UNEMPLOYMENT BENEFITS AND RESERVATION WAGES: KEY ELASTICITIES FROM A STRIPPED-DOWN JOB SEARCH APPROACH

John T. Addison
Mário Centeno
Pedro Portugal

February 2008

The analyses, opinions and findings of these papers represent the views of the authors, they are not necessarily those of the Banco de Portugal.

Please address correspondence to
Pedro Portugal
Economics and Research Department
Banco de Portugal, Av. Almirante Reis no. 71, 1150-012 Lisboa, Portugal;
Tel.: 351 213 138 410, Email: pporto@bportugal.pt
Unemployment Benefits and Reservation Wages: Key Elasticities from a Stripped-Down Job Search Approach

By John T. Addison†, Mário Centeno‡ and Pedro Portugal§

†Queen’s University Belfast and University of South Carolina
‡Banco de Portugal and Universidade Técnica de Lisboa
§Banco de Portugal and Universidade NOVA de Lisboa

This Version: February 2008

Abstract

This paper exploits survey information on reservation wages and data on actual wages from the European Community Household Panel to deduce in the manner of Lancaster and Chesher (1983) additional parameters of a stylized structural search model; specifically, reservation wage and transition/duration elasticities. The informational requirements of this approach are minimal, thereby facilitating comparisons between countries. Further, its policy content is immediate insofar as the impact of unemployment benefit rules and measures increasing the arrival rate of job offers are concerned. These key elasticities are computed for the United Kingdom and eleven other European nations.

KEYWORDS: reservation wages, probability of reemployment, accepted wages, unemployment benefits, arrival rate of job offers, wage offer distributions

JEL CODES: J64, J65
In this paper we calculate four key elasticities that are centrally related to unemployment duration, using information on asking wages and expected wages from an international data set. Following Lancaster and Chesher’s (1983) seminal treatment, these elasticities are derived analytically rather than formally estimated. The four elasticities in question are: (a) the elasticity of the reservation wage with respect to the level of unemployment benefits; (b) the elasticity of reservation wages with respect to the rate of job offers; (c) the probability of reemployment elasticity (or unemployment duration elasticity) with respect to the level of unemployment benefits; and (d) the probability of reemployment elasticity (or unemployment duration elasticity) with respect to the rate of job offers. The data set used is the European Community Household Panel, 1994-99, covering all of the (then) fifteen nations of the European Union (but see below).

Use of Lancaster and Chesher’s ingenious approach allows us to make inferences about the behaviour of unemployed job seekers with only minimal information requirements and without the methodological limitations of empirical/regression models. Further, it sidesteps statistical problems associated with the modelling of unobserved individual heterogeneity and true state dependence that are encountered with formal structural models, while yet having a basis in a stylized structural model. Tradeoffs are of course implied by parsimony. That said, there are no such tradeoffs on the data front: the breadth of our sample considerably
expands the number of countries for which consistent structural parameters can be provided. The inferences drawn about the behaviour of unemployed job seekers also have clear policy content, most notably with respect to unemployment benefit rules and policies that may increase the arrival rate of job offers by increasing search intensity (e.g. outplacement, active search requirements, and job search assistance).

In what follows, we first set down the barebones of the optimal search model and the specific solutions provided by Lancaster and Chesher. Second, we describe the data set and the final sample of countries. Third, we present the reservation wage and duration elasticities, together with a robustness check. Finally, we briefly summarize our findings.

I. The Stationary Optimal Search Model and Solution Formulae

Assuming income-maximizing workers, infinite lives, unemployment benefits and jobs (once accepted), sampling without recall, and wage offers that are independent realizations of the random variable w whose distribution function is $F(w)$, the optimal reservation wage - equating the costs and benefits of continued search - may be written:

$$\xi = b + \frac{\lambda}{\rho} \int_{\xi}^{\infty} (w - \xi) dF(w)$$ \hspace{1cm} (1)

where b is the (constant) amount of unemployment benefits net of any search costs, ρ is the discount rate, w is the wage offer, λ is the arrival rate of job offers, and
$F(w)$ is the cumulative wage offer distribution.

