Communicating Statistics: Construction of Bivariate Fan Chart from Joint Distribution

RESERVE BANK OF INDIA

Communication on Central Bank Statistics: Unlocking the Next Level

organised jointly by the Irving Fisher Committee on Central Bank Statistics of the Bank for International Settlements and Banco de Portugal

Lisbon, September 19-20, 2022

Statistical Communication

Central Banks communicate forecasts of macroeconomic variables

- ✓ Risks to forecasts based on which policy stance taken need to be minimized
- ✓ Forecast errors required to be estimated
- ✓ Risk quantification Confidence interval around forecasts
- Central Banks publish fan charts to
 - ✓ communicate risks/ uncertainty associated to forecasts of inflation and growth
 - ✓ Fan chart communication of quantified uncertainty around forecast using confidence intervals

Fan-Charts for Economy's Growth and Inflation: India, Europe, Sweden and UK

Fan Chart

Fan chart depicts:

- ✓ a measure of central tendency (central view)
- \checkmark a view on degree of uncertainty
- ✓ a view on balance of risk (often non-symmetric)

Distribution in fan chart is asymmetric if risk assessment is either skewed upside or downside

Literatures

- Theory on incorporating asymmetric risks to forecasts using two-piece Normal distribution
 ✓ by M. Blix and P. Sellin in 1998 application in Indian context discussed by N. Banerjee and A. Das in 2011
- Methodology for fan chart for government deficit and debt ratios over medium-term
- Bayesian fan charts
- Quantification of skewness in fan charts by assessing probability of future dip using probit model

The Forecasting Distribution

Join halves of two Normal distributions with same mode but different standard deviations

$$f(x) = \begin{cases} C \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma_{1}}\right)^{2}\right], & \text{if } -\infty < x \le \mu \\ C \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma_{2}}\right)^{2}\right], & \text{if } x > \mu \\ \text{with } C = \frac{\sqrt{2}}{\sqrt{\pi}(\sigma_{1}+\sigma_{2})}, & -\infty < \mu < \infty, \sigma_{1}, \sigma_{2} > 0 \\ \text{Balance of Risk } p = P[X \le \mu] = \frac{\sigma_{1}}{\sigma_{1}+\sigma_{2}} \end{cases}$$

$$Confidence Interval for fan chart Quantile k of the distribution:$$

$$L = \begin{cases} \mu + \sigma_{1}\Phi^{-1}\left(\frac{\alpha}{C\sqrt{2\pi}\sigma_{1}}\right), & \text{if } \alpha \le p \\ \mu + \sigma_{2}\Phi^{-1}\left(\frac{\alpha + C\sqrt{2\pi}\sigma_{2} - 1}{C\sqrt{2\pi}\sigma_{2}}\right), & \text{if } \alpha > p \end{cases}$$

Way Forward – Bivariate Fan Chart

- Macroeconomic variables of interest are inter-dependent literature contains limited work on dimensional extension of fan charts
- M. Blix and P. Sellin in 2000 derived bivariate fan chart of inflation and output

✓ opined that bivariate framework allows for arriving at forecast of a variable conditional on information on other

- estimating confidence bands from econometric forecasting model itself, is not possible as multiple models are used, specific information related to particular forecast period and important subjective judgments cannot be incorporated
- ✓assumed that error distribution of inflation and output forecasts are separately two-piece Normal and linked the standardized form of these variables into a standard Bivariate Normal (BN) distribution through an estimated correlation coefficient; then, derived conditional distribution of one variable given another

• Alternative: Initial assumption of joint distribution of two variables

Initial Thoughts

What is a Bivariate Fan Chart? - Joint error distribution around two-dimensional forecast coordinate

Why a Bivariate Fan Chart?

- impact of movement of one variable on future path of other
- known information on forecast error of one variable
 - ✓ may improve forecast of other variable useful when information on variables are published at different lags

Framework

- (X, Y)~ Bivariate Normal
- Join halves of 2 different Bivariate Normal distributions
- Each halve has its own set of variance matrix
- Forecasts of X and Y for a period are μ_x and μ_y , respectively forecast coordinate (μ_x , μ_y)

Bivariate Fan Chart – Methodology

Handling Asymmetry

• Asymmetry in risks associated to forecast coordinates (μ_x, μ_y) \checkmark different in each of the four quadrants of (X, Y) plane

Join sections of two Bivariate Normal distributions

$$BN(\mu_x, \mu_y, \sigma_{1x}, \sigma_{1y}, \rho)$$
 and $BN(\mu_x, \mu_y, \sigma_{2x}, \sigma_{2y}, \rho)$

