than Lucas’ original estimates. We
show that the marginal cost of consumption uncertainty is not equal to the (con-
sumption) equity premium in general. The equity premium is the excess return
of equity over a risk-less rate of return for a given holding period. In contrast,
the marginal cost of consumption uncertainty is equal to the excess in the price
of a perpetual bond with growing coupons over the price of a consumption equity
claim. Two of the factors that make the marginal cost of consumption uncertainty
different from the equity premium are the steepness of the term structure and
the persistence of the shocks. We clarify the link between the two and provide
examples where the quantitative differences are of first-order importance.

The marginal cost of all consumption uncertainty is given by the ratio of the
prices of two assets, the price of a claim to the expected value of consumption
divided by the price of a claim to consumption. Equivalently, it can be measured
as the ratio of the dividend yield of the claim to consumption to the long-term
yield on real debt minus the expected growth rate of consumption. If consumption
were equal to the dividends of a portfolio of common stocks, this formula could
be used to measure the cost of all uncertainty using the dividend-price ratio for
such portfolio. Measuring the cost of economic uncertainty in this way, we find
the costs to be about 619% (173%) of the level of consumption for period covering
1889-1997 (1954-97 respectively).

To relax the assumption of our simplified expression for the marginal cost, and
to better measure the relevant prices we estimate a pricing kernel. We estimate a



pricing kernel as a way to interpolate from the available asset prices the prices for
the assets that measure the cost of consumption fluctuations. Our asset pricing
kernel is consistent with U.S. historical returns on equity, the term structure and
the price/dividend ratios, all features that we show, on theoretical grounds, are
important for measuring the cost of business cycles. In the state space for the
pricing kernel we include variables that determine the market price of risk in
different popular models. Since consumption is an element of the state space, our
pricing kernel allows to differentiate consumption from dividends and to model
its risk premia. We model consumption and the pricing kernel as non-stationary.
This choice has quantitative implications for some of our measures. Our choice
is motivated by a bound, in the spirit of the Hansen-Jagannathan bound. It
implies that the pricing kernel cannot be stationary and explain simultanously
the historical real term structure and the equity premium. As we show, this is a
very general result that should be of interest independent of the main question
of this paper.

Our definition of business cycles is based on a frequency domain approach
with business cycles corresponding to cycles of length 8 years and less. Our
preferred filter is derived through an ad hoc adjustment to a one-sided band-pass
filter so as to match the volatility of the deviations from trend obtained with a
more accurate two-sided filter.? Based on this, we estimate the marginal cost
to be about 0.55% of lifetime consumption for the period 1889-1997 and about
0.30% for the period 1954-1997. We also estimate the cost of all consumption
uncertainty, that is, including cycles of any length. We find very large costs.
With cointegrated consumption and dividends, in many cases costs are around
30% of lifetime consumption, without cointegration they amount in general to
several hundred percents. Finally, we link these estimates with the benefit of
increasing growth—a small modification of our framework allows us to do this
in a consistent way. The benefit from stabilization in terms of additional long-
term growth is shown to be equal to the marginal cost expressed in percents of
consumption divided by the duration of an equity claim with consumption as
payouts. We find that eliminating business cycle fluctuations is worth less than
1 basis point in additional growth. Eliminating all consumption uncertainty is
valued at roughly 1 percent in additional growth.

As a way to check our quantitative results, and to provide intuition, we also
examine the special case where the logarithms of consumption and the pricing
kernel follow random walks. We derive a simple expression for the marginal cost
of consumption fluctuations. The marginal cost is approximately equal to the
excess return of an equity claim to consumption multiplied by a factor that is a

2 As becomes clear below, our approach requires the use of a one-sided filter.



simple function of the moving average coefficients used to define the business cycle
components. Estimates of this simplified expression, where the pricing kernel is
only required to fit the excess returns of different CRSP portfolios, yield findings
that are similar to the ones obtained with the more general specification.

The paper is organized as follows. Section 2 defines the marginal cost of
consumption fluctuations. Section 3 compares marginal and total cost. Sec-
tion 4 studies the relationship between the marginal cost of consumption uncer-
tainty and the equity premium. Section 5 presents our empirical estimates of the
marginal cost of business cycles. Section 6 compares the cost of fluctuations with
the effects of growth. Section 7 concludes.

2. Defining the Marginal Cost of Consumption Fluctuations

We start by defining our measures of the cost of business cycles. We generalize
Lucas’ definition along two dimensions. First, allowing for partial reduction in
consumption fluctuations we define a total cost function, and, as its derivative
evaluated at the point where the consumers bear all the consumption fluctuations,
we define the marginal cost of economic fluctuations. As a second dimension of
generalization, we leave it open for the moment what type of consumption fluctu-
ations are eliminated. As we discuss more in detail in the following sections, this
could be, for instance, all consumption uncertainty or only cyclical consumption
fluctuations for some frequencies.

The analysis is carried out under the assumptions of a representative agent
economy. In each period ¢, the economy experiences one of finitely many events
2 € Z. We denote by z' = (29,21...2;) the history of events up through and
including period ¢t. We index consumption by histories, so we write C : Z — Ry,
where Z = [],5, 2%, or simply {C} = {C; (2') : Vt > 1,2' € Z'} .

Definition 2.1. We define the total cost of consumption Huctuations func-
tion Q(«) as the solution of

U((1+Q2a){C}) =U((1-a){C} +afe}), (2.1)

where a € [0,1], C : Z — R denotes the process of consumption and € : Z — R
denotes the process for the trend starting in period 1. U (.) is a utility function,
mapping consumption processes into R.

The scalar o measures the fraction of risky consumption C' that has been
replaced by the less risky trend consumption €.3 The total cost function gives the

3Qur use of the word trend does not imply any statistical statement. It is simply a label for
a consumption process different from actual consumption and that is presumably less risky.



total benefit from reducing consumption fluctuations as a function of the fraction
of the reduction in fluctuations. It is straightforward to see that (0) = 0, so
that no reduction in fluctuations generates no benefit.

The next definition serves mainly notational convenience. We define the
total cost of consumption fluctuations w, as w = Q(1), or equivalently
U((1+w){C}) = U({€}). As a particular case, define the trend consumption
to be {€} = {Ep (C)}, i.e. where € (2") = Eo(C}) for all t, and 2*. In this case,
we have

U((1+w){C}) =U{HEo(CO)}), (2.2)

which is Lucas’ definition of the cost of business cycles. Thus, Lucas’ definition of
the cost of business cycles can be seen as the total benefit associated with elim-
inating all the consumption fluctuations, that is a = 1, and where consumption
fluctuations are defined as consumption uncertainty, that is, resulting in the ex-
change of consumption for its expected path. When we use this specification for
¢ we refer to 2 as the cost of consumption uncertainty, since € is deterministic,
to distinguish it from the more general case, where we refer to Q as the cost of
consumption fluctuations.

Note, the specification in equation (2.2) differs slightly from Lucas’ and the
literature’s standard specification because we choose to begin compensation as
of t = 1, the standard has been to start compensation at t = 0. We choose this
departure because our definition is more consistent with the idea of ex-dividend
security prices, some of our qualitative results present themselves more tractably,
and finally, the quantitative difference between the two will be insignificant.

For the next definition we assume that U is differentiable with respect to
cach Cj (2') for all t and 2. We denote the partial derivatives by U, ({C}) =
oU ({C}) JOCy (zt).

Definition 2.2. We define the marginal cost of consumption fluctuations
w™ as the derivative of the total cost function ) evaluated at a = 0, i.e.

o = () = iz 2at U (O - (€ () — G () (2.3)

Yt 2o U ({C) - Cr ()

Thus, w™ measures the per unit benefit of a marginal reduction in consump-

tion fluctuations expressed in percents of consumption. It can be considered as

the market price of consumption fluctuations.*

4For a discussion about the thought experiment underlying this definition we refer the reader
to section 3.3. about the costs of consumption fluctuations with consumption externalities.



For any process X : Z — R, define V; [{X}] as follows,

oo

VWX =) ) U () - X (2) .

t=1

This is the shadow price, for the representative agent, of an asset with payouts
given by {X}. Under this convention, it is immediate to see that

o= ViG] (2.4)

Vo [{C}]
Thus, one can interpret the marginal cost of consumption fluctuations as a ratio
of the values of two securities: a claim to the consumption trend, V; [{€}], and a
consumption equity claim, Vy [{C}].

We think that these generalizations of Lucas’ cost of business cycles have some
attractive features. First, focusing on a marginal cost, we can hope to measure it
by using information on the representative agent’s marginal evaluation contained
in security prices. Second, we can now think of the benefits of partial reduction
in consumption fluctuations. Moreover, as our analysis in the next section shows,
we can use our measure of the marginal cost to bound the standard total cost of
business cycles for a large class of preference specifications, without the need to
fully parameterize these preferences.

3. Comparing Marginal Cost and Total Cost of Consumption Fluc-
tuations

The marginal cost defined in the previous section can be measured using asset
prices, while the total cost requires a fully specified utility function. In this section
we show that under some assumptions it is possible to gain information about
the total cost once we know the marginal cost. Alternatively, the marginal cost
may be interesting in itself, since some policies may only move partially in the
direction of eliminating fluctuations. For instance, if most of the benefits from
stabilization occur already for low values of «, then implementing a policy that
moves in this direction—even if it does not make consumption equal to the trend
value-will be worthwhile.

The main results of this section are the following. First, concavity of U implies
that €2is concave for small «, and hence the marginal cost w™ is an upper bound
for Q () /a for small . Second, if U is concave and homothetic, so that the
total cost does not depend on the scale of the economy, then the total cost Q («)
is concave, so that the marginal cost is an upper bound for the total cost, i.e.



W™ = (0) > w = Q(1). Many preference specifications used in quantitative
asset pricing studies satisfy this assumption, since many researchers impose the
same form of scale invariance. Third, we consider the case when U is given by
the expected value of a concave utility and the trend is given by the expected
value of consumption. In this case, 2 is not only concave for a close to zero, but
also for aclose to one. If in addition, we have time separable utility, we show
that for small variance w = %wm and the total cost is given by the insurance risk
premium.

We make the following initial assumptions: U ({C'}) is increasing and con-
cave in {C'}. We also assume that the process {C} is preferred to {C}, that
is, U ({€}) > U ({C}). Under these conditions, it is straightforward to see that
Q(a) > 0. Our first result is that Q is concave for small a.

Proposition 3.1. Let U be increasing, concave and twice differentiable. Then
Q" (0) <0.

()

This proposition implies that w™ = Q' (0) > , that is, the marginal cost,
Q(a)

a

W™ = (0) , is larger than the average cost,

3.1. Homothetic preferences and scale-free cost functions

If we require that the cost of fluctuations 2(a) be the same for the processes {C'}
and {C} as for the processes {\C'} and {A\€}, where \ is any positive scalar, then
we must impose some additional restrictions on the utility function U. This re-
quirement implies that the cost of consumption fluctuations will not differ merely
because economies are rich and poor. Specifically, we require U to be homothetic;
that is, U is homogeneous of degree 1 — v, i.e., for any positive scalar A > 0, and

for A {C'} defined as A {C}, (") = AC; (2") for each z" we have
UM CH =TT ({C}).

Under this assumption, we obtain that the marginal cost is higher than the total
cost.

Proposition 3.2. Assume that U is increasing, concave and homothetic. Also
assume that {C} is preferred to {C}, i.e. U ({€}) > U ({C}) Then Q(«) is
concave, and thus

W™ =0(0) > Q1) = w.

Examples from the literature that satisfy this homogeneity property are the
preferences used in Abel (1999), Epstein and Zin (1991), Mehra and Prescott



(1985), and Tallarini (1998). Some utility functions with additive habit such as
Campbell and Cochrane (1998), Constantinides (1991) and Jermann (1998) do
not satisfy this property for a predetermined habit level.?

3.2. The cost of all uncertainty with expected utility

In this sub-section we present some implications for the total and marginal cost
Q and " when the utility U is given by expected utility. We also assume that
the trend {€}is given by the expected value of consumption, so we evaluate the
elimination of all uncertainty.

Let U be given by the expected value of a function v : R — R. This
specification allows time non-separabilities, including models where consumption
display habit formation or durability. Notice that if « is concave, then U is
concave and hence from our previous proposition €2 is concave for a close to zero.
Now we obtain a complementary result, by showing that (2is concave for values
of a close to 1.

Proposition 3.3. Let U be given by the expected value of a concave and differ-
entiable function u, and let €; (2") = Eq (C;) for all 2" and t. Then € (1) = 0 and
Q) («) is concave for a close to one.

In the rest of this sub-section, we further specialize v by eliminating time
non-separabilities and by considering the case where consumption fluctuations
are small. We show that, for an approximation up to order of the variance of
consumption, the total cost of uncertainty is half of the marginal cost, that is
Q(1) = 1/2 2 (0). Moreover, we show that in this case the marginal cost is
given by a weighted average of the product of risk aversion and the variance of
consumption for different periods. We also consider a higher order approximation
to examine the role of skewness in consumption fluctuations. We show that if the
period utility function w displays “prudence”, i.e. v > 0, and if consumption
fluctuations have negative skewness, then we obtain a stronger inequality, i.e.
Q (1) < ' (0). This combination of assumptions has been used in the literature
to obtain high equity premium with low risk aversion. In particular, Rietz (1988)
assumes that there is a small probability of a large drop in consumption, moti-
vated by the great depression, and he is able to substantially increase the excess
returns on equity. Our result shows that skewness impacts the marginal cost and
the total cost differently.

°If the habit level is a function of only a few lags and when there is some separability across
time, such as for instance in Jermann (1998), it can be shown that a result similar to proposition
3.2. holds after a suitiable restatement of the proposition.