Abstracting from the discount rate (since it disappears from the integrated formulation of the optimality condition) and, for the moment, the mean of the offer distribution, differentiation of equation (1) with respect to b and λ will give the responsiveness of the reservation wage to unemployment benefits and the arrival rate of job offers. (As a practical matter, we shall assume that job offers are generated by a Poisson process and, in the discrete time case, arrive with constant probability in each period, ruling out the need for actual information on the arrival rate.) Similarly, differentiating the reemployment probability or hazard rate $\theta = \lambda[1 - F(\xi)]$ with respect to b and λ, will yield the response of the reemployment probability or unemployment duration (since a specification of the hazard function is equivalent to a specification of the distribution of unemployment duration) to unemployment benefits and the arrival rate of job offers.

Lancaster and Chesher note that if we have information on the mean of the distribution of acceptable wage offers, $x[= E(w|w \geq \xi)]$, as well as data for b, λ (but see above) and ξ, we can obtain all the above derivatives. But converting the derivatives into elasticities for the probability of reemployment (with respect to benefits and the arrival rate of job offers) requires making some assumption as to the shape of the relevant portion of the wage offer distribution (i.e. exceeding the benefits level), or more precisely the hazard function of the offer distribution at the selected reservation wage, $\frac{f(\xi)}{1-F(\xi)}$. Lancaster and Chesher choose the Pareto
distribution allowing them to compute the hazard as \(\frac{1}{\sigma \xi} \), where \(\sigma \) corresponds to the standard deviation of log wage offers.

The precise solutions obtained by Lancaster and Chesher permitting calculation of each elasticity are given in Table 1. After Lynch (1983), we also provide the solutions assuming an exponential distribution for the relevant portion of the offer distribution.

(Table 1 near here)

II. The Data

We are aware of only two previous studies using data on \(x, b, \) and \(\xi \) to deduce the structural parameters in Table 1, namely, Lancaster and Chesher (1983) and Lynch (1983) who each use British data. Lancaster and Chesher use data on 642 workers collected in a national survey for Political and Economic Planning in 1974. Lynch uses data from two samples of 70 and 53 unemployed individuals who were actively looking for work in 1980 - from an initial sample of a little under 2,000 young persons in London who were planning to leave school in the summer of 1979.

By contrast, we use information from six waves of the European Community Household Panel (ECHP), 1994-99. The ECHP is a survey based on a standardized questionnaire administered annually to a representative panel of households and individuals.\(^2\) In 1994, for example, some 60,500 such households or a little over 130,000 adults aged 16 years and above were interviewed. Comparable information is provided for 15 countries. We use data for 12 of the countries: Ger-
many, Denmark, the Netherlands, Belgium, France, the United Kingdom, Ireland, Italy, Greece, Spain, Portugal, and Austria. The three excluded countries are Luxembourg and Sweden where is not possible to follow individuals through time, and Finland where there is no information on monthly unemployment benefits. With some exceptions, the data cover the entire period. The main exceptions are Germany and the United Kingdom where we include data from just the 1994-96 waves because of missing data on hourly reservation wages and data on job offers, respectively, in the parent surveys conducted after 1996.3

The key pieces of information directly contained in the ECHP that are used in the present inquiry are reservation wages and unemployment benefits. Unlike Lancaster and Chesher we do not have information on expected wages, but as we shall see we can use the ECHP to estimate this magnitude from other information in the dataset.

Beginning with reservation wages, each individual actively looking for a job is asked two questions pertaining first to desired hours of work and second to the minimum income required to work these hours. The actual questions are: ‘Assuming you could find suitable work, how many hours per week would you prefer to work in this new job?’ and ‘What is the minimum net monthly income would you accept to work [number of hours in previous question] hours a week in this new job?’4

The data on unemployment benefits contained in the ECHP is with one ex-
ception a monthly measure. It is comparable to the Lancaster-Chesher measure of unemployment income but, as is the case for all our variables, is provided in continuous rather than categorical form.