✓ same modal coordinate (μ_x, μ_y) , $-\infty < \mu_x, \mu_y < \infty$ ✓ same correlation coefficient ρ , $-1 \le \rho \le 1$ ✓ $\sigma_{1x}(>0)$, $\sigma_{1y}(>0)$ in first distribution ✓ $\sigma_{2x}(>0)$, $\sigma_{2y}(>0)$ in second distribution

The Cut Line Equation – Equation of line to cut distribution into two pieces

- x-axis, y-axis with $x, y \in \mathbb{R}$ and z-axis for probability with $0 \le z \le 1$
- Which half of distribution is to be taken?
- Cut line may either be aligned to x-axis, y-axis or at any other angle
- A general cut line $(y \mu_y) = m(x \mu_x)$, $x, y \in \mathbb{R}$ may be used \checkmark slope of cut line is $m \in \mathbb{R}$
- Join pieces of $BN(\mu_x, \mu_y, \sigma_{1x}, \sigma_{1y}, \rho)$ and $BN(\mu_x, \mu_y, \sigma_{2x}, \sigma_{2y}, \rho)$

Probability Distribution Function

$$f(x,y) = \begin{cases} C \exp\left[-\frac{1}{2(1-\rho^2)}\left\{\left(\frac{x-\mu_x}{\sigma_{1x}}\right)^2 - 2\rho\left(\frac{x-\mu_x}{\sigma_{1x}}\right)\left(\frac{y-\mu_y}{\sigma_{1y}}\right) + \left(\frac{y-\mu_y}{\sigma_{1y}}\right)^2\right\}\right], \\ if\left(y-\mu_y\right) \le m(x-\mu_x), \quad x,y \in \mathbb{R} \\ C \exp\left[-\frac{1}{2(1-\rho^2)}\left\{\left(\frac{x-\mu_x}{\sigma_{2x}}\right)^2 - 2\rho\left(\frac{x-\mu_x}{\sigma_{2x}}\right)\left(\frac{y-\mu_y}{\sigma_{2y}}\right) + \left(\frac{y-\mu_y}{\sigma_{2y}}\right)^2\right\}\right], \\ if\left(y-\mu_y\right) > m(x-\mu_x), \quad x,y \in \mathbb{R} \end{cases}$$

C is a constant such that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$

Balance of Risks (BOR) – the Highest risk to forecast coordinate in quadrant with the highest BOR

BOR in quadrant — 1,	$p(1) = P\{X > \mu_x, Y > \mu_y + m(x - \mu_x)\}$
BOR in quadrant – 2,	$p(2) = P\{X \le \mu_x, Y > \mu_y + m(x - \mu_x)\}$
BOR in quadrant — 3,	$p(3) = P\{X \le \mu_x, Y \le \mu_y + m(x - \mu_x)\}$
BOR in quadrant – 4,	$p(4) = P\{X > \mu_x, Y \le \mu_y + m(x - \mu_x)\}$

Alternate Parametrization
$$f(x, y) = \begin{cases} BN\left(\mu_x, \mu_y, \frac{\sigma_x}{\sqrt{(1-\gamma_x)}}, \frac{\sigma_y}{\sqrt{(1-\gamma_y)}}, \rho\right), & \text{if } (y-\mu_y) \le m(x-\mu_x) x, y \in \mathbb{R} \\ BN\left(\mu_x, \mu_y, \frac{\sigma_x}{\sqrt{(1+\gamma_x)}}, \frac{\sigma_y}{\sqrt{(1+\gamma_y)}}, \rho\right), & \text{if } (y-\mu_y) > m(x-\mu_x) x, y \in \mathbb{R} \end{cases}$$

 γ_x and γ_y are inverse skewness indicators, σ_x and σ_y are uncertainty parameters.

Solving for parameters

$$\sigma_{1x} = \frac{\sigma_x}{\sqrt{1 - \gamma_x}}, \qquad \sigma_{1y} = \frac{\sigma_y}{\sqrt{1 - \gamma_y}}, \qquad \sigma_{2x} = \frac{\sigma_x}{\sqrt{1 + \gamma_x}}, \qquad \sigma_{2y} = \frac{\sigma_y}{\sqrt{1 + \gamma_y}}$$

$$p_x = \frac{\sigma_{1x}}{\sigma_{1x} + \sigma_{2x}} \Rightarrow \gamma_x = \frac{2p_x - 1}{1 - 2p_x + 2p_x^2}, \qquad p_y = \frac{\sigma_{1y}}{\sigma_{1y} + \sigma_{2y}} \Rightarrow \gamma_y = \frac{2p_y - 1}{1 - 2p_y + 2p_y^2}$$

$$\sigma_x \text{ proxied by } \sigma_x^* = \sqrt{\frac{1}{T - 1} \sum_{t=1}^{T-1} (x_t - \mu_{xt})^2} \qquad \qquad \frac{\mu_{xt} \text{ and } \mu_{yt}}{T} = \text{ forecasts of } X \text{ and } Y, \text{ respectively for } t}{T}$$

$$\sigma_y \text{ proxied by } \sigma_y^* = \sqrt{\frac{1}{T - 1} \sum_{t=1}^{T-1} (y_t - \mu_{yt})^2} \qquad \qquad \rho \text{ proxied by } \rho^* = \frac{\sum_{t=1}^{T-1} (x_t - \bar{x})(y_t - \bar{y})}{\sqrt{\sum_{t=1}^{T-1} (x_t - \bar{x})^2} \sqrt{\sum_{t=1}^{T-1} (y_t - \bar{y})^2}}$$