Let’s consider first the one period case, where consumption is given by
C=C(1+o0¢)

for a zero mean random variable e. The parameter ¢ indexes the amount of risk.
The “trend” is given by the expected value, i.e. € = C = F[C]. Notice that the
variance of C is proportional to o2, i.e. Var (C/C_’) = 02FEe?, and that its third
moment is proportional to o3. We include o as an argument of the total and the
marginal cost, which are given by

Eu(C1+QL o) =E[u(C1+oe)(1+Q(1,0))] =u(C), (3.1)

and

C(1+00) (C—O)]
(C_'—)— 0'8) (C —1—06)]

' (0,0%) = = g (3.2)

Proposition 3.4. If E [u"" (C (1+¢)) &*| is finite, then

1 Cf n Cf 102 " C1
Q(1,0) = 5|~ uqf(é))UQESQ—g ullb(() )03E6 +0((73)
Cu" (C 1C%" (C
0 (0,0) = |- = (é)) 2pe? — 3 (C(') )03E53 +o0(c?)

where h (o) = f (o) + 0 (0P) means that lim,_,o [h(0) — f (0)] /oP? = 0.
Notice that these expressions imply that

3 02 m (C)

Q (0,0) =2Q(1,0) — 5 o (C)

Ee3 +o0 ((73) .

Thus, ignoring all the terms smaller than o2 the total marginal cost is twice the
total cost, ' (0,0) = 2Q(1,0). Furthermore, considering higher moments, and
under the assumptions that u” (C') > 0 and Ee® < 0, we obtain ' (0,0) >
2Q (1, 0).

The next example illustrates these approximations for a distribution with
approximately zero third moment.

10



Example 3.5. Let ube given a utility with constant relative risk aversion -,
ie. u(C) = €22 and log C be distributed as N (,u,&Q). Recall that if C' is for

11—y
log-normal,
Var (C) 52 9 .3
Var (C/C) = ——= = (e” —1) =06°40(6")
[E(C)]
Note that for small o, oe = log C, which is normal distributed, and hence it has
zero third moment. Simple computations show that,

5 1
Q(l,0) = e —1= 576" +0(6%),
2 0,0) = e’ 1= 62 + o (6’3) )

As the previous proposition states, since the centered third moments are zero,
the marginal cost is twice the total cost, and both costs are proportional to the
variance of consumption relative to its expected value.

Now we consider the multiperiod case, where

U{cy) Z ' Eo [u

where C; = Cy (1 + 0¢;), with g;a random variable satisfying Fg[e;] = 0. We
keep the assumption that ¢, = C; = FEy[C;]. The next proposition says that
expressions for the cost in the multiperiod case are equal to a weighted average
of the ones for the one period case.

Proposition 3.6. If

B'Ey

02 nm (C’t (1 + 8,5)) &‘4]
ey

is finite, then

T _ _ _
_ . 10" (Cy) 5, 5 1CH"(Cy) 5 4 3
Q(l,ﬂ') = wt{—iul(—ct()' E0€t 6WU E()Eft +0(O’),

T A A 2,1 (A
/ Ny LG b o 1O (C) g 3
' (0,0) = 2. wt{— @ (C) 0“FEoe; — 2w (@) 0’ Eoe; ¢ + 0 (o)
where the weights w,; are defined as
_ g’ (Cr) Cy
we = =
> B (C5) €

11



Notice that this proposition implies that

T 3 02" (C_ft)
' (0,0) =2Q(1,0) + u_)t{—a—t—_Eoe?’ +0(0?),
; 6 u’ (Ct) ¢ ( )

which neglecting the terms of order higher than o2, can be stated as Q' (0,0) =
2Q2(1,0). The following example uses this approximation for a CRRA utility
function.

Example 3.7. Let u be a utility function with constant relative risk aversion 7,
so that u(C) = C'=7/ (1 — ). In this case, neglecting the terms of order higher

than o3,

1
' (0,0) = ;wt {*yJQEoef ~3 (I1+7) 03E0€§’} ,

1 1
Q1,0) = Zwt{§702Eoet2—67(1+7)U3E06?}.
¢

We end this section with a numerical example that illustrates the accuracy of
the approximation for small 2. In each panel of Figure 1 we plot the total costs,
Q2 (a), the marginal cost, ' (a), as a function of the fraction of risk removed, a.
The distribution of consumption has the same mean and variance in the three
panels, but it differs in its skewness. In particular, the standard deviation is
3.6%, the mean of 1, and wis given by a CRRA function with risk aversion
v = 10. We introduce skewness by making down-moves 4 times as large a up-
moves for negative skewness. Notice that, as our proposition says, total cost are
very close half of the value of the marginal cost —indicated by doted lines — i.e.
1wm = 10/ (0) = Q(1) = w. In particular, for the first panel where skewness is
zero, the total cost is about 0.6%, almost exactly half of the marginal cost, which
is about 0.6%. For the second panel, where skewness is negative, the total cost is
smaller than half of the marginal cost, which is the previous proposition says for
utility functions, such as CRRA, for which «”" > 0. The third panel shows that for
positive skewness the opposite holds. In a related comparison, Hansen, Sargent
and Tallarini (1999) compute local and global mean-risk trade-off for consumers
with risk-sensitive preferences, they find their local measure to be between 2 and

4 times higher than the global one.

3.3. Cost of fluctuations with consumption externalities

Up to now, we have considered the case of a representative agent economy with-
out consumption externalities. We define aggregate consumption externalities by

12



including aggregate consumption {C_' } in the utility function as a separate ar-
gument, together with the agent’s consumption {C'}, so that utility is given by
U ({C},{C)).

With externalities, the interpretation of the compensation €2 depends on the
exact nature of the experiment. In particular, there are two ways of thinking
about reducing fluctuations in consumption. One experiment is to stabilize con-
sumption of only one agent, keeping aggregate consumption unchanged. Another
experiment is to stabilize consumption of all the agents. In the first experiment,
the total cost function is given by

U(1+Q2(@){C},{C}) =U(a{C+ (1 -a){¢},{C}).  (33)

Then, the benefit of a small reduction in fluctuations can be measured by the
corresponding marginal cost. As explained above, the marginal cost €’ (0) equals
the ratio of the prices of two securities, as in (2.4) where U, ({C'}) is replaced by
U, ({C},{C}) defined as

va (i (op = (;g}(;t{)c_‘}).

In the second experiment, the total cost function Q) is defined as

U ((1+0(@){C}{C}) = U (a{C}+ (1 - a){e},a{C} + (1 - a){e}).
(3.4)
The function €2 differs from 2, since it includes the effect of the externality. How-
ever, because market prices do not internalize the effect of aggregate consumption,
they do not equal &' (0).

While consumption externalities can be of various forms, the consumption
externalities used to account for the determinants of aggregate risk are of a par-
ticular type. We call “envy” a general type of externality that is related to the
ones used in the literature, such as the “catching up with the Joneses” in Abel
(1999), and the “external habit” in Campbell and Cochrane (1995).

Definition 3.8. We say that the representative agent exhibits envy if for any C
and C' such

v ({¢}.103) zu et oy,

v({e)-1er) 2 v (1€4-{})

then

13



The interpretation of this definition is that each agent uses the consumption
of the representative agent as a benchmark for his own consumption. The next
proposition shows that if the representative agent exhibits envy, the total benefit
of stabilizing everybody’s consumption are even smaller than the benefits from
stabilizing one person’s consumption.

Proposition 3.9. Let’s assume that the trend consumption {€} is such that

U({e},{C}) > U ({C},{C}).

If U is increasing in its first argument and concave, and if Definition 3.8 holds,
then 3
Q(a) = Q(a)

for o € [0, 1].

As a corollary of the previous proposition, if U {-,C} has the properties of
U (+) in Proposition 3.2, then

W™= (0) > Q(1) > Q(1).

Thus, the ratio of the market prices of the securities in (2.4) is an upper bound for
the total cost of fluctuations in both experiments, that is, whether consumption
is stabilized for one agent or for all agents.

4. Comparing the Marginal Cost of Consumption Uncertainty with
the Equity Premium

It seems widely recognized that there is a relationship between the equity pre-
mium and the cost of consumption uncertainty. Indeed, both are measures of the
compensation required to bear aggregate risk. To our knowledge however no de-
tailed comparison has been made in the literature. In this section, we compare the
marginal cost of consumption uncertainty with the equity premium. To facilitate
the comparison, we select an equity whose dividends are identical to consumption,
which we call consumption-equity. Our analysis clearly exposes the differences,
conceptually and quantitatively, between the marginal cost of consumption un-
certainty and the equity premium. Our analysis also provides insights into how
to extract information contained in the equity premium to learn about the cost
of business cycles.

We approach the comparison from two complementary angles. First, in Sec-
tion (4.1), we use a decomposition into the fundamental risk components inspired

14



by Campbell (1986) and Jermann (1998). This characterization has two impor-
tant implications for estimating the marginal cost using asset price data. The
first implication is that the slope of the term structure is an important deter-
minant for the equity premium, but it is not a determinant for the marginal
cost. The steeper the term structure is, the larger the equity premium can be,
relative to the marginal cost of uncertainty. The second implication is that the
degree of persistence of the pricing kernel and of the consumption processes have
different impacts on the marginal cost and in the equity premium. The more
persistent these processes are, the larger the marginal cost can be, relative to
the equity premium. Second, in Section (4.2), we derive simple expressions for
the equity premium and the marginal cost as functions of three elements: the
dividend/price ratio, the real yield and the expected growth rate of the economy.
We also present a first estimate of the benefits of eliminating all uncertainty in
U.S. corporate dividends where we find very high costs.

4.1. Decomposition into the fundamental risk components

Recall that in (2.4) we have defined Vp [{ X }] as the time zero implicit price of an
asset that pays dividends {X}. Define Vi [X¢] as the time zero price of an asset
that pays a single dividend X; at time ¢. In this subsection, we also consider these
prices at times different from zero, for instance V; [X;] denotes the price at time
t =1 of a security that pays X; at time t. By a no-arbitrage argument the price
of a consumption equity claim equals the value of a portfolio of claims to a single
dividend equal to the consumption of each period, which we call, by analogy to
the terms used for bonds, equity strips. Thus,

Vo k2] =S wic.
t=1

To use the same notation for the prices of bonds, we denote by 1; a dividend that
is equal to one at t for all 2! € Z' and zero otherwise. Define as Ry [X¢] the time
zero return until maturity of an asset with a single payment X; at t, i.e.

Vi [ X4] Xi

Ry [Xi] = Vo [X{] - Vo [Xe]

Specializing the previous definition, denote the one-period holding return of an
asset with single payment X; at ¢ as

=~

[ Xi]

RO,l [Xt] = Xt] .
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Using these definitions, denote by vy the multiplicative excess expected equity
premium,

oo
Eo (Roa {C}24])

1 =
o Ry 1 [14]

Proposition 4.1. Define the weights w's as follows

Vo [CH]
wo [Cy] = , (4.1)
Vo {C}Z]
the multiplicative consumption-equity premium can be written as
S Lo (Ro,1 [C)) >
14+vy = wo |C <— , 4.2
=3 woic (Lo 42
and the marginal cost of consumption uncertainty can be written as
= Ey (R, [Cﬂ))
1+wi = wo |C <— . 4.3

Equation (4.3) says that the marginal cost of consumption uncertainty equals
a weighted sum of dividend strip return premia with holding period
until maturity. In contrast, the multiplicative equity premium to a share that
pays aggregate consumption, is equal to a weighted sum of dividend strip
premia for one-period holding returns. Note, the weights, wq [C¢], are indeed
the same for the marginal cost and for the equity premium!

When comparing the two expressions, (4.2) and (4.3), for the equity premium
and the marginal cost, respectively, another fundamental difference becomes ap-
parent. If the payouts are not random, then the holding returns until maturity,
that determine the marginal cost, are not random either, that is,

Ry [Xi] = Rot (1] =

and thus, the multiplicative strip premium is zero,

Eo (Ro, [1])
FEo(Rot[ly]) = ———————==1.
(o 1) = =2
Therefore, the marginal cost is pure compensation for payout risk. This is in
contrast to the one period holding returns that make up the equity premium.

Realized returns depend on the valuation at time 1,

Ro1 [Xi] = Ro1 [L] =
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so that premia are in general non-zero,

Lo (Ro, [14])
Eo(Roq [1t)) = ——=—5= # 1.
(Ro,1 [1e]) Rox [11] #
This comparison shows that the difference between equity premium and marginal
cost will be a function of the slope of the term structure, as we discuss in more
detail for the loglinear case in the next subsection.

4.1.1. Log-linear environment

We introduce a log-linear environment for two reasons. First, it allows us to
sharpen the comparison made in the previous section between the equity premium
and marginal cost. In particular, it helps to explain the different impact of the
term structure risk and the payout uncertainty risk on the marginal cost and
the equity premium. While the distinction between payout uncertainty risk and
term structure risk is a general concept, in the log-linear environment these risk
premia can be expressed in a separable way.® Additionally, we will use the log-
linear environment later in the paper for estimating the marginal cost of business
cycles.

As it is well known, if there are no arbitrage opportunities, under technical
regularity conditions, there must exists a non-negative process ' M; such that all
prices satisfy

2 o [My
Vo [{X}] = ;5 Eq h—foxt]
We call the process (°M; a stochastic pricing kernel. We assume that the loga-
rithm of the kernel and the logarithm of the dividends of the assets of interest
can be represented as linear functions of a linear VAR model. Specifically, let s,
be a state vector following a multivariate, homoscedastic VAR

st = Asi—1 + &, (4.4)

where €; is a multivariate normal vector, i.i.d. through time. The square matrix
A determines the dynamics of the system. We require the roots of A to be all
smaller or equal to one, thus allowing for I(1) nonstationarity. Assume that

In(Cy) = (In(149)") +1l- s,
ln(]V[t) = lm + St,

See Campbell (1986), Jermann (1998) and Abel (1999) for studies that focus on the distinc-
tions between these two types of risk.
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where the loadings, I, and [,,, are row vectors and g is the trend growth rate.

Following the calculations in Jermann (1998), the multiplicative premium for
one-period holding returns of a risky strip can be separated in two parts. One
part is the term premium, i.e. the excess return of a long bond over the short
rate, and the other is a compensation for the riskiness of the payout. Thus, the
equity premium can be written as

1410 (s0) = Zw [Ct] (s0) {%ﬁ[jt]) exp (—covg (log My, Eq log Ct))} (4.5)

where we use the notation g (sg), and w[Cy] (sg) to indicate that the equity
premium and the weights depend on the current state vector sg. Notice that the
equity premium is a weighted average of two terms. The first term is the expected
return of a t period real zero coupon bond over the short rate. This term is higher,
when the real term structure is steeper. The second term, —covg (log M1, Eq log Cy) ,

measures how undiversifiable the risk about news on period t consumption is.”
By similar calculations the marginal cost equals
o0
1+wi (s0) = Y _wo [C] (s0) exp (—covo(log Mz, log Cy)) (4.6)

t=1

where — covg(log My, log Ct) measures how undiversifiable consumption risk at
horizon t is. Notice that for the marginal cost of consumption uncertainty, there
is no term involving the real term structure.