Although the ECHP does not contain information on expected wages, we were nevertheless able to compute an expected wage for each unemployed worker using the empirical distribution of wages of the contemporaneously employed population who had found a job in the survey year. Specifically, at survey date we matched each unemployed individual with his/her counterpart in the recently employed population. The matching was on the basis of two gender, five age, and three education categories.5

Each unemployed individual was therefore assigned to one of 30 cells and attributed the average monthly earnings of that cell, subject to the latter being at least equal to the matched unemployed individual’s reservation wage. Our device of using information on current starting wages to proxy the wage offer distribution faced by the currently unemployed may be superior to the construct used by Lancaster and Chesher. This is because it is based on convincing information on the relevant wage offer distribution and is computed in a way that corresponds precisely to the theoretical notion of conditional (on reservation wages) expected wages.

Figure 1 provides the resulting density functions of expected wages for each country. Also included in the figure are the corresponding unemployment benefits
and reservation wage densities. The expected wage distribution is, by construction, displaced to the right of the reservation wage distribution.⁶

(Figure 1 near here)

As a check, we shall also provide results for a sample in which the expected wage is derived on the basis of the unemployed individual’s subsequent reemployment wage (i.e. at following survey wave). Defining expected wages in this manner could be an attractive alternative in a rational expectations sense. The problem is that the sample is much reduced because only a minority of those workers unemployed at finds work. Moreover, imposition of the restriction that accepted wages exceed not only unemployment benefits but, more importantly, the reservation wage resulted in a further large reduction - of around 40 percent - in sample size.

Before presenting our findings, we need to address the quality of our data and their adequacy for an analysis of reservation wages in particular. Principally, although past studies suffer from a potential problem of low response rates to the reservation wage question, this is not a consideration with the present dataset since response rates exceed 90 percent. Further, the restriction that reservation wages exceed unemployment benefits is also generally met in the data (see Addison et al., 2004).

III. FINDINGS

The procedure of Lancaster and Chesher generates elasticity values for each individual in the sample. Misreporting, measurement error, and division by numbers
close to zero may result in some aberrant elasticities (or outliers) which may corrupt the computation of sample means. In order to avoid the undesirable contamination from extreme values, we computed median elasticities.

The computed median elasticities and the corresponding bootstrap standard deviations are contained in Table 2. Panel (a) of the table gives results for the unrestricted sample, while panel (b) imposes the theoretical restriction of the stationary model that the reservation wage should exceed the benefit level. As can be seen, the restriction results in some loss of observations (most especially for the Netherlands) but the results are broadly comparable as between panels, with greater variability for the transition elasticities with respect to unemployment benefits in panel (b). In what follows we will focus on the restricted sample, while entering the caveat that the theoretical restriction may not necessarily be always appropriate; for example, where benefits are finite, the reservation wage may indeed fall below the benefit level.

(Table 2 near here)

It is apparent that the reservation wage elasticities are comparatively small, falling within the range 0.107 to 0.427 for the benefit elasticity of reservation wages and 0.109 to 0.260 in the case of the offer probability elasticity of reservation wages. For their part, the transition elasticities can be large. As a case in point, assuming a Pareto (Exponential) distribution for the relevant portion of the wage offer distribution, a 10 per cent increase in benefit levels is associated with a
18.4 (14.3) per cent fall in escape rates for Denmark where the highest disincentive effects are observed. For the Pareto tail, three out of twelve transition elasticities exceed unity. As far as the effect of job offers on transition probabilities is concerned, however, the elasticities are more closely clustered across nations and more so in the case of the Exponential than the Pareto distribution. Observe that the net effect of an increase in the probability of an offer on escape rates is always positive, meaning that the effect on asking wages is dominated by the effects of more offers. Note, finally, that the elasticities are estimated with considerable precision.\(^8\)

(Table 3 near here)

It is interesting to compare in Table 3 our findings for the United Kingdom with those obtained by Lancaster and Chesher (1983, pp. 1668, 1671) for all workers and also by Lynch (1983, p. 277) for school leavers. Note that in order to effect these comparisons we are here using mean rather than median elasticities. A full set of mean elasticities corresponding to those given in Table 2 is provided in Appendix Table 1. Given the differences in years and samples, the range within which the estimates fall is fairly narrow, but only for the effect of benefits on transition probabilities is there close correspondence between our results and those of Lancaster and Chesher (Pareto distribution) and Lynch (Exponential distribution). As far as the results for other countries are concerned, there are few points of comparison as most studies pertain to the United States where estimates of the
four elasticities lie below those reported in the table (a summary of these studies is provided in Devine and Kiefer, 1991). But evidence on the elasticity of the reservation wage with respect to benefits provided by Ridder and Gorter (1986) in a structural model for the Netherlands (0.450) closely resembles the corresponding estimate for that country in Appendix Table 1 (0.464).