Confidence bands for bivariate distribution is a set of equi-probability contours
 ✓ an equi-probability contour joins all coordinates with same probability

Consider all coordinates (x, y) for which density is same, say δ
 ✓ solving this equation, equi-probability contour can be derived

• Thus, for constructing bivariate fan chart, values of seven parameters required \checkmark baseline forecasts (μ_x, μ_y), uncertainties σ_x, σ_y , balance of risks p_x, p_y and correlation coefficient ρ

Conditional Distribution

✓ Given known information on *X*, distribution of *Y* derived as $f_Y(y|x) = \frac{f(x,y)}{g(x)}$

 \checkmark mean of conditional (revised forecast of Y) expected to be better than original forecast μ_y

• Quantile from Conditional Distribution \rightarrow Conditional fan chart for Y

Bivariate Fan Chart – Contours for Demonstration

Opposite risks to forecasts

Risk symmetric in all quadrants

Bias in 1st and 3rd quadrants Unidirectional risks to forecasts

Bivariate Fan Chart – Contours for Demonstration.....contd.

 $\sigma_{1x} = \sigma_{2x}, \sigma_{1y} > \sigma_{2y}, \rho = -0.9$ $\sigma_{1x} = \sigma_{2x}, \sigma_{1y} > \sigma_{2y}, \rho = 0.1$ $\sigma_{1x} = \sigma_{2x}, \sigma_{1y} > \sigma_{2y}, \rho = 0.9$ Bias in 4th quadrantBias in 3rd and 4th quadrantsBias in 3rd quadrantUpside risk to X and downside risk to YBalanced risk to X and downside risk to YDownside risk to both X and Y

Bivariate Fan Chart – Contours for Demonstration.....contd.

Bivariate Fan Chart – Contours for Demonstration.....contd.

 $\sigma_{1x} > \sigma_{2x}, \sigma_{1y} = \sigma_{2y}, \rho = -0.9$ Bias in 4th quadrant Upside risk to X and downside risk to Y $\sigma_{1x} > \sigma_{2x}, \sigma_{1y} = \sigma_{2y}, \rho = 0.1$ Bias in 3rd and 4th quadrants Balanced risk to X and downside risk to Y

 $\sigma_{1x} > \sigma_{2x}, \sigma_{1y} = \sigma_{2y}, \rho = 0.9$ Bias in 3rd quadrant Downside risk to both *X* and *Y*

Numerical Illustration

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

Numerical Illustration.....contd.

Numerical Illustration.....contd.

Performance of Conditional Fan Charts												
Quarter	θ	p_x	p_y	Average absolute deviation (basis points) from actual growth		Average absolute deviation (basis points) of actual growth from central path		Average Width (basis points) of confidence band				
				Univariate fan	Conditional fan	Univariate fan	Conditional fan	Band (per cent)	Univariate fan	Conditional fan		
Q1:2018-19 to Q4:2018-19	89 ⁰	0.2	0.9	14.3	6.1	1341.2	7.9	50	1791.9	278.9		
								70	2689.9	428.6		
								90	4074.7	680.8		
Q2:2018-19 to Q1:2019-20	85 <i>°</i>	0.3	0.7	30.5	12.7	205.3	34.8	50	573.9	312.1		
								70	869.1	487.6		
								90	1359.9	980		
Q3:2018-19 to Q2:2019-20	85 <i>°</i>	0.3	0.7	53.3	21.5	183.5	45.5	50	566.5	321.5		
								70	857.9	506.9		
								90	1342.3	1078.8		

Conclusion

- In the current scenario of uncertainty, Central Bank's communication plays a crucial role
- Univariate fan chart is a traditional way of communicating uncertainty around forecasts
 - Central Banks publish fan charts to communicate the risks/ uncertainty associated to forecasts of macroeconomic variables – inflation and growth
- Bivariate fan chart can be an improvement in the manner of communication
 - \checkmark can be used for representing error bands for forecasts of two linearly related variables
 - ✓ it incorporates the asymmetric risks to forecast coordinates
 - ✓ suitable when information of two variables released at different lags
 - ✓ conditional fan chart can be derived for one variable given information on other
 - ✓ additional information on one variable refines the forecast of the other

THANK YOU