In the case where log M; and log C are very persistent, this covariance can be
much larger in absolute value than the covariance in the expression for the equity
premium.

Let us compare the covariances in the expressions for the marginal cost (4.5)
and the equity premium (4.6). By definition of a the coefficient of correlation,

covp(log My, log Cy) = pg (log My,log Cy) g (log M) o (log Ct)
covg (log My, E1log Cy) = py (log My, Eq log Cy) o (log My ) oo (Eq log Ct)

The more persistent the processes for log My, log Cy are the bigger the differences
oo (log My)—aoq (log M) and o¢ (log Ct)—0¢ (E7 log Cy) . Thus, the more persistent
these processes are, the larger the marginal cost is, relative to the equity premium.
For instance, if both log M; and log C; are I (1), then the standard deviations in
the marginal cost, og (log M;) and og (log Ct), grow without bound, while the
standard deviations for the equity premium, oq (log M1) and oqg (Eqlog Cy), are
bounded.

"Given the assumptions of the log-linear, homoskedastic system, the covariance is independent
of the state sp and depends only on the maturity of the strip.
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Example: Separable CRRA utility. We illustrate the difference between the
marginal cost of uncertainty and the equity premium using three specifications
of a well understood economy. With time separable expected discounted CRRA

utility, the kernel satisfies In(M;/Mp) = —vIn(C¢/Cp). The following results can
be shown by direct calculations.

1. First, assume that consumption follows a random walk. In this case, interest
rates are constant and thus there are no term premia. Payout uncertainty
premia for k-period holding are related to the one-period return premia by

—covy (log My, log Ct) = — t covy (log My, Eq1log Cy) =t 703

Clearly, in this case, the marginal cost, t y02, is bigger, likely substantially
so, than the consumption-equity premium,yng.

2. Second, assume that consumption growth rates follow an AR(1) with posi-
tive serial correlation. It can then easily be shown that the term structure
is downward sloping, so that

Eo (Ro1 [14])
Ro 1 [14] ’

and
—covg (log My, log Cy) > — t covg (log My, F4 log Cy) > 0,

so that there are even more reasons for which the marginal cost is bigger
than the consumption-equity premium.

3. Third, the one case where the consumption-equity premium might actually
be bigger than the cost of consumption uncertainty is with an AR(1) in
consumption levels, with positive serial correlation, i.e. the growth rate of
consumption is negatively autocorrelated . In this case, the term structure
is upward sloping,

Eo (Roa [14])
Ry (14) ’
and
0 < —covg (log My,log Cy) < — t covy (log My, Eqlog Cy) .
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4.2. Decomposition into yields and growth rates

As shown in equation (2.4), the marginal cost of consumption uncertainty, can, by
definition, be viewed as the ratio of the prices of two securities. For the particular
case of comparing actual consumption to its expected growth path these two
securities have intuitive interpretation and close real-world counterparts. Indeed,
the appropriate version of equation (2.4) is

m_ Vo({Fo (O)})
1+w] _—OVO(EC}) .

In the numerator, Vy ({Ep (C)}) is a perpetual bond with coupons that are grow-
ing at the expected consumption growth rate. In the denominator, V5 ({C'}) is a
consumption equity claim. Dividing both sides of the fraction by Cy we have

14wl = Vo ({£o (O)}) /Co
" T W% {CYH [Co

suggesting that the marginal cost is a function of two “price/dividend ratios,” or,
reciprocally, two yields. If we assume that aggregate consumption has a constant
expected trend growth rate, gg, this can be written as

mo__
1+wy = 3 S
dpo 0 0

w = (1+g0) [—dpo ] ) (4.7)

where 7 is the real yield of a bond with the duration of the growing perpetuity,
and where dpg is the dividend yield of the consumption-equity.

In general, the expected excess return of equity cannot be written as a function
of rg, dpg and gg. Nevertheless if we make some simplifying assumption we obtain
an expression that depends on similar factors. If we assume that dividend yields
are constant, we can write the expected return of equity as (1+ go) - (1 + dpo).
By definition, the equity premium is the expected excess return of equity over a
risk-less investment, yielding a known return of yg. Thus,

(1+g0) - (1 +dpo)
(1+yo) '
In general yg will be smaller than the yield of the long term bond ry used in
equation (4.7). They will be equal only in special cases, for instance, if the term
structure is flat. Clearly the formulae for the equity premium in (4.8) is different
from the one for the marginal cost in (4.7). Notice that the equity premium vy,
in (4.8) is approximately vo ~ go + dpo — yo, and hence it cannot exceed a few

1+vyg= (48)
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percentage points. This is quite different for the marginal cost, w{j*, in equation
(4.7), which is approximately, wg >~ dpg/ (ro — go) , and hence it could be much
larger. In the next subsection, we provide quantitative content to equation (4.7)
by measuring the marginal cost.

4.2.1. A measure of the marginal cost of dividend uncertainty

For a first quantitative cut, we plug historic averages into the formula for the
marginal cost given by equation (4.7). Indeed, we can consider the dividend-
price ratio, dp, to be the historical dividend-price ratio of the value weighted U.S.
stock market. Of course, we are thus looking at how dividend uncertainty reduces
the price of equity relative to a perpetual bond paying as coupons the expected
dividends, we will focus on consumption fluctuations in the next section.®

Combining the average historical dividend-price ratio with a historical long-
term real yield and the dividend growth rate, we report in Table 1 a marginal
cost for dividend uncertainty of 619% and 174% for the periods 1889-1997 and
1954-1997 respectively. That is, for the long sample period, the buyer of an equity
claim would have to be given a more than six times higher dividend to make him
value equity as much as a perpetual bond paying coupons growing at the 1.31%
trend growth rate of dividends. Notice that the lower cost of dividend uncer-
tainty for the post-war period corresponds indeed to a period of lower volatility
as measured by the standard deviations of the growth rates of consumption and
dividends. If dividends were equal to aggregate consumption, we would have had
here our estimate of the marginal cost of consumption uncertainty. The addi-
tional statistics in Table 1 document some aspects of dividend and consumption
behavior.

5. Measuring the Marginal Cost of Business Cycles

The approach used to measure the cost of business cycles in the previous section
has the advantage of being simple and intuitive, but it has several shortcom-
ings. First, it measures the elimination of all the uncertainty, as opposed to the
elimination of business cycle fluctuations only. Second, the theory requires the
use of an asset whose dividends are perfectly correlated with consumption. The
measurement in the previous section uses a diversified equity portfolio, whose div-
idends display positive correlation with consumption, but that it is much smaller

8To be precise, the expected marginal cost should be estimated by the average of the cor-
responding marginal costs. Here we compute the marginal cost for the average yields, average
dividend price ratios and average growth rates, since we only observe ex-post real yields and
growth rates.
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than one. Third, the calculation of the marginal cost can be very sensitive to
small inconsistencies in the measurement of the different yields and growth rates.
This is due to the non-linearities in (4.7), where dpg is divided by rg — go. For
instance, the calculation of the duration adjusted yield, rg, is not straightforward
without specifying jointly the term structure and the expected growth rate of
consumption.

In this section we address these three shortcomings. First, we will isolate
the cost of consumption fluctuations corresponding to business cycle frequencies
and compare it to the cost of all consumption uncertainty that is usually com-
puted in the literature. Specifically, we isolate cyclical consumption movements
corresponding to cycles of at most 8 years by using a band-pass filter approach.
Second, we will price an asset that pays aggregate consumption, as opposed to
aggregate dividends. Third, by explicitly modeling a pricing kernel, our estimates
of dividend yields and growth rates will be consistent with each other. As a way
to check our quantitative results, and to provide intuition, we also examine the
special case where the logarithms of consumption and the pricing kernel follow
random walks. We derive a simple expression for the marginal cost of consump-
tion fluctuations, and we provide an estimate with a pricing kernel that is required
to fit the excess returns of different CRSP portfolios.

Let us start here by overviewing the different steps involved in our estima-
tion procedure, a more detailed step-by-step discussion follows in the subsequent
subsections. Based on the log-linear environment defined in Section (4.1.1):

1. We select state variables that determine marginal utility of consumption
based on popular models, and we estimate a linear autoregressive law of
motion for the logarithm of these state variables, s;.

2. We estimate the loading vector for the pricing kernel, [, and the effec-
tive time discount rate, 3, from a set of asset pricing moment conditions
determined by the theoretical considerations discussed above.

3. We specify the trend {€;};° _, compute V; ({€-}72,) (s¢) and V; ({C-}72,) (s¢)
for every s; of our data-set, and report the sample mean of the marginal
costs.

5.1. The state variables

We choose a multidimensional state vector to capture the dependence of marginal
utility on non-contemporaneous consumption. These dependence has been em-
phasized in the literature in models with habit formation and in models with
non-expected utility.
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The state variables include (1) aggregate consumption, (2) aggregate divi-
dends, (3) the dividend-price ratio, (4) the long-short government bond yield
spread and (5) the value-weighted realized stock return. This choice is motivated
by empirical work on intertemporal asset pricing. For instance, Campbell (1996)
has used dividend-price ratios, yield spreads, realized stock returns, and aggre-
gate output as his state. We include consumption in the state space since we
need to estimate the price of an asset with payouts equal to consumption.

We use annual time series covering 1889-1997, data sources and definitions
are described in detail in the Data Appendix. We start by removing a linear
deterministic growth trend from consumption and dividends. Specifically, we
extract a drift that is computed as the mean of the (log) growth rates. We also
demean all variables. For instance, starting with raw consumption C;, we get
¢t = log(Cy) — cop — pt, where the drift and the mean are defined respectively
as 1 = mean (log Ac;) and mean (ct;c9) = 0. We then estimate by OLS a VAR
for growth rates for consumption and dividends and for levels for the remaining
variables. We estimate systems with and without an error-correction term that
forces cointegration between consumption and dividends. A system in levels,
as in equation (4.4), is then recovered. The variance-covariance matrix of the
innovations is obtained from the residuals of the estimated VAR.

By estimating the VAR in growth rates for consumption and dividends, we
have introduced one or two unit roots into the matrix A, depending on whether
we introduce an error-correction term. This decision to model consumption and
the pricing kernel as non-stationary has first-order quantitative implications for
the measurement of the cost of consumption uncertainty. In the next subsection,
we explain the reasons why we choose to model them as non-stationary.

5.1.1. Stationary versus nonstationary kernels

It is certainly possible to argue on statistical grounds that consumption and/or
dividends can be modelled as (trend) stationary processes. However, we will select
a nonstationary representation for consumption due to the fact that a stationary
pricing kernel cannot possibly explain simultaneously the relatively flat historical
term structure of interest rates and the relatively large historical equity premium,
as we show below. Intuitively, a stationary pricing kernel that is volatile enough
to generate high equity risk premia has too much predictable movements to be
consistent with the relatively low term spread. In other words, long term interest
rates contain valuable information about expected growth rates of the pricing
kernel at long horizons. This result applies not only to the particular specification
considered here, but to any stationary pricing kernel. Given the requirement
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of a nonstationary pricing kernel, we choose consumption and dividends to be
nonstationary. We think that specifying consumption to be stationary while
having a non-stationary pricing kernel would be an a priori unappealing property
of any representation.

The rest of this subsection makes the claims in the previous paragraph precise.
First we set up some definitions for the term structure. We define the continu-
ously compounded term premium for a k—period discount bond as

R 1
hf(;:c (]{7) — {log < t,t+1 [ t+k]>}
Ripv1 [1e41]
where Ry ;11 [14+4] measure the gross return from holding from time ¢ to t+1 a
claim to one unit of the consumption good to be delivered at time ¢ + k. Define

the continuously compounded yield differential between a k-period discount
bond and a one-period, risk-less bond as

cc — 1o Vi [1t+1]
s =t g<<W[u+u>“k>'

We say that a kernel is stationary if {M;;1} is stationary and ergodic. We
show here that with a stationary pricing kernel the excess returns for a discount
bond that matures very far in the future takes a very simple form.

Proposition 5.1. If the pricing kernel is stationary then

hi¢ (00) = log Ey [My41] — Eylog My,
yi© (00) = log By [My41] — log M;.

Now we relate our expression for the long-run term premia with some other
observable quantities. We follow a similar argument as in Cochrane (1992) or
Bansal and Lehmann (1997) to relate the size of the term premia with the return
on the growth optimal portfolio.

Proposition 5.2. If the pricing kernel is stationary, then
B [hi* (00)] = E [y;* (00)] > E [log (1], ) | = £ log (R [Lena])] . (5.1)

where R{ ¢+1 is the holding return on any asset.
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Equation (5.1) implies that, if the pricing kernel is stationary, the average long-
short term spread is superior to the continuously compounded expected excess
return of any asset, for instance the equity premium. This inequality can easily
be rejected by historical averages. Consider the return on the aggregate U.S.
stock market as the asset R{t 41- In this case, the bound is clearly violated as
shown in the table below:

1989-1997  1926-1997
(1) E {log< tt+1)J 0.0666  0.0710
(2) Eflog (Ripsr (1i01))] | 0.0118  0.0058
(1)-2) 0.0543  0.0652
E 5 (00)] 0.0069  0.0140
E [h¢ (c0)] 0.0045  0.0136.

5.2. Estimating the loading vector [, and 3

Once the law of motion of the state vector is estimated, we need to estimate the
various loading coefficients on the states, l,,, plus the time discount factor, 5. We
will choose (I, 3) in order to minimize S = [0 — f(lm, B)]" - W - [0 — f(lm, 5)],
where 6 is a vector of moments to match, f(lm,3) contains the corresponding
moments generated by our asset pricing model and W is a weighting matrix.