(Table 4 near here)

In Table 4 we calculate a set of elasticities that parallel those reported in Table 2 but this time using information on the same individual over sequential surveys. That is, we consider individuals who are unemployed at time t but employed at time $t+1$. The estimate of the unemployed individual’s expected wage is now his/her accepted wage, subject to the reemployment wage not only exceeding the benefit level but also the stated reservation wage. Necessarily, the sample is much reduced because only a minority of unemployed individuals go on to report a wage at $t+1$ - the majority remain unemployed and yet others become inactive. But the results in Table 4 do not produce any shocks in the form of perverse elasticities. In this sense our main findings pass a crude robustness check. Nevertheless, although estimates of the two reservation wage elasticities again conform to a fairly narrow band, they are generally lower than before. The transition elasticities with respect to the arrival rate of job offers also fall within a fairly narrow range and are again somewhat smaller (under both assumptions as to the tail of the distribution) than before. Major differences do, however, characterize the transition elasticities with
respect to unemployment benefits. As is evident, the absolute values reported for each distribution now almost always exceed the previous values.

IV. Conclusions

In an ingenious paper, Lancaster and Chesher (1983) used survey data on unemployed persons in the United Kingdom and economic theory to deduce (rather than estimate via a formal statistical model) the structural parameters of the stationary optimal search model. We have followed their methodology - although our treatment differs from theirs in the manner of the derivation of the mean of the distribution of acceptable wage offers - to obtain updated estimates of reservation wage and transition elasticities for the United Kingdom and for eleven other European nations as well. Our findings, which are numerically consistent with the theory, are found to be robust with respect to an alternative definition of the expected wage and hence configuration of the data. Moreover, our preferred estimates closely accord with those provided by Lancaster and Chesher using U.K. data for 1984.

We are unaware of any other consistently estimated cross-country findings. Given the policy content of the elasticities with respect to unemployment, and subject to further corroboration of at least some of the individual country findings, suggestive lines of future inquiry might include investigating whether variation in the 'indicative' estimates is associated with the generosity of a country’s unemployment benefit system or with the stringency of its employment protection
ACKNOWLEDGMENTS

We are indebted to two anonymous referees for their helpful comments. Partial financial support from the Fundação para a Ciência e a Tecnologia is also gratefully acknowledged. The usual disclaimers apply.
Notes

1 Lancaster and Chesher (1983) interpret answers to the question ‘How much take-home pay would you expect to earn in a new job?’ as revealing this magnitude.

2 The actual data cover the interval January 1993 through December 1998 as the questions in each survey pertaining to labour market experience relate to the preceding calendar year. The ECHP covers a very wide range of topics apart from the individual’s economic activity and income, including health, education, housing, pensions and insurance, and social relations (see, for example, EUROSTAT, 1999).

3 Information on the reservation wage is unavailable for the Netherlands in 1994 and 1995.

4 This reservation wage variable was duly deflated by the relevant national consumer price index, as were all nominal arguments.

5 The schooling categories identify basic, secondary, and tertiary education. The five age groups correspond to the following intervals: 17-25 years; 26-35 years; 36-45 years; 46-55 years; and 56-65 years.

6 Because the unemployment benefits are highly concentrated for Ireland and the U.K. we introduce a second vertical scale in the graphs of the densities for these two countries.

7 Simple sample averages are provided in Appendix Tables 1 and 2.

8 The bootstrap standard deviations were obtained from 200 replications. Using the more conventional standard error of the mean formulae, gives identical results.

9 However, other results for the Netherlands (cited in Cahuc and Zylberberg, 2004, p. 157) are less conformable.
References

Table 1: The Elasticity Measures and Their Solution

<table>
<thead>
<tr>
<th>Elasticity</th>
<th>Notation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservation Wage w.r.t. the Benefit Level</td>
<td>$\eta_{\xi,b}$</td>
<td>$\frac{b_x-\xi}{\xi x - b}$</td>
</tr>
<tr>
<td>Reservation Wage w.r.t. the Rate of Job Offers</td>
<td>$\eta_{\xi,\lambda}$</td>
<td>$\frac{\xi-b}{\xi} \frac{x-\xi}{x-b}$</td>
</tr>
<tr>
<td>Reemployment Probability w.r.t. the Benefit Level, Pareto Assumption</td>
<td>$\eta_{b,b}$</td>
<td>$-\frac{b}{\sigma_x} \frac{x-\xi}{x-b}$</td>
</tr>
<tr>
<td>Reemployment Probability w.r.t. the Benefit Level, Exponential Assumption</td>
<td>$\eta_{b,b}$</td>
<td>$-\frac{b}{x-b}$</td>
</tr>
<tr>
<td>Reemployment Probability w.r.t the Rate of Job Offers, Pareto Assumption</td>
<td>$\eta_{b,\lambda}$</td>
<td>$1 - \frac{\xi-b}{\sigma_x} \frac{x-\xi}{x-b}$</td>
</tr>
<tr>
<td>Reemployment Probability w.r.t the Rate of Job Offers, Exponential Assumption</td>
<td>$\eta_{b,\lambda}$</td>
<td>$1 - \frac{\xi-b}{x-b}$</td>
</tr>
</tbody>
</table>