Our analysis in Section 4 of the fundamental components of the equity pre-
mium and of the marginal cost of consumption uncertainty suggests we focus on
a pricing kernel that is good at explaining historical aggregate stock price behav-
ior and the real term structure. Specifically, we choose the asset pricing kernel
to replicate the U.S. average dividend-price ratio and the equity premium. We
consider two ways of replicating the equity premium. First, by applying the pric-
ing kernel to the estimated process of dividends, our model generates a series of
conditional equity premia for which we compute the sample mean

T
iltms 8) = 2 3 [1+ 4 (st )]

t=1

where v¢ (.) is defined as v (.) in equation (4.5) except that the payout process

represents aggregate dividends instead of aggregate consumption. Our second
moment condition relative to the equity premium applies the pricing kernel to
realized U.S. excess stock returns, VW R 141 — R{,t+1v so that

Zﬁexp St+1 — St)) . (VWRt7t+1 — R{t—l—l) ,
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with 6; = 0. In Table 2, we refer to these two conditions as F (Rd/Rf) and
E (VWR — R/ ) respectively. We also make the kernel fit the average real return
on a risk-less short term bond and the average real yield on a 20 year bond.”

5.3. Defining business cycles

We now describe how we specify the process corresponding to the consumption
trend {€}. We choose two approaches. As our first approach, we specify the
logarithm of the consumption trend to be a one-sided moving average of current
and past consumption, In (¢;) = Zfzo ay, - ¢k, for appropriate moving average
coefficients.!’ As our second approach, we set trend consumption equal to its
conditional expectation, €, = E; (C;).

We define business cycles to be the cyclical movements that last 8 years and
less, so that our trend {€} contains movements of 8 years and more. Assuming
business cycles to last up to 8 years is consistent with the definition of Burns and
Mitchel (1946) and with many recent studies describing business cycle properties.
This also corresponds approximately to the definition of business cycles implied
by the widely used Hodrick-Prescott filter for quarterly data with a smoothing pa-
rameter of 1600. For comparison we also report results for trends with frequency
cutoffs at 12, 16 and 20 years.

We choose the moving-average coefficients, {a}, so as to represent a band-
pass filter that lets pass frequencies that correspond to cycles of Y years and
more. Band-pass filters are represented in the time domain by infinite order two-
sided moving averages. However, a requirement of our analysis is to have trend
consumption at time ¢ to be function of information available at time ¢, thus our
choice of a one-sided moving average.

We chose the moving average coefficients of our trend consumption using the
procedures presented by Baxter and King (1995, 8). Let 3 (w) be the frequency
response function of the desired low-pass filter, which in our case is equal to
one for frequencies lower than Y years and zero otherwise. Let ag (w) be the
frequency response function associated with a set of moving average coefficients
{ak}le. We select the moving average coefficients {ay } so that ax approximates
3. In particular, our choice of {a} minimizes

[ 1) —a @F f @) e,

9Practically, we make the model fit the average yield of a zero coupon bond of 13 years
maturity, given that this corresponds approximately to the duration of the 20 year government
coupon bond in our historical data set.

10With this definition of the trend ¢ , Fo (Ct) # Eo (€:), because € is a nonlinear function of
C. Quantitatively, however, this difference is negligible as we show in the appendix.
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where f (w) is a weighting function representing (an approximation to) the spec-
tral density of the series to be filtered. In this minimization, we impose the
condition ag (0) = 1, which implies that Z?:o ar = 1.

We fix the number of lagging moving average coefficients to be fifteen ( i.e.,
K =15), and we use the spectral density of an AR(1) with autocorrelation 0.99
for the weighting function f, because this matches approximately the spectral
density of consumption.

Unfortunately, one-sided filters are far from perfect low-pass filters. Being
one-sided, these filters cannot avoid to introduce a phase shift, i.e. the trend
and its associated deviations will be lagging the series. The objective function
displayed above is closely related to the variance of the difference of the desired
series and the implied filtered series. Thus, this objective function trades-off the
phase shift of the filtered series with the desired shape of the spectral density.!!
This can be seen by plotting the transfer function of the filter as in Figure 2
in the left panel. The transfer function should be one in-between the desired
frequencies and zero for higher frequencies. Instead, it tends to let pass up to
30% of the variance at higher frequencies, so that the computed trend contains a
substantial amount of cyclical variability. As shown in the right panel of Figure
2, the corresponding two-sided band-pass filter fits the ideal filter’s step function
much closer—remember that a symmetric two-sided filter does not introduce a
phase shift. The corresponding time-domain representation is in Figure 3A in
the first panel. Clearly, the one-sided filter generates cyclical movements that
are less volatile than those from the corresponding two-sided filter shown by the
thin line. The second panel in Figure 3A and Figure 3B present consumption
deviations from trends corresponding to cutoffs of 12, 16 and 20 years, allowing
for comparisons with the deviations obtained with the two-sided filter for 8 year

"'"This can be seen by rewriting the objective function as follows:

/” 1Bw) — ax @) f (@) dw

-

- [:<\6(w>|—\aK<w>|>2f<w>dw
+ / " 26.(w) laxe (@)] [1 — <08 (5 (@))] f (w) dow

where 9 (w) denotes the phase shift of the filter. Thus, the objective function can be written
as the square of the differences of the gains of the filters, (|3 (w)| — |ax (w)])?, plus a term that
depends on the phase shift. This second term is zero, if the filter has no phase shift. For instance,
a symmetric two-sided filter has no phase shift, so it also fits the gain of the approximate filter
(and thus the transfer function). Instead, a one-sided filter has to find the trade-off between
these two forces.
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cycles.

Based on this comparisons we decide to make an ad hoc adjustment to the one-
sided filter so as to replicate the amount of business cycle volatility obtained from
the more accurate two-sided filter. As shown in Figure 2A, the series generated
by the one-sided filter is strongly correlated with the one from the two-sided filter,
but it is less volatile. Thus we choose to scale up the volatility by multiplying the
cyclical deviations by a constant # > 1. This is achieved by defining the adjusted
trend, cj, as

C: = (1 — 0) ct + 6’ct.

With 6 = 1.4 the standard deviation of the scaled one-sided filter is about equal
to the one from the two-sided filter. The implied transfer function of the adjusted
low-pass filter defining the trend is presented in Figure 4: the deviations from
the ideal filter are somewhat larger around the cutoff frequencies, for the business
cycle frequencies the adjusted filter represents a significant improvement. As
we show below, the approximate marginal cost implied by the adjusted filter is
obtained by the same scaling so that w™* 2 0 - w™.

We also report results based on some other popular moving-average filters.
A geometric filter is specified so that ap = 6’;+1 and Zf:o ap = 1, for K = 5;

thus 64 = 0.5041. A linear filter is specified so that a; = ¢ (1 - KLH) and

Zgzo ar = 1, which gives a slope so that the next potential weight ax1 = 0;
thus ¢; = 0.2857 with K = 5. We choose a lag length of K = 5 because the
one-sided frequency domain filters with 15 lags that we use have moving average
coefficients that are not too different from zero for lags larger than 5. Figure 3C
shows the cyclical consumption components in these cases.

5.4. Findings and discussion

In table 2A to 2D we report estimates for various state-space systems, various
loading states and various moments to fit for the complete sample and for the
postwar period. We have chosen the following algorithm for minimizing the sum of
squares of the discrepancies between model generated moments and the data, .
We start by estimating systems with as many coefficients as there are moments,
using a diagonal weighting matrix that assigns a weight of 1/5 to the moments
involving the equity premium, and 1 for the remaining moments. As shown in
tables 2A to 2D in the last column entitled “Fit” , for many systems we are
able to drive & to 0. As a minimum requirement for fit we impose a maximum
discrepancy of 1.5% for the moments involving the equity premium and 0.3%
for the others. In some cases we are able to obtain a satisfactory fit only after
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removing one of the forecasting variables or changing slightly the sample period.
If this exactly identified approach fails to provide a satisfactory fit, we move to
an overidentified system marked by ‘OI’, by adding one moment condition, and
we report the result with the lowest .

Overall, for fluctuations defined by the 8-year filter we find on average a
marginal cost of about 0.40% of lifetime consumption for the period 1889-1997
and of about 0.20% for the period 1954-97. With our adjustment to the one-sided
filter, as explained in the previous section with 8 = 1.4, we estimate the marginal
cost of business cycles to be about 0.55% based on the entire sample and about
0.30% for the post-war period. Imposing cointegration between consumption and
dividends yields an estimate of a few basis points higher than without cointegra-
tion.'? For comparison, the linear and the geometric filters imply marginal costs
of about 0.75% and 1.75% of consumption for the entire sample and the post-war
period, respectively.

The column labelled ‘inf’ reports the cost of all consumption uncertainty,
that is, including cycles of any length. Specifically, €, = E; (C;). We find very
large costs. With cointegrated consumption and dividends, many systems yield
costs at around 30% of lifetime consumption, without cointegration they amount
in general to several hundred percents. These numbers are consistent with the
orders of magnitudes we found for the cost of dividend uncertainty in section
(4.2.1). These numbers are also consistent with the intuition provided by the log-
linear random walk case in section (4.1.1). Fundamentally, consumers very much
dislike the possibility that consumption can wander off very far from its expected
path—consistent with this interpretation, the additional structure provided by
the cointegration restriction yields lower costs.

Looking across the different specifications, our measures appear robust for
the different moving average filters, even though the loading coefficients on some
states differ sometimes substantially across cases. There is more variability for
measures of consumption uncertainty. One reason for the variability in measuring
the costs of consumption uncertainty is that in some cases prices for the perpetual
bonds with growing coupons become very large, i.e. long term yields are low
relative to the trend growth rate.

12Taking an average over all reported estimates corresponding to the 8-year filter in Table

2 we have 0.35% and 0.42% for the period 1889-1997 without and with cointegration between
consumption and dividends, 0.17% and 0.22% for the period 1854-1997 without and with coin-
tegration between consumption and dividends.

13 As explained in Section (5.2) we model consumption as non-stationary because a stationary
consumption process is not consistent with having a kernel that can simultaneously explain a
large equity risk premium and a relatively flat real term structure.
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5.5. The marginal cost of fluctuations in a simpler case

In this section we specialize the kernel and the payoffs by assuming that they are
given by random walks. Under the random walk assumption, most of the dy-
namics are eliminated: interest rates, dividend-price ratios, and expected excess
returns are all constant. For this reason, we can present the marginal cost in a sim-
ple and intuitive form. The marginal cost of fluctuations is approximately equal
to the consumption equity premium multiplied by a simple expression of {a;}, the
moving average coefficients that define {€;} as a function of {C}}. For instance,
for the 8, 12, 16 and 20 year filters used in the previous section the marginal cost
of fluctuations equals approximately 0.38, 0.72, 077 and 0.88 times the consump-
tion equity premium. We show that the consumption equity premium equals the
covariance between the pricing kernel and the consumption growth rate, and we
estimate this covariance by fitting a pricing kernel to average excess returns. We
find that the results are similar to the ones obtained fitting a more general ver-
sion of the pricing kernel in the previous section. Additionally, we explore the
consequences of introducing more assets, namely CRSP decile portfolios, in our
analysis.
We start by specializing the log-linear framework to the following:

St41 = St + Et41

where g¢41 is multivariate normal i.i.d through time with mean zero. In this case,
the pricing kernel can be written as:

My
M;

Amyy1 = log =lm - €ts1-

Notice that implicit in this specification of the state space is the assumption that
consumption and dividends of any asset included in the state space follow random
walks, possibly with correlated innovations. Let Dy be the dividend of any such

asset and let Adiyq = log Df)tl. Under these assumption we have the following

well known results.

Proposition 5.3. If the log pricing kernel and the log dividends are random
walks with homoskedastic innovations then interest rates, dividend-price ratios
and expected returns of equities are all constant; moreover, expected returns of
strips are all equal to the expected returns of the corresponding equity claims.
Furthermore, assuming that the innovations are normal, the ratio of the expected
return of a risky strip paying Dy, s at date t + s to the one period interest rate
Ry and the excess return for equity paying dividends equal to the process {D}
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are given by

Ei (B (D))  Ei (Riga [Digs))
Ry Ry

= exp (—cov (myy1,dit1)) for all s > 1.

(5.2a)

IfE (R;3 +1) is a vector of excess expected returns then the loading vector is given
by

log E(Riy1) =l - X (5.3)
where ¥ = [cov (Asy41,4, Adt+1,j)]i,j is the covariance matrix of the innovations in
the growth rate of state i with the innovations in the growth rate of the dividends
of stock j.

Under the assumptions used in the previous proposition, dividend growth
rates and total returns are perfectly correlated, since dividend-price ratios are
constant. In our implementation, we use consumption and/or returns of broad
indices as states. With consumption as the dividend, the previous proposition
says that the multiplicative excess return of consumption equity equals minus the
covariance of the kernel with consumption growth:

E (Riy1 {Crashoei])
Ry

= exp (—cov (Amyy1,Acit1)) -

Now we present a proposition that links the multiplicative excess return of
consumption equity to the moving average coefficients of the trend {€;}.

Proposition 5.4. Let the trend €; be defined as
K
log¢, =71 (t) -+ Z a;log Cy_;
=0
where 7 (t) are constant chosen so that

Ey (&) = Ey (Ch) .

Under the assumption of the log-linear system the ratio between the price of a
risky strip paying €; and one paying Cy is given by

J
Vo€
M = exp |covy mt,Zajct,j — covg (my, ¢t)

Vo[C) <
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Furthermore, if the pricing kernel and consumption are random walks then for
the strips for which t > K,

el _ (B {cu]))“‘““‘(“”“1”"'l‘(“”“l"“”‘” R

Ry

The role of the constants 7 (t) is to ensure that ¢; has the same conditional
expectation as Cy. This adjustment involves a Jensen’s inequality correction,
due to our assumption that the logarithm of &;, as opposed to just its level, is
a moving average of the logarithms of Cy. We show in the appendix that this
adjustment is quantitatively negligible.

These propositions complement our earlier results. The first proposition ex-
plains how we identify the consumption equity premium by using excess return
on securities. The second proposition explains how we use that information and
the values of the moving average coefficients for measuring the marginal cost of
fluctuations. In particular, recall that the marginal cost of economic fluctuations
is given by the ratio of the prices of a claim paying trend consumption relative
to a claim with paying consumption. The ratio of the prices of these long lived
securities can be written as

where wy [Cy] = % Thus, the marginal cost of economic fluctuations is given

by a weighted average of the ratio of strip prices. The ratio of these strip prices,
with the exception of the strips for the first K securities, are independent of
the date where they pay, and equal to the expression in (5.4). Therefore this
expression is also approximately equal to the marginal cost

w"=log(14+w™) = (ree —ry)[l —ag+1—(ag+a1)+---1—(ag+ ar.. + ax)],

(5.5)
where (¢ — 1) stands for the difference between the net expected return of
consumption equity and the net risk free interest rate. The second approximation
is due to the first few strips for which 7 < K. As we discuss in the appendix, the
approximation error is negligible for our applications.

Equation (5.5) has the following interpretation: (re. — ) captures the risk
premium associated with consumption; the factor [1 — ag + - - -] captures the vari-
ability of the deviations from trend. To understand how this factor works, con-
sider the case of moving average coefficients {a;} that are positive and decreasing
in ¢and consider the following change: increase the values of a}s corresponding
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to long lags (large 7) and decrease the ones corresponding to earlier lags (small 7).
This operation increases the factor and thus the marginal cost. This operation
also makes the trend smoother, since it distributes the weights more evenly. Con-
sequently, the deviations from trend are more volatile and thus a higher marginal
cost makes sense.

In Table 3, we present computations for the expression (5.5)) representing the
marginal cost. As states we use consumption and/or returns to various CRSP
portfolios. The loading vector is fitted to the mean log excess returns of various
CRSP return portfolios. The table also contains summary statistics, such as
standard deviations and correlations of consumption growth rates and the market
returns that show intuitively what factors are driving the estimates.

We would like to highlight three types of findings. First, estimates of the
consumption equity premium lie between 0.22% and 1.66%, which is well below
the premium for the market return which is above 7%. This is due to the relatively
low consumption volatility and the correlation properties of consumption, returns
and the states. Second, results for the marginal cost of consumption fluctuations
are similar to our estimates obtained from the more general specification in the
previous section. And third, adding additional equity portfolios such as the CRSP
size decile portfolios, does not change much the results. This is due to the fact
that once a portfolio has been included, additional portfolios have small extra
power explaining the variance of the consumption growth rate.

In section (5.3), we have proposed an ad hoc adjustment for the one-sided
filter that consists in scaling up the volatility of the cyclical component by the
constant #. The next proposition shows how this adjustment affects the implied
marginal cost.

Proposition 5.5. Let the trend ¢} be defined as

log€; =7"(t) + (1 —0)log C; + log ¢,
K

=7 () + (1= 0)logC; + 60> a;logC
i=0

where the T (t) are constant chosen so that
Ep (&) = Eo (Ch) -
Under the assumption of the log-linear system the ratio between the price of a
risky strip paying €; and one paying Cy is given by
J

= fexp | covy mt,g ajci—j | — covg (my, ct)
j=0

Vo [¢4]
Vo [Ct]
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Furthermore, if the pricing kernel and consumption are random walks then for
the strips for which t > K,

V€] <E (R [Ct])>9[1—ao+1—(ao+a1)+'"1—(a0+a1--+¢1K)] ‘ (5:6)

Ry

Given that the Jensen’s inequality terms determining 7* (t) are of second-order
importance, the marginal cost with the adjusted trend is therefore approximately
equal to original marginal cost scaled by 6, that is,

w2l WM. (5.7)

We end this section by illustrating the effect of a “phase shift” for the filter
that defines the trend consumption. Given that we have defined the trend as
a one-sided moving average, we have introduced a phase shift. The effect of
such a phase shift is to make the marginal cost larger. The intuition is that a
phase shift makes trend consumption more desirable since it becomes closer to
the expected value. To be precise, we show that if a trend—defined by moving
average coefficients {a; }—is lagged by one period, then the cost of fluctuations
goes up by the value of the consumption equity premium.

Proposition 5.6. Let o = {ai}fio be the moving average coefficients that
define the consumption trend, and let m (aK ) be the factor that multiplies the
consumption equity premium giving the corresponding marginal cost of fluctua-
tions. Consider the moving average coefficients o *1 satisfying

aé('H =0, and afj_'*l'l = aZK fori=1,2,... K.
Then m (') =m (a’) + 1.

Denoting by w™ (a) the marginal cost for a trend corresponding to moving
average coefficients a, the two previous propositions imply that

w™ (aK+1) —w™ (aK) o — Ty

This means that with a phase shift of a year, the cost of business cycles increase
by an amount equal to the consumption equity premium.

6. Growth and Economic Fluctuations

In this section we analyze the relationship between growth and economic fluc-
tuatations.. We consider this issue along two dimensions. First, we use our
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framework to estimate the benefit from increasing growth. We find the benefit
from an increase in the annual growth rate of 1% to be substantial. It is about
50% of lifetime consumption with cointegrated dividends and consumption, and
even larger without cointegration. Second, we present a modified version of our
framework that allows us to directly estimate the trade-off between long term
growth and fluctuations. We find that reducing business cycle fluctuations is val-
ued at less than 1 basis point increase in the per annum long term growth rate
of consumption.

6.0.1. The benefits from increasing growth

We can use our definition of {2 to analyze the benefits of a permanent increase in
the growth rate of the economy, as in Lucas (1987). For that we simply let {C}
be defined as

¢t (zt) =[1+2)'C; (zt) .
Assuming x > 0, this is a special case of our framework and all the results derived

in section 3 for the general case directly apply.
The marginal cost can be written as

_ Y[+ z)' Gy Y (o) B(CG
> ey Vo Gy > et Vo [Ci]

where the weights wy,

1+ (0)

LS (4wt wolc,

t=1

wo [0l = <G

2= Vo [Gy]

are the same as in the equity premium and the cost of consumption uncertainty.
Based on our estimated pricing kernel Table 3 reports the (marginal) benefits
of increasing the growth rate by 1% that is for = 0.01. The estimates are
very high, about 50% of lifetime consumption with cointegrated dividends and
consumption, and higher without cointegration. These numbers are much larger
than the one computed by Lucas, which is 17%.

To gain some intuition about these results we consider again the random walks
specification, where

Y (L4 7ee) T

~

- 1+7ee— (1490 (1+ ) C Tee — Qe — T

Y (0) =) (1+2)w(C] -1

t=1

with g. = F [Cé—tl} — 1 is the net rate of consumption growth.!'* In the previous

section, we estimate 7. —ry to be less than 1.5%. Thus if the risk free rate is r; =

"Note that lognormality is not required for this derivation.
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2.5% and the growth rate of consumption g. = 2% then Q' (0) = 0.01/(0.015 +
0.025 — 0.02 — 0.01) equals 100%; with a smaller consumption equity premium
the marginal cost further increases.!®

6.1. Trade-off between fluctuations and growth

In order to directly measure the trade-off between fluctuations and growth we
modify here our framework. Instead of measuring the cost of fluctuations by
the uniform compensation 2, the compensation for fluctuations is expressed in
terms of additional long term growth. We find that eliminating business cycle
fluctuations is worth less than 1 basis point in additional growth.!® Eliminating
all consumption uncertainty is valued at 1 percent in additional growth or more;
or equivalently, the cost of all consumption uncertainty represents about half the
value of long-term historical growth.
Define A («) as the solution to

U{1+A@)]C}) =U((1-a){C}+a{e}) (6.1)

where {[1 4+ A ()] C} } is the process which has value [1 + A ()" Cy (") at time ¢,
event 2. Notice that by definition A (0) = 0. Assuming that U () is differentiable,
differentiating both sides of (6.1) and evaluating them at o = 0 we obtain

YOS S (e ) =3 3 vl (e (e (@) -G ()] .

t>1 ztezt t>1 ztezt

Rearranging terms, we can write this expression as

wm

TR twg (G

where wq are the strip weights as in 4.1. We call Y 72, ¢ wp [Cy] the duration of
the consumption equity, by analogy with the definition of duration in the context
of coupon bonds. Thus the trade-off between growth and fluctuations is given by
the ratio of the marginal cost of fluctuations to the duration of the consumption
equity. Before presenting estimates of A’ (0), we notice that X is concave for small
a. In this case X' (0) > A () /o for small «, that is, the marginal cost is larger
than the average cost.

X (0) (6.2)

15We select this high value for the risk free rate r¢ corresponding to the long term yield since
in the random walk case the term structure is flat.
'We thank John Cochrane for suggesting this extension.
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Proposition 6.1. Let U be increasing, concave and twice differentiable. Then

N (0) <0.

Using our estimated pricing kernels in Table 2A to 2D we can see the duration
of consumption equity to be about 50 years; with cointegration these numbers
are usually smaller, without cointegration there are larger in many cases. These
durations can be combined with the estimates of the marginal cost of fluctua-
tions to arrive at the trade-off between growth and cyclical variations. Based on
this, eliminating business cycle fluctuations is worth less than 1 basis point in
additional growth. Eliminating all consumption uncertainty is valued at 1 per-
cent in additional growth or more; or equivalently, the cost of all consumption
uncertainty represents about half the value of long-term historical growth.

Under the random walk assumption for consumption and the pricing kernel
the duration of the consumption equity also has a particularly simple form

1
tho Ct —|—’f'ce )
—Jc

To get some quantitative feel, we plug in again the same estimates as in the
previous subsection. We consider r.. — r¢ at 1.5%, the risk free rate ry = 2.5%
and the growth rate of consumption g. = 2%. In this case, the duration of the
consumption equity, Y .o, t wo [Cy], is about 50, that is, Tlc‘:f“ 1.04/(0.04 —
0.02) = 52. Thus, with the marginal cost of business cycle ﬂuctuatlons for the
8-year filter usually below 50 basis points in terms of the uniform compensation
Y (0), eliminating business cycles is worth less than 1 basis point in terms of
additional long-term growth X’ (0).

7. Summary and Conclusions

In this paper we have measured the cost of business cycle fluctuations using asset
prices. We use a new approach that focuses on the marginal cost of consumption
fluctuations, because asset prices correspond to marginal valuations of market
participants. We have shown that the marginal cost of consumption fluctuations
corresponds to the ratio of two asset prices. We establish that the marginal cost
of consumption fluctuations provides an upper bound to the benefits of reducing
fluctuations completely. Our analysis shows that the equity premium and the
cost of consumption uncertainty are related, but clearly distinct, conceptually
and quantitatively. The steepness of the term structure and the persistence of
the shocks are two of the features that make the equity premium differ from the
marginal cost of consumption uncertainty.
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We have estimated a pricing kernel, as a way to interpolate from existing
asset prices the prices of the assets that measure the marginal cost of consump-
tion fluctuations. We use a non-stationary pricing kernel. This is motivated by
a bound that we have developed, similar in spirit to the Hansen-Jagannathan
bound. This bound shows that, to be consistent with the term structure, the
pricing kernel cannot be stationary. Our quantitative analysis highlights that ad-
dressing more specifically the issue of what business cycle fluctuations correspond
to is of first-order importance. Specifically, we estimated the marginal cost of all
consumption uncertainty to be very large. Nevertheless, when we define business
cycles as fluctuations with frequencies less than or equal to 8 years we estimate
the marginal cost of business cycles fluctuations to about one half of a percent of
lifetime consumption or less. Alternatively, the benefits of eliminating this type
of fluctuations are smaller than the benefits of a permanent increase of the growth
rate of consumption of 1 basis points per year.

In this paper we measure the cost of fluctuations for a representative agent,
i.e., an agent whose consumption is proportional to aggregate consumption and
that participates in frictionless asset markets. Tractable general equilibrium mod-
els that incorporate heterogeneous agents and asset market frictions have been
introduced to study, among other things, the determinants of equity premia. We
leave the investigation of the effects of heterogeneity and asset market frictions
in the measurement of the cost of fluctuations for future research.
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Data Appendix

The data used in this paper is annual, covering the period 1889-1997 and
comes mainly from two sources: Shiller (1998) and Ibbotson Associates. The
breakdown by time series is given hereafter. For additional details we refer the
reader to the original sources.

Consumption is real per capita consumption for nondurables and services from
Shiller. We updated this series for the period after 1985 with NIPA data
and population data from the US. Bureau of the Census.

Stock prices and corresponding dividends are the Standard and Poor Composite
Stock Price Indexes from Shiller.

Short term rates are one-year returns based on 6-month commercial paper re-
turns from Shiller, adjusted for a default premium for the period before
1926; after 1926, they are based on monthly holding periods for T-Bills
from Ibbotson Associates.

The long-short yield spreads for government bonds are from Campbell (1996)
for the period before 1926; after 1926, from Ibbotson Associates.