Note: The parameter σ is obtained from $\sigma = \frac{4}{v^2}$.
<table>
<thead>
<tr>
<th>Country/Elasticity</th>
<th>Germany</th>
<th>Denmark</th>
<th>Netherlands</th>
<th>Belgium</th>
<th>France</th>
<th>U.K.</th>
<th>Ireland</th>
<th>Italy</th>
<th>Greece</th>
<th>Spain</th>
<th>Portugal</th>
<th>Austria</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) No sample restrictions</td>
<td>0.271</td>
<td>0.416</td>
<td>0.618</td>
<td>0.186</td>
<td>0.247</td>
<td>0.194</td>
<td>0.166</td>
<td>0.194</td>
<td>0.166</td>
<td>0.194</td>
<td>0.166</td>
<td>0.194</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.014)</td>
<td>(0.019)</td>
<td>(0.010)</td>
<td>(0.007)</td>
<td>(0.017)</td>
<td>(0.020)</td>
<td>(0.016)</td>
<td>(0.007)</td>
<td>(0.013)</td>
<td>(0.013)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>(\eta), (b)</td>
<td>0.168</td>
<td>0.094</td>
<td>0.097</td>
<td>0.130</td>
<td>0.180</td>
<td>0.225</td>
<td>0.188</td>
<td>0.114</td>
<td>0.156</td>
<td>0.128</td>
<td>0.127</td>
<td>0.149</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.006)</td>
<td>(0.002)</td>
<td>(0.005)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Pareto distribution</td>
<td>-0.994</td>
<td>-2.000</td>
<td>-1.602</td>
<td>-0.835</td>
<td>0.000</td>
<td>-0.868</td>
<td>-0.531</td>
<td>-0.838</td>
<td>-0.925</td>
<td>-0.645</td>
<td>-1.455</td>
<td>-1.448</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.03)</td>
<td>(0.131)</td>
<td>(0.048)</td>
<td>(0.048)</td>
<td>(0.022)</td>
<td>(0.014)</td>
<td>(0.018)</td>
<td>(0.078)</td>
<td>(0.017)</td>
<td>(0.013)</td>
<td>(0.070)</td>
</tr>
<tr>
<td>(\eta), (\lambda)</td>
<td>0.278</td>
<td>0.416</td>
<td>0.619</td>
<td>0.174</td>
<td>0.248</td>
<td>0.195</td>
<td>0.203</td>
<td>0.141</td>
<td>0.111</td>
<td>0.338</td>
<td>0.326</td>
<td>0.307</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.009)</td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.026)</td>
<td>(0.002)</td>
<td>(0.009)</td>
<td>(0.006)</td>
<td>(0.012)</td>
<td>(0.011)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Exponential distribution</td>
<td>-0.670</td>
<td>-1.500</td>
<td>-0.844</td>
<td>-0.579</td>
<td>0.540</td>
<td>-0.284</td>
<td>-0.600</td>
<td>-0.715</td>
<td>-0.504</td>
<td>-1.063</td>
<td>-1.089</td>
<td>-0.910</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.055)</td>
<td>(0.074)</td>
<td>(0.026)</td>
<td>(0.02)</td>
<td>(0.007)</td>
<td>(0.008)</td>
<td>(0.079)</td>
<td>(0.023)</td>
<td>(0.029)</td>
<td>(0.045)</td>
<td>(0.046)</td>
</tr>
<tr>
<td>(\eta), (\lambda)</td>
<td>0.492</td>
<td>0.541</td>
<td>0.777</td>
<td>0.349</td>
<td>0.493</td>
<td>0.534</td>
<td>0.439</td>
<td>0.291</td>
<td>0.277</td>
<td>0.511</td>
<td>0.480</td>
<td>0.503</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.015)</td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.024)</td>
<td>(0.027)</td>
<td>(0.002)</td>
<td>(0.014)</td>
<td>(0.013)</td>
<td>(0.017)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>n</td>
<td>941</td>
<td>659</td>
<td>156</td>
<td>684</td>
<td>1675</td>
<td>398</td>
<td>260</td>
<td>193</td>
<td>283</td>
<td>1055</td>
<td>420</td>
<td>177</td>
</tr>
<tr>
<td>(b) Restriction: reservation wage > unemployment benefits</td>
<td>0.250</td>
<td>0.328</td>
<td>0.427</td>
<td>0.163</td>
<td>0.231</td>
<td>0.150</td>
<td>0.157</td>
<td>0.157</td>
<td>0.17</td>
<td>0.298</td>
<td>0.390</td>
<td>0.274</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.013)</td>
<td>(0.013)</td>
<td>(0.011)</td>
<td>(0.005)</td>
<td>(0.015)</td>
<td>(0.013)</td>
<td>(0.015)</td>
<td>(0.008)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>(\eta), (\lambda)</td>
<td>0.180</td>
<td>0.109</td>
<td>0.172</td>
<td>0.141</td>
<td>0.188</td>
<td>0.268</td>
<td>0.192</td>
<td>0.117</td>
<td>0.156</td>
<td>0.338</td>
<td>0.335</td>
<td>0.155</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.014)</td>
<td>(0.005)</td>
<td>(0.003)</td>
<td>(0.009)</td>
<td>(0.004)</td>
<td>(0.009)</td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Pareto distribution</td>
<td>-0.961</td>
<td>-1.839</td>
<td>-1.258</td>
<td>-0.787</td>
<td>0.824</td>
<td>-0.426</td>
<td>-0.826</td>
<td>-0.993</td>
<td>-0.645</td>
<td>-1.355</td>
<td>-1.426</td>
<td>-1.203</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.072)</td>
<td>(0.127)</td>
<td>(0.043)</td>
<td>(0.014)</td>
<td>(0.016)</td>
<td>(0.044)</td>
<td>(0.071)</td>
<td>(0.017)</td>
<td>(0.016)</td>
<td>(0.044)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>(\eta), (\lambda)</td>
<td>0.285</td>
<td>0.333</td>
<td>0.431</td>
<td>0.233</td>
<td>0.154</td>
<td>0.159</td>
<td>0.164</td>
<td>0.111</td>
<td>0.300</td>
<td>0.313</td>
<td>0.277</td>
<td>0.277</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.011)</td>
<td>(0.014)</td>
<td>(0.008)</td>
<td>(0.006)</td>
<td>(0.009)</td>
<td>(0.019)</td>
<td>(0.019)</td>
<td>(0.007)</td>
<td>(0.009)</td>
<td>(0.013)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Exponential distribution</td>
<td>-0.645</td>
<td>-1.429</td>
<td>-0.721</td>
<td>-0.359</td>
<td>0.561</td>
<td>-0.266</td>
<td>-0.577</td>
<td>-0.788</td>
<td>-0.599</td>
<td>-0.995</td>
<td>-1.066</td>
<td>-0.861</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.047)</td>
<td>(0.042)</td>
<td>(0.025)</td>
<td>(0.011)</td>
<td>(0.006)</td>
<td>(0.027)</td>
<td>(0.073)</td>
<td>(0.025)</td>
<td>(0.028)</td>
<td>(0.049)</td>
<td>(0.044)</td>
</tr>
<tr>
<td>(\eta), (\lambda)</td>
<td>0.465</td>
<td>0.473</td>
<td>0.662</td>
<td>0.341</td>
<td>0.473</td>
<td>0.464</td>
<td>0.417</td>
<td>0.316</td>
<td>0.276</td>
<td>0.474</td>
<td>0.474</td>
<td>0.453</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.014)</td>
<td>(0.015)</td>
<td>(0.006)</td>
<td>(0.015)</td>
<td>(0.027)</td>
<td>(0.016)</td>
<td>(0.014)</td>
<td>(0.006)</td>
<td>(0.016)</td>
<td>(0.014)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>n</td>
<td>835</td>
<td>590</td>
<td>107</td>
<td>630</td>
<td>1531</td>
<td>319</td>
<td>250</td>
<td>164</td>
<td>279</td>
<td>942</td>
<td>392</td>
<td>154</td>
</tr>
</tbody>
</table>