All series that have not been originally deflated were deflated by the producer
price index from Shiller for the period before 1926; after 1926 by the CPI
from Ibbotson Associates.
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Appendix
Proof of Proposition 3.1. Regarding C = {C} as a vector on R™ let

2
%CQZ and %g,l be the first and second derivatives evaluated at C. Define

Co = (1 —a)C+ aC. Then twice differentiating with respect to « the equation
defining €,

0" (a) AU (L+Q(@]C) <8Q(a)c>'82U([1+Q(a)] ) <8Q(a)c>

dada oC Ja 15040104 Oa
R 0%U (Ca) , .
= (€0 et (€0

Taking « | 0 since Cy = [1 + 2 (0)]C = C,

2 I 92
dote a0 0= (-1 ) Geper (e-n+ S50) <o

where the inequality follows from the concavity of U. Since U is increasing
%g} < 0. By concavity Q (a) < Q(0) + €' (0) a for small o. B

Proof of Proposition 3.2. If U is increasing and concave in {C} there
must exist a homogenous of degree one, positive and quasi-concave utility v that
satisfies

v oy = LU

First, we show that Q(«) is concave in a. By homogeneity of U

(14 0y = LUCI (=) 0} +afep]

1—7 1—7

thus, after multiplying by (1 — ), taking the 1/(1 — ) power and dividing by
v ({C}) in both sides, we obtain

1-— C ¢
Lt e~ L= (C) +a e
v({C})
Since v (+) is positive, quasi-concave and homogenous of degree one, it is concave.
With (1 — a) {C} + a{¢€} linear in «, v(.) it is also concave in «, thus Q(«) is
concave. Now we use the concavity to obtain the desired inequalities,

1
Q1) = Q0) + / Q' (a)da < 2(0),
Jo
where the inequality uses 2(0) = 0, the concavity of €2 and that o < 1.
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Proof of Proposition 3.3. From the concavity of u and the definition of €

U((1-a){C} +afe})
= Fu(l-a)Ci+al,(1—a)Cy+als,.... (1 —a)Ci + aly,...)]
< w(€q,€,...,8,...) =U{c})

for any «. By the definition of 2 and the monotonicity of U, €2 has to reach a
maximum on « = 1 and thus ' (1) = 0and Q («) is concave for aclose to 1. B

Proof of Proposition 3.4. To simplify the notation denote Q' (0,0) by
Y (o) and Q(0,0) by Q(0). Let’s first consider the total cost (o). We use
Taylor expansions for the right and left hand side of the definition of the total
cost to find and expression for €2 (o). The utility « (C’) can be approximated
around C (1 + (o)) as

u(C)=u(C(14+Q(0))) —u' (Cy) CQ(0)

where Cy € [C,C (14 Q(0))] and limgy_o Cy = C. The utility u (C (1 + o¢) (1 +Q(0))) can
be approximated around C (1 + o¢) for each € as

u(C(l+oe)(1+9Q (U)))
u(C_' (1—|—Q(U))) (C_' (1+Q(0))) (1+Q(0)) Coe

o (CUL+Q(0)) ((1+0(0)) Coe)’

+ =u"" (Cy (¢)) (606)4

]' n ~ g 3
+zu (C(1+9(0) ((1+9(0))Cox) 24

where C, (¢) € [C (14 0¢), C(1+0¢) (1+8Q(0))] for positive e and in [C (1 + o) (1 + Q2 (0)) ,
C (1 + o¢)] for negative one, and lim,_o Cy (¢) = C .Then taking expected values,

Efu(C(1+0e)(1+Q(0)))]
= W(C+0(0) + 5 (C(1+Q(0) B[(1+9(0)) Coe]’
é "(CA+Q(0) E[1+Q(0) 0o +0(c?).
Using the definition of 2 (o),
—u' (Cy) CQ (o) (7.1)
_ %u (C1+92(0)) E[(1+92(0)) Coe]®

é "(C1+Q(0) E[(1+Q(0) Coe]’ +0 (o)
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or

o) = =3 @ (Cy) :
o3 C%u" (C(1+9Q(0)) (1 +Q(0)® 4 5
-5 - (C’U) Ee” 4o ((T )
As an intermediate step we first show that
o2 Cu (C)
Qo) = IRy ©) Ee* 4o (02) =ko®+o (02)

which follows since € (0) — 0,and €y — C as & — 0. Now we show that
U (Cy) CQ(0) = (C) CQ(0) + 01 (%)
which follows from
U (Cy) CQ(0) =u' (C) CQ(0) +u" (C () CQ(0) (Cs — O)
for some C (o) € [C,Cy] . Recall that by definition of C,
0< (Cr—C) <CQ(0)

SO
CQ(0) (Cr — C) < (CR(0))? = o'k +0 (%)
for some constant k. Also we show that that
W (C(1+Q(0))) (1+Q(0))?
= u"(C)+o ((7'1> ,

which follows from

"(C1+92(0) (1+Q(0))?

= 4" (C1+Q(0)) (1+ 2ko? + 0 (02) +o (04) + k204)
and from

W' (C(1+Q(0)) =



Using these last two results we can write (7.1) as

—u' (C)CQ (o) +o (03)

1 ~ ~ 2 o%(0)  ~ 2 1 ~ =~ 13
= §u" (C) E|[Coce]” + 5 E|Ce]” + i " (C(1+Q(0))) E|[Cozc|” +0(c%),
dividing by «/ (C) in both sides we obtain

o2 Cu" o 3 2, 1
Qo) = —3 C;L(—é?E€2 — FCU(—()C)E&?B +o (03) :

Now let’s consider the marginal cost Q' (o)

E [u’_ (C(1+ ae)_) Coe|
E[uw (C(1+o0¢)C(1+0¢)]|

V(o) =—

Let’s approximate u/ (C' (1 4 o¢)) around C for each € to obtain
W (C(l+oe)) = o (C)+u"(C) Coe

W (C) (Coe)’ + 1u™ (Cy (¢)) (Coc)®

6

(
!
2

where C; (¢) € [C,C (1 + o¢)] for positive eand [C (1 + o¢),C] for negative e
and where lim,_,oCy (¢) = C. Then

E[u (C(1+0¢)) Coe

= ' (C) (Co)* B+ 5u” (C) (Co)’ B +0(?)

Then the marginal cost can be expressed as

V(o) =—

w (C) (Co)? e+ Lu <§*> (Co) B +o(®) .

E[uw (C(1 1+ oe)]
As an intermediate step we show that

Cu” (C’) 02Ee?
u' (C)

(o) =— +o (02) =qo*+o (02)

for a constant ¢, which follows since

Eu' (C(1+0¢e)C(1+oe)] =u (C)C+o(1)
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and thus

u’ (0) (Co)* Be + ju” (C) (Co)” Ee® +0(c%)

V(o) =- W (C)C +o(1)

Now we argue that
E[ (C(1+0e))C(1+o0c)] =u (C)C+po?+o(c?)

for some constant p, which follows by using a first order approximation on w’ (C’ (1+ 06))
around o = (

u' (C(1+o0¢)) =u (C)+u" (C)oe+o(o)

and taking expected values,

EW (C(1+0e)C(140e)] = o (C’)C’+u (C) 0CEe (1 + 0¢) + 0 (0?)
= (C’) C+ (C’) 02C?Ee? + o ( )
= ((7) C +p(72 +o ((72)

Now consider the expression

Eu (C(1+0¢))C(1+0¢)] P (o)
u (C)C
[ (C)C +]302_+ o (0?)]
w (C)C
pq£74 L0 (0%) 0 (0?)
w (C)C
= Q(o)+o ((73) .

= (o) +

Then, replacing these expressions in (7.2), we get

0 (0) +o ") =~ 1C) (CO) P (+0) 19 G B 02)

which finishes the proof.

Proof of Proposition 3.6. The core of this proof is very similar to the one
period case, so we only sketch this case. To simplify the notation denote Q' (0, 0)
by ¥ (¢) and Q (1,0) by Q (o). Let’s first consider the total cost 2 (o) defined as

T

ZﬁtEo [u (Cy(1+0e) (1+Q(0 Zﬁt (Ch)

t=1
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Using exactly the same arguments than the one period case for each period t we
can write u (C’t) as

uw(Cr) =u(Cr(1+Q(0))) —u (C,0) CQ(0)

where lim,_,0 C, = C; for all ¢ . Also for each t we can write Eg [u (Cy (14 Q (0)))]
as

[ ( 1-|-o*6t)(1+Q(a)))]
u(Cr (1+Q(0))) + %u" (C: (1+Q(0))) Eo [C’met]Q

_l_lu/// (Ot (1 +Q (0’))) Ey [étUEt]B + o (0-3)

(@

Replacing the expansions into the definition of Q (¢),

S {u(Cr(1+Q(0) - Qo) (C,0) Cr}

d o A 2
_  w (G +Q(0)) + L (G (1+Q(0))) Eo [Croel] }
2" { +4u" (Cy (14+Q(0)) Eo [Croe]” + o1 (0?)

Defining -
Btu’ (Ct)
T 4t (o ~
>j=1 8 (C0) C
we can write where w; (o) — w;. By following a two step procedure similar to the
one in the proof for the one period case we can write () (o) as

w (o) =

i _% U (’ES-FS))(G)))O_QEO [Et}Q ( 3)
Q (O') = wy (0—) Cw2umuc‘v t’GQ p +o(0o
2l B
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and using that as 0 — 0, Q (0) — 0, w (0) — Wy and (7,570 — C} then

T
(0) Y B (Cr)
t=1
T
Z{__Ctu” Ct)U Ey [Et} — 02 " (C)(r Eq [e4] }-|-0( )
t=1
or - 1 _tu”gc_‘t)o_gE [8}2
0O (o) = Wy 2,;"”,&2 o +o(c0?).
) ; —%Ct:(éjt o*Ey [er]” )

Now let’s consider the marginal cost. Notice that we can write

, Y BE[W(C) (G -C)] ¢ Eo [u' (C1) (Cr = C)]
Q (o ag (o —
)= Y1 BE W (Cy) CY) ; ) u' (Cr) Cy

where a; are defined as

ﬁtEO [Ul (Ct) Ct]
> P Eo [ (Cy) Gy

For future reference note that lim,_,g a; (0) — w;. For each tusing the the same
expansions than in the one period case we can write Eg [u’ (Cy) (Ct — C’t)] as

as (o) =

—Ep [u' (Cy (14 0er)) Coey

L4 (G (Cuo)® Boc? + o1 (0%)

= —u"(Cr) (C0)” Eoc} - 5

Then

T —u" _t _to' gt 1, m _t _to' 3 8? o, 0_3
Q’<a>=Zat<a>{ (C1) (Cuo)" Eo (Ct)(gt) (Cio)? Evc + o1 ( )}_

t=1

Using a two step procedure analogous to the one used in the proof for the one
period case we show that

T = = _
1oy - Cu" (Cy) o » 1CH"(C) 5. 4 3
Q (U) = ZUJt {_WO’ E()Et — 2w0’ E()Et + o (0' ) .
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Proof of Proposition 3.9. Notice that the left hand side of (3.3) and

(3.4) are the same.

Consider any arbitrary «. By definition of envy, making

{C’} = (1 — a){C} + a{C}, we obtain the desired result. W

Proof of Proposition 4.1. Using the definition of the w's in equation (4.1),
multiplying and dividing by Ep(C;) and using the definitions of Rg; [Cy] and

Ry [1¢] we have,

1+ wg'

> ey Vo [Eo (C)]
> o1 VoG]

- w Vo [Eo (Ct)]
S Eo(Cy) , Eo(Cy)
- il (R )

Vo [Eo (Cy)]
= Zwo [Ct] (Rot [Ct] /Ro [14]) -

Using the definition of the equity premium, the decomposition of the price of

equity as the sum of the strips, the definitions of wq [Cy],

and the definition of

excess one-period holding returns, we have:

l+vy =

Eo (Vi {Ct}]) 1
Vol{Gi}l " Vo (1)
Ey (Z;S)il Vi {Ct])/ L
Vo [{Ct}] Vo (L1)
Vo [{Cul) B (S ittt viat) | 1
Vo [Ct] /VO (11)

(e

V1 [Cy] / 1
Vo lCt] )" Vo (1h)

— VolC] " Vo (1h)
= Eo (Roa [C])
; ol < Ro,1 [14] > "

Proof of Proposition 5.1. By definition

Be (o) =

) Rit41 [1t+k]]> }
lim < E; | log | —=———
’f—m{ ' < s [Rt,ﬂ-l [Tty
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BBy 1 [Myy k] /
]\2:2:-1 BB, [Myy ]

BFEy[My 5] M,
M

. Ei1[Myyy] By [Myi1] } ) }
= lim < E; (o
o { ! < & [ M1 B M)
= Jlim {E; (log By1[Meh] — log Mysr + log By [My1] — log Ey[My4])}

= lim < E};log
k—o00

= klirglo {Etlog B 1[Myi ] — Eilog My + log Ey [Myy1] — log Ey [ My ]}
= log By [My4q] — Eylog My + kll)rgo {Etlog Eyq [Myyk)} — kll)rgo {log E/[ My 1)}
= log By [Myy1] — Eylog My 1,

where the last step passes first the limit through the expectations operator—we
assume enough regularity for this to be admissible (Lebesgue dominated conver-
gence). Second, assuming that stationary is defined as requiring the existence
of a finite unconditional mean, which implies that limg_,oo {log Eyp1[Miik]} =
limy oo {log Ey[M;y1]} = log E[M]. This last equality shows how the price of a
discount bond maturing in the distant future is deterministic in units of utility.

With yield differentials

£ i Vi [1441]
y;©(o0) = lim | log | ———————
k—o00 { (‘/t [Lﬁ—i—kj])l/k
k —1/k
- lim IOg BEt U\/[t“‘l] 6 : Et U\/[t-‘rk]
k—oo M, M;

= log Et []\/ft—l-l] — log ]\/_[t

This concludes the proof. W

Proof of Proposition 5.2. First, that E[h{¢(c0)] = FE [yf¢(oo)] can
be shown by taking unconditional expectations on the expression obtained in
Proposition (5.1). The continuously compounded holding premium can be written
as

hi® (o) = log Bt [Myy1] — E¢log My, (7.3)
_ M1 M
= logBE; [ BY } —log B — E;log AL (7.4)

M1
M;

= — IOg Rt,t+1 (1t+1) — logﬁ — Et IOg
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For any risky gross asset return Rg,t 11t

M1
1_6Et |:Rlzt+1 ]\/[ :|
so that,
My
0 = log(1l) =log <5Et [Rgt—l-l ]Vt_;r ])
: ]\/[H-l ]\/[t+1 j
s (o )| (22 s )

where the strict inequality follows from the strict concavity of log. Then

_E, {10g <]V][C[—:1>:| —log 8 > E; [1og (R{t Hﬂ . (7.5)

Combining the two expressions we obtain

hee (00) > B [1og (R{,m)} —log Regi1 (1)

for any asset return R{t 41- Taking unconditional expectations we conclude the
proof. B

Proof of Proposition 5.3. First notice that the random walk assumption
implies that interest rate are constant, since

Miq My
—E
Et( M, > ( M, >

and hence the term premium is zero. Then

)

Miy1 Diyq

D1
BB Duss) _ BuRen Do/ D) _ (M) B (5
EiRiq (1441) EiRiq (1441) M, E, {55 Miys Digy Dt+s:|

My Dy Digq
M, D
= exp <—covt <log ]C}H Ey <log 5“)))
t

= exp(—covt (Myy1,dey1)) forall s >1

where the first inequality follows since D, is known at ¢, the second from the
definition of returns and pricing kernel, the third from the log-normality of D's
and M's as in (4.5) since the term premium is zero, and the forth follows by the
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random walk assumptions. From this we obtain that the excess expected return
of a stock paying {D¢ys} is

e, o]

= w((Dis))

s=1

By (Rep1 [{Digs}oi])
EiRyy1 (141)

Ei (Ri1[Diys])  Ei (Repa [Diys))
EiRi 1 (1441) EiRit1 (1441)

where the weights w [Dyys] = Vi [{Di1s}] /V {{Dtﬂ- }]oil} add up to one. For this

stock, the price-dividend ratio is given by

o0 o0 S
My Dt+s] { Miti Dy ]
°E =TI~
;5 t[ M; D, L L1 s Divi

Ve {Ders}:24] /Dy

M1 Dt+1:|

- 5 (e[t - Sl

M; Dy _1_E[M%}

s=1 M, D

where the third inequality uses the random walk assumption. Finally, notice for
each asset ¢ we have

log By (Ri41,:) = —couy (AmH_l, Adiﬂ) = —cov (l “ €411, Adi_,_l) .

n
Proof of Proposition 5.4. First we find an expression for 7 () . Notice that
using lognormality we get

K K 1 K
Ey (€:) = exp (1) Egexp (Z aict_j> =exp (7 (t)) exp (Z a; Ey (ci—j) + 51}@7'0 (Z aict_j>>

i—1 i=1 i=1
and

1
Ey (Cy) = Egexp (c) = exp <Eoct + Svaro (ct)>

thus 7 () solves Ey (€;) = Ey (Cy) so

K K
1 1
7 (t) = exp (Eoct — E a; Eo (ci—j) + Evaro (ct) — §Uar0 ( E aict_j>> .

i=1 i=1

Using the definition of the pricing kernel and lognormality



Egexp {7‘ (t) + Eomy — mo + ZJK:O ajct,j}
Ep exp [my — mo + ¢4
exp {7‘ (t) + Eo <mt —mgy + ZJK:O ajct_j) + %Uaro (mt)}

exp [Eo (my —mo + ¢;) + gvarg (my) + svarg (¢;) + covy (my, ;)]

1 K K
X exp 51}@7'0 E ajc—j | + covg mt,g a;c_j
Jj=0 Jj=0

Ey (Zﬁ(zo ath—j) — Ep (er) +
7 (t) + $varg (ZJK:O ajct,j) — 2varg () ‘ .

+covg <mt, ZJK:O ajct,j) — covg (my, ¢t)

= exp

and by definition of 7 (t) we get

Vo [&] -
RAN T exp | covy | my, E ajci—j | — covg (my, ¢t)
Vo [Ci =

By direct computation in the random walk case:

K
= exp |covg mt,Zajct,j — covg (my, ¢t)
L JZO
i t t K t t
= exp |covy Z eps Z Zajei_j — covy Z ens Z €,
k=(—K)  k=(—K) j=0 b=(—K)  k=(—K)

C) — covy (5;’5”,65)
m c m ¢
= exp Covg (et—h ((ZO + al) gt—ls — Covp 6th'fl’E_:t—l) +
covg (eﬁK, (ag+ay+---+ak) 621{71) — covp (5?1}(7 557K)

= exp| oacamlao — 1+ (ag+a1) =1+ -+ (ag+ a1+ +ag)—1] |

m
cov (Et , QOE

where €™ and £° are the innovations of the log of the pricing kernel and the log
of consumption. Where the first step uses the fact that the first ¢ — K shocks are
common to both covariances; the second separates the covariances, and the third
reorders and uses the result that for last term the sum of all the alphas equals 1.
Finally, by the previous proposition we have that

E (B [Gh])

7 = exp (—cov (Amy, Acy)) = exp (=0 ac,Am)
'f
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which combined with the previous equality finishes the proof. W
Proof of Proposition 5.5. The proof is a straightforward variation of the

proof of proposition 5.4.
Proof of Proposition 5.6. Direct computation shows that

m (akH) = (ag'H — 1) + <aé(+1 -I-a{('H — 1) + <aé<+1 -I-a{('H -I-aé( — 1) +
+...+<a§+1+a{(+1+...+a§+1_1)

= —1+ (@ = 1) + (o +af = 1)+ + (@l +af T+ af 1)

= m(aK)+1.

[ |
Proof of Proposition 6.1. Regarding C = {C} as a vector on R™ let
6%(00) and %ZCUB(g,) be its first and second derivatives evaluated at C. Define C,, =
(1-a)€+aC and (Ci[1+ X (a)]t) be the vector where each component consists

of Cy (2") [L4 A ()]". Then twice differentiating with respect to a the equation

defining A,
8)55104) oU (([1 —l—a)é(a)] Ct)) (Ct 14 A () t) _ 6Ua(g'a) (€—0)

and

Tt i +aAc(a)] 2 (Cilt+ Al e) +

2] WL AT ) (6,14 )21 -1)

o 1 ' o? )" C, Q t—1
+ <—agé ) (Ct [+ A ()" t)> 2 U(([lazgc(,, ) (mai ) (Ct [1+A(a)] t))
= (e-oy L2 (o ¢

Taking « | 0 since Cy = C and A (0) = 0 then,
%X (0) U (C) _ [oa(a)]? oU (0)
Jada oc ) == { da } ac (Gtt=1))

+ <Q‘—C— 622“) (€, t)>'a;ga(g) <¢—C—ma—g)‘)(0t)> <0
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where the inequality follows from the concavity of U and the monotonicity of U
. Since U is increasing , then %228(2) <0m

Details about approximations made with the log-linear system

A. Bias in the trend

In section (5.3) in the paper we define the trend as a one-sided moving average
of current and past consumption, In (¢;) = Zszo ay - ¢i—k. With this definition of
the trend € , Ey (Ct) # Ep (&), because € is a nonlinear function of C. We show
here that this bias is quantitatively negligible for our applications.

Assuming we want to impose as a constraint that the conditional mean of the
trend and of consumption are equal, then the following could be done. Based on
our definition of the marginal cost we have

Do Vo [Xi]
Zt Vo lC”

_ Z O[Xt

— WG

l+wit =

where wy = Vo [Cy] />, Vo [Cy]. Assume we want to adjust every strip of the
trend so that

oo

Vo [Xe] & (2)
1+wi = Wy ————,

PR

the issue is how to define the adjustment ¢ (¢). One possibility is to make the

conditional mean of the two equal, so that

Ey [CY]
Ep [X¢]’

¢(t) =

in this case, ¢ (t) is a state dependent adjustment.

The random walk case can provide an idea of the order of magnitude of the
adjustment, it is easy to compute and close to the cases analyzed in the paper.
In this case, simple algebra gives that for t > K,

EOCt — e[l—(a0)2+1—(a0+a1)2+1—(a0+a1+a2)2+,,,+1 (a0+ -‘rOLJ)] 2 > 1.
FEoX: -

¢ (t) =

In words, expected consumption is larger because consumption is more volatile
than the trend, given that the trend depends partially on earlier realizations that
have a lower variance. For the first few periods where ¢t < K, the terms are a
bit different. They will coincide if we take the expectations conditional on time
—K, so that the lags of the trend are not known; otherwise, they will depend on
recent realizations of consumption.

o3



For the coefficient values implied by the 8 year filter in the paper, based on
02 =0.03282 and 0 = 0.01152 corresponding to the variance of the consumption
growth rate for the period 1889-1997 and 1954-1997 respectively, we have

= 1.000309, and

03282
exp <0.57520 0328 )

= 1.000038.

2
exp <0.57520'0115 >

That is, the bias is barely 3 basis points with consumption for 1889-1997, the bias
is just about one third of a basis point with consumption for 1954-1997.
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Table 1

Marginal Cost of Dividend Uncertainty

1889-1997 1954-1997
Dividend-Price ratio 4.60% 3.63%
Longterm yield 1.96% 2.51%
Consumption trend growth 1.68% 1.85%
Dividend trend growth 1.31% 1.17%
((1+g)*dp) / (r - 9) 7.1937 2.7385
Marginal Cost of Dividend Uncertainty 619.37% 173.85%
Std ( Alog C) 3.28% 1.15%
Std( AlogD) 12.01% 3.78%
Corr( Alog C,A log D) 0.32 0.42

See the Appendix for data sources



Table 2A
Marginal Cost of Consumption Fluctuations (1889-1997)

Marginal cost: Benefit Duration
Moments the kernel fits: Coefficients on states: Low pass filters Other Filters of 1% ~onsumption
c d trm d/p vwr B 8 years 12years 16 years 20 years infinite geometric linear growth Equity Fit

1. E(D/P),E(VWR-Rf),Y(1),Y(13), -9.31 -1.56 8.05 0.90 0.43% 0.79% 0.89% 1.06% 353.26% 1.01% 1.85% 227.60% 70.19 0
2. E(Rd/Rf),E(VWR-R),Y(1),Y(13), -9.21 -1.58 8.19 0.90 0.43% 0.79% 0.89% 1.05% 347.07% 0.94% 1.73% 227.26% 70.16 0
3. E(D/P),E(Rd/Rf),Y(1),Y(13) -9.08 -1.59 8.31 0.90 0.42% 0.78% 0.88% 1.05% 341.72% 0.99% 1.83% 230.56% 70.47 0
4. E(D/P),E(VWR-Rf),Y(1),Y(13), -4.04 -2.37 9.64 0.91 0.32% 0.60% 0.67% 0.69%  543.28%  0.72% 1.41% 1560.88% 98.90 0
5. E(RA/Rf),E(VWR-Rf),Y(1),Y(13), -0.19 -3.31 10.09 0.90 0.24% 0.48% 0.54% 0.64%  604.27%  0.61% 1.15% 780.47% 115.55 0
6. E(DIP),E(RA/R),Y(1),Y(13), -4.31 -2.57 10.22 0.90 0.35% 0.65% 0.73% 0.86%  1956.35%  0.82% 1.52% 4141.52% 109.09  1.43E-05
7. E(D/P),E(RA/Rf),Y(1),Y(13), E(VWR-Rf) -9.60 -1.53 8.19 -0.49 0.90 0.43% 0.80% 0.90% 1.07% 362.85% 1.02% 1.88% 221.43% 69.59 0
8. E(D/P),E(VWR-Rf),Y(1),Y(13), -6.53 -1.93 -0.53 0.90 0.40% 0.73% 0.80% 0.93% 2862.13%  0.93% 1.68% 1344.64% 97.20 0
9. E(RA/Rf),E(VWR-R),Y(1),Y(13), 0.06 -3.30 -0.70 0.89 0.26% 0.49% 0.54% 0.63%  1263.46%  0.63% 1.16% 16561.54% 123.50 0
10. E(D/P),E(RA/Rf),Y(1),Y(13), -1.00 -2.88 -0.69 0.91 0.27% 0.51% 0.55% 0.64%  6151.07%  0.64% 1.19% | 154985.17%  151.48 2.62E-05
11. E(D/P),E(VWR-Rf),Y(1),Y(13), -7.18 -1.98 -0.40 0.90 0.40% 0.71% 0.79% 0.93%  502.50%  0.90% 1.65% 571.11% 86.50 0
12. E(RA/Rf),E(VWR-Rf),Y(1),Y(13), -0.69 -3.24 -0.63 0.89 0.26% 0.49% 0.55% 0.65%  480.22%  0.63% 1.16% 8664.40% 116.65 0
13. E(D/P),E(RA/R),Y(1),Y(13), [OI+E(VWR-Rf)] -5.36 2.25 -0.49 0.91 0.36% 0.64% 0.72% 0.84%  605.66%  0.82% 1.49% 1498.99% 98.47  2.72E-06
14. E(D/P),E(Rd/Rf),Y(1),Y(13), E(VWR-Rf) 0.06 -2.16 44.74 1.66 0.93 0.20% 0.43% 0.54% 0.68% 39.70% 0.49% 0.95% 109.37% 52.82 0
15. E(D/P),E(Rd/Rf),Y(1),Y(13), E(VWR-Rf) -13.44 -1.04 8.61 0.41 0.88 0.50% 0.92% 1.06% 1.27% 206.03% 1.18% 2.17% 110.82% 53.17 5.78E-08
Standard deviation of consumption deviations from trend 1.35% 1.68% 2.02% 2.36% 1.80% 2.92%
Moments Dividend/price ratio: E(D/P) = 0.046 States ¢ = consumption Forecasting 1.-7. c,d,trm,d/p

Equity premium: E(VWR-R) = 0.0677 d = dividends variables 8.-10.,14. c,d,dp,vwr

Multiplicative equity premium: E(Rd/Rf-1) = 0.0698 trm=long-short term spread 11.-13,15. c¢,d,trm,vwr

Riskless rate: E(logY(1))= 0.0108 d/p = dividend-price ratio
Yield spread: E(logY(13)-logY(1))= 0.0059 vwr = realized value weighted stock return Fit stands for the sum of squared residuals from data moments



Table 2B

Marginal Cost of Consumption Fluctuations (1954-1997)

Marginal cost: Benefit Duration
Moments the kernel fits: Coefficients on states: Low pass filters Other filters of 1% Consumption
c d trm d/p vwr B 8years 12years 16years 20 years inf geometric linear growth Equity Fit