Source: European Community Household Panel, 1994-99
Note: Bootstrap standard deviations in parenthesis
Table 3: A Comparison of Results for the United Kingdom

<table>
<thead>
<tr>
<th>Study:</th>
<th>Lancaster and Chesher</th>
<th>Lynch</th>
<th>ECHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta_{\xi,b}$</td>
<td>0.135</td>
<td>0.106</td>
<td>0.237</td>
</tr>
<tr>
<td>$\eta_{\xi,\lambda}$</td>
<td>0.107</td>
<td>0.146</td>
<td>0.251</td>
</tr>
<tr>
<td>$\eta_{\theta,b}$ (Pareto)</td>
<td>-1.030</td>
<td>-0.483</td>
<td>-0.873</td>
</tr>
<tr>
<td>$\eta_{\theta,b}$ (Exponential)</td>
<td>-</td>
<td>-0.559</td>
<td>-0.502</td>
</tr>
<tr>
<td>$\eta_{\theta,\lambda}$ (Pareto)</td>
<td>0.190</td>
<td>0.298</td>
<td>0.399</td>
</tr>
<tr>
<td>$\eta_{\theta,\lambda}$ (Exponential)</td>
<td>-</td>
<td>0.252</td>
<td>0.496</td>
</tr>
</tbody>
</table>
Table 4
MEDIAN BENEFIT AND OFFER PROBABILITY ELASTICITIES OF RESERVATION WAGES AND UNEMPLOYMENT DURATION BY COUNTRY, USING ACTUAL ACCEPTED WAGES, 1993-98