1. E(D/P),E(VWR-Rf),Y(1),Y(13), -28.64 -2.82 23.95 0.89 0.22% 0.42% 0.51% 0.62% 22.33% 0.51% 0.96% 6341.00% 39.28 0
2. E(RA/Rf),E(VWR-Rf),Y(1),Y(13), -19.30 6.49 41.62 0.85 0.15% 0.31% 0.35% 0.41% 302.10% 0.37% 0.70% 312531307.00% 211.65 0
3. E(D/P),E(Rd/Rf),Y(1),Y(13), [0l + E(VWR-Rf)] -12.61 -2.40 20.16 0.94 0.11% 0.22%  0.27%  0.33% 11.54% 0.26% 0.48% 103.93% 51.5078  6.38E-05
4. E(D/IP),E(VWR-Rf),Y(1),Y(13), -10.94 -4.40 53.35 0.92 0.14% 0.22% 0.24% 0.26% 17.86% 0.24% 0.41% 203949.00% 102.06 0
5. E(RA/Rf),E(VWR-Rf),Y(1),Y(13), [no trm, Ol + E(VWR-Rf)] -15.96 -2.93 41.14 0.91 0.15% 0.27%  0.32%  0.39% 32.77% ,0036 0.66% 144.60% 59.76 6.63E-06
6. E(D/P),E(Rd/Rf),Y(1),Y(13), [no trm state] -7.19 -3.22 41.53 0.93 0.09% 0.16% 0.18% 0.23% 18.72% 0.21% 0.38% 217.64% 69.32 1.02E-06
7. E(D/P),E(RA/Rf),Y(1),Y(13), E(VWR-Rf) no fit
8. E(D/P),E(VWR-Rf),Y(1),Y(13), -11.85 -4.28 -2.02 0.89 0.18% 0.34% 0.36% 0.41% 115570.55% 0.44% 0.81% 290802426.00% 508.09 0
9. E(RA/Rf),E(VWR-Rf),Y(1),Y(13), -36.53 -5.93 -2.13 0.75 0.32% 0.57% 0.60% 0.69% 1156.26% 0.72% 1.29% 2530.00% 103.28 0
10. E(D/P),E(Rd/Rf),Y(1),Y(13), (1947-1997) -23.70 -5.20 -1.88 0.84 0.21% 0.34% 0.37% 0.42% 54.54% 0.43% 0.75% 23430.00% 70.94 7.66E-07
11. E(D/P),E(VWR-R(),Y(1),Y(13), (1947-1997) -8.62 -4.99 -2.04 0.92 0.14% 0.21% 0.24% 0.28% 18.32% 0.25% 0.43% 2965341.00% 129.94 0
12. E(RA/Rf),E(VWR-R),Y(1),Y(13), [no trm, Ol + E(D/P)] -0.95 -4.50 -1.90 0.92 0.07% 0.12% 0.12% 0.14% 248.02% 0.16% 0.27% 141029900.00% 419.44 8.78E-06
13. E(D/P),E(Rd/Rf),Y(1),Y(13), [no trm state] -0.88 -3.84 -1.72 0.93 0.07% 0.10% 0.11% 0.13% 38.50% 0.14% 0.23% 335717.05% 163.47 7.95E-06
14, E(D/P),E(RA/Rf),Y(1),Y(13), E(VWR-Rf) -40.57 5.40 94.47 1.16 071 0.42% 0.73%  0.90%  1.01% 35.57% 0.97% 1.79% 3149.00% 24.44 0
15. E(D/P),E(R/Rf),Y(1),Y(13), E(VWR-Rf) no fit
Standard deviation of consumption deviations from trend 0.55% 0.69% 0.67% 0.70% 0.73% 1.21%
Moments Dividend/price ratio: E(D/P) = 0.0363 States ¢ = consumption Forecasting 1.-7. c,d,trm,d/p

Equity premium: E(VWR-Rf) = 0.0628 d = dividends variables 8.-10.,14. c,d,dp,vwr

Multiplicative equity premium: E(Rd/Rf-1) =0.0613 trm=long-short term spread 11.-13,15. c,d,trm,vwr

Riskless rate: E(logY(1))= 0.0121
Yield spread: E(logY(13)-logY(1))=0.0123

d/p = dividend-price ratio
wwr = realized value weighted stock return

Fit stands for the sum of squared residuals from data moments



Table 2C

Marginal Cost of Consumption Fluctuations: Dividends and Consumption Cointegrated (1889-1997)

Marginal cost: Benefit Duration
Moments the kernel fits: Coefficients on states: Low pass filters Other filters of 1% Consumption
c trm dip vwr B 8 years 12years 16 years 20 years infinite geometric linear growth Equity Fit

1. E(D/P),E(VWR-R),Y(1),Y(13), [OI + E(Rd/Rf) -11.55 -1.40 -8.19 0.90 0.36% 0.66% 0.78% 0.96% 47.68% 0.88% 1.60% 45.98% 3174 2.19E-04
2. E(RA/Rf),E(VWR-R(),Y(1),Y(13), [OI + E(D/P)] -11.55 -1.40 -8.19 0.90 0.36% 0.66% 0.78% 0.96% 47.68% 0.88% 1.60% 45.98% 3174 2.19E-04
3. E(D/P),E(Rd/Rf),Y(1),Y(13), [Ol + E(WVR-Rf)] -11.55 -1.40 -8.19 0.90 0.36% 0.66% 0.78% 0.96% 47.68% 0.88% 1.60% 45.98% 3174 2.19E-04
4. E(D/P),E(VWR-R(),Y(1),Y(13), -17.93 -3.47 -32.32 0.81 0.37% 0.81% 0.98% 1.25% 196.30% 1.20% 2.29% 64.22% 39.12 0.00E+00
5. E(R/Rf),E(VWR-Rf),Y(1),Y(13), [Ol + E(D/P)] -16.40 -1.18 -10.29 0.86 0.49% 090%  1.07%  1.31% 88.99% 1.19% 2.20% 51.31% 34.09 1.91E-04
6. E(DIP),E(RA/Rf),Y(1),Y(13), [0l + E(WVR-Rf)] -16.40 -1.18 -10.29 0.86 0.49% 090%  1.07%  1.31% 88.99% 1.19% 2.20% 51.31% 34.09 1.91E-04
7. E(DIP),E(RA/R),Y(1),Y(13), E(VWR-RY) no fit
8. E(D/P),E(VWR-Rf),Y(1),Y(13), -10.28 -3.54 1.05 0.88 0.23% 0.56% 0.71% 0.93% 55.17% 0.84% 1.65% 40.02% 28.94 0
9. E(Rd/Rf),E(VWR-Rf),Y(1),Y(13), -20.06 0.23 0.41 0.83 0.67% 1.22% 1.37% 1.63%  367250.00% 1.59% 2.90% 231.55% 70.40 0
10. E(D/P),E(RA/Rf),Y(1),Y(13), [Ol + E(WVR-Rf)] -8.80 2.44 0.40 0.91 0.27% 055%  0.68%  0.86% 45.20% 0.75% 1.43% 44.36% 31.06 1.66E-04
11. E(D/P),E(VWR-Rf),Y(1),Y(13), [no trm state] -21.79 -3.54 3.17 0.75 0.43% 1.05% 1.23% 1.53% 560455113.38% 1.42% 0.0278 214.25% 66.59 0
12. E(RA/Rf),E(VWR-Rf),Y(1),Y(13),[no trm state] -21.95 0.03 1.03 0.81 0.66% 1.27% 1.39% 1.63% 1.17E+12 1.64% 3.02% 5.05E+04 224.70 5.37E-05
13. E(D/P),E(RA/Rf),Y(1),Y(13), [Ol + E(VWR-Rf)] -10.94 -2.20 0.95 0.90 0.28% 058%  0.70%  0.87% 61.68% 0.77% 1.46% 55.90% 35.95 2.77E-04
14. E(D/P),E(Rd/Rf),Y(1),Y(13), E(VWR-R() -10.50 1.79 75.51 3.09 0.90 0.51% 0.86% 1.08% 1.32% 19.94% 1.07% 1.96% 22.74% 18.86 0
15. E(D/P),E(RA/Rf),Y(1),Y(13), E(VWR-Rf) no fit
Standard deviation of consumption deviations from trend 1.35% 1.68% 2.02%  2.36% 1.80% 2.92%
Moments Dividend/price ratio: E(D/P) = 0.046 States ¢ = consumption Forecasting 1.-7. c,d,trm,d/p

Equity premium: E(VWR-Rf) = 0.0677 d = dividends variables 8.-10.,14.  c¢,d,dp,vwr

Multiplicative equity premium: E(Rd/Rf-1) = 0.0698 trm=long-short term spread 11.-13,15. c,d,trm,vwr

Riskless rate: E(logY(1))= 0.0108

Yield spread: E(logY(13)-logY(1))= 0.0059

d/p = dividend-price ratio

vwr = realized value weighted stock return

Fit stands for the sum of squared residuals from data moments



Table 2D

Marginal Cost of Consumption Fluctuations: Dividends and Consumption Cointegrated (1954-1997)

Marginal cost: Benefit Duration
Moments the kernel fits: Coefficients on states: Low pass filters Other filters of 1% Consumption
c trm dip vwr B 8years 12years 16years 20 years inf geometric linear growth Equity Fit

1. E(D/P),E(VWR-Rf),Y(1),Y(13), -17.62 -1.68 3110 0.91 0.22% 0.42% 0.52% 0.66% 25.55% 0.53% 1.00% 56.39% 36.66 0
2. E(Rd/Rf),E(VWR-Rf),Y(1),Y(13), [no d/p, Ol +E(D/P)] 6.54 -4.95 22.05 0.95 0.11%  0.19% 0.30% 0.40% 0.26% 0.22% 0.42% 52.12% 34.70 3.28E-05
3. E(D/P),E(Rd/Rf),Y(1),Y(13),[no d/p, Ol + E(RA/Rf)] 6.54 -4.95 22.05 0.95 0.11%  0.19% 0.30% 0.40% 0.26% 0.22% 0.42% 52.12% 34.70 3.28E-05
4. E(D/P),E(VWR-R(),Y(1),Y(13), -5.92 -2.39 64.75 0.94 0.19% 0.28% 0.34% 0.42% 8.07% 0.33% 0.58% 45.07% 31.68 0
5. E(RA/Rf),E(VWR-Rf),Y(1),Y(13), -9.89 -0.52 60.82 0.95 0.17% 0.25% 0.28% 0.33% 21.06% 0.31% 0.53% 137.86% 58.81 2.27E-06
6. E(D/P),E(Rd/Rf),Y(1),Y(13) 3.47 -3.07 57.59 0.95 0.12% 0.16% 0.21% 0.27% 0.16% 0.17% 0.29% 46.35% 32.23 5.97E-07
7. E(D/P),E(RA/Rf),Y(1),Y(13), E(VWR-Rf), 0.83 -2.97 1.72 56.73 0.95 0.140% 0.190%  0.260%  0.320% 2.41% 0.23% 0.38% 45.34% 31.77 3.54E-06
8. E(D/P),E(VWR-Rf),Y(1),Y(13), -13.95 -4.61 -1.89 0.88 0.33% 0.59% 0.71% 0.87% 48.16% 0.77% 1.40% 57.17% 36.97 0
9. E(RA/Rf),E(VWR-Rf),Y(1),Y(13), -18.46 -2.94 -1.97 0.88 0.35% 0.67% 0.71% 0.82% 462789900.00% 0.86% 0.16% 89197900.00% 375.47 0
10. E(D/P),E(Rd/Rf),Y(1),Y(13), -6.54 -4.50 -1.46 0.93 0.24% 0.41% 0.51% 0.65% 20.54% 0.53% 0.96% 46.22% 32.20 0
11. E(D/P),E(VWR-Rf),Y(1),Y(13), -13.34 -4.58 -1.92 0.91 0.29% 0.48% 0.58% 0.70% 20.53% 0.59% 1.05% 49.25% 33.60 0
12. E(RA/Rf),E(VWR-R(),Y(1),Y(13), [Ol + E(D/P)] 41018  -4.45 -1.64 0.91 0.28% 0.49%  0.60%  0.75% 31.13% 0.64% 1.15% 50.85% 3431 4.55E-06
13. E(D/P),E(RA/Rf),Y(1),Y(13), [Ol + E(VWR-Rf)] 41018  -4.45 -1.64 0.91 0.28% 0.49%  0.60%  0.75% 31.13% 0.64% 1.15% 50.85% 3431 4.55E-06
14. E(D/P),E(Rd/Rf),Y(1),Y(13), E(VWR-R), -4.73 -4.84 -1.61 -2.78 0.94 0.22%  0.34% 0.43% 0.53% 9.80% 0.41% 0.73% 45.30% 3172 1.33E-05
15. E(D/P),E(Rd/Rf),Y(1),Y(13), E(VWR-R(), -12.87 -3.42 31.18 -0.70 0.90 0.28%  0.50% 0.60% 0.75% 38.05% 0.65% 1.19% 54.36% 35.90 5.53E-06
Standard deviations of consumption deviations from trend 0.55%  0.69% 0.67% 0.70% 0.73% 1.21%
Moments Dividend/price ratio: E(D/P) = 0.0363 States ¢ = consumption Forecasting 1.-7. c,d,trm,d/p

Equity premium: E(VWR-Rf) = 0.0628 d = dividends variables 8.-10.,14. c,d,dp,vwr

Multiplicative equity premium: E(Rd/Rf-1) =0.0613 trm=long-short term spread 11.-13,15. c,d,trm,vwr

Riskless rate: E(logY(1))= 0.0121
Yield spread: E(logY(13)-logY(1))=0.0123

d/p = dividend-price ratio
wwr = realized value weighted stock return

Fit stands for sum of squared residuals from data moments



Table 3

Random Walk Case: Consumption Equity Premium and Marginal Cost

E(re-rf) State Loading Consumption Marginal Cost
Equity Premium Frequency domain filters

8years 12years 16years 20 years
1954-1997 std(Ac) 0.011
Mkt Ac -83.9 1.09% 0.42% 0.79% 0.84% 0.96% std(Mkt) 0.169
Mkt Mkt -2.6 0.22% 0.08% 0.16% 0.17% 0.19% corr(Ac,Mkt) 0.453
10 CRSP size 0.37% 0.14% 0.27% 0.29% 0.33% E(MKkt-rf) 7.30%

Dec.: 1,10 Ac, Mkt 0.31% 0.12% 0.22% 0.24% 0.27%
1926-1997 std(Ac) 0.025
Mkt Ac -26.3 1.59% 0.61% 1.15% 1.23% 1.40% std(Mkt) 0.197
Mkt Mkt 2.1 0.63% 0.24% 0.45% 0.49% 0.56% corr(Ac,Mkt) 0.628
10 CRSP size 0.64% 0.24% 0.46% 0.49% 0.56% E(Mkt-rf) 8.01%

Dec.: 1,10 Ac, Mkt 1.66% 0.63% 1.20% 1.28% 1.47%

Factor multiplying consumption equity premium 0.38 0.72 0.77 0.88

[1-ap + 1 - (agtay) ...1-(ag*a;..ax)]




Figure 1: Marginal and Total Cost Functions
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Figure 2

Transfer functions for low-pass filters, 8 year cutoff (15 lags)
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Figure 3A Consumption Deviations from Trend
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Figure 3B
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Figure 3C Consumption Deviations from Trend
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Figure 4 Transfer function for adjusted one-sided filter (8years, theta = 1.4)
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