<table>
<thead>
<tr>
<th>Country/Elasticity</th>
<th>Germany</th>
<th>Denmark</th>
<th>Netherlands</th>
<th>Belgium</th>
<th>France</th>
<th>U.K.</th>
<th>Ireland</th>
<th>Italy</th>
<th>Greece</th>
<th>Spain</th>
<th>Portugal</th>
<th>Austria</th>
</tr>
</thead>
<tbody>
<tr>
<td>ηξ, b</td>
<td>0.179</td>
<td>0.327</td>
<td>0.213</td>
<td>0.091</td>
<td>0.156</td>
<td>0.212</td>
<td>0.160</td>
<td>0.100</td>
<td>0.148</td>
<td>0.284</td>
<td>0.237</td>
<td>0.327</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.030)</td>
<td>(0.020)</td>
<td>(0.022)</td>
<td>(0.036)</td>
<td>(0.035)</td>
<td>(0.028)</td>
<td>(0.026)</td>
<td>(0.029)</td>
<td>(0.047)</td>
<td>(0.035)</td>
<td></td>
</tr>
<tr>
<td>ηξ, λ</td>
<td>0.082</td>
<td>0.066</td>
<td>0.046</td>
<td>0.066</td>
<td>0.068</td>
<td>0.106</td>
<td>0.125</td>
<td>0.079</td>
<td>0.200</td>
<td>0.059</td>
<td>0.041</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.005)</td>
<td>(0.018)</td>
<td>(0.010)</td>
<td>(0.009)</td>
<td>(0.024)</td>
<td>(0.018)</td>
<td>(0.015)</td>
<td>(0.019)</td>
<td>(0.007)</td>
<td>(0.013)</td>
<td></td>
</tr>
<tr>
<td>Pareto distribution</td>
<td></td>
</tr>
<tr>
<td>ηα, b</td>
<td>-1.321</td>
<td>-2.636</td>
<td>-1.614</td>
<td>-0.991</td>
<td>-1.225</td>
<td>-0.617</td>
<td>-1.042</td>
<td>-1.067</td>
<td>-0.750</td>
<td>-1.912</td>
<td>-2.190</td>
<td>-2.027</td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.214)</td>
<td>(0.427)</td>
<td>(0.168)</td>
<td>(0.277)</td>
<td>(0.044)</td>
<td>(0.166)</td>
<td>(0.156)</td>
<td>(0.027)</td>
<td>(0.126)</td>
<td>(0.275)</td>
<td>(0.209)</td>
</tr>
<tr>
<td>ηα, λ</td>
<td>0.201</td>
<td>0.393</td>
<td>0.331</td>
<td>0.135</td>
<td>0.207</td>
<td>0.212</td>
<td>0.166</td>
<td>0.147</td>
<td>0.158</td>
<td>0.375</td>
<td>0.318</td>
<td>0.346</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.032)</td>
<td>(0.091)</td>
<td>(0.013)</td>
<td>(0.021)</td>
<td>(0.038)</td>
<td>(0.037)</td>
<td>(0.017)</td>
<td>(0.001)</td>
<td>(0.028)</td>
<td>(0.036)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Exponential distribution</td>
<td></td>
</tr>
<tr>
<td>ηβ, b</td>
<td>-1.143</td>
<td>-2.214</td>
<td>-0.945</td>
<td>-0.775</td>
<td>-1.062</td>
<td>-0.380</td>
<td>-0.795</td>
<td>-0.565</td>
<td>-0.556</td>
<td>-1.600</td>
<td>-1.689</td>
<td>-1.500</td>
</tr>
<tr>
<td></td>
<td>(0.075)</td>
<td>(0.166)</td>
<td>(0.216)</td>
<td>(0.110)</td>
<td>(0.254)</td>
<td>(0.024)</td>
<td>(0.143)</td>
<td>(0.132)</td>
<td>(0.053)</td>
<td>(0.098)</td>
<td>(0.248)</td>
<td>(0.184)</td>
</tr>
<tr>
<td>ηβ, λ</td>
<td>0.278</td>
<td>0.429</td>
<td>0.316</td>
<td>0.218</td>
<td>0.303</td>
<td>0.515</td>
<td>0.342</td>
<td>0.200</td>
<td>0.364</td>
<td>0.455</td>
<td>0.374</td>
<td>0.510</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.033)</td>
<td>(0.100)</td>
<td>(0.031)</td>
<td>(0.030)</td>
<td>(0.044)</td>
<td>(0.047)</td>
<td>(0.021)</td>
<td>(0.044)</td>
<td>(0.026)</td>
<td>(0.045)</td>
<td>(0.061)</td>
</tr>
<tr>
<td>n</td>
<td>129</td>
<td>115</td>
<td>24</td>
<td>60</td>
<td>120</td>
<td>59</td>
<td>45</td>
<td>27</td>
<td>32</td>
<td>153</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>

Restriction: reservation wage > unemployment benefits and reservation wages < accepted wages

Source:
European Community Household Panel, 1994-95
Note:
Bootstrap standard deviations in parenthesis
Source: European Community Household Panel, 1994-1999

Figure 1: Unemployment benefits, reservation wages and expected wages
Source: European Community Household Panel, 1994-1999

Figure 1 (continued): Unemployment benefits, reservation wages and expected wages
Source: European Community Household Panel, 1994-1999

Figure 1 (continued): Unemployment benefits, reservation wages and expected wages
Appendix Table 1
AVERAGE BENEFIT AND OFFER PROBABILITY ELASTICITIES OF RESERVATION WAGES AND UNEMPLOYMENT DURATION BY COUNTRY, 1993-98

<table>
<thead>
<tr>
<th>Country/Elasticity</th>
<th>Germany</th>
<th>Denmark</th>
<th>Netherlands</th>
<th>Belgium</th>
<th>France</th>
<th>U.K.</th>
<th>Ireland</th>
<th>Italy</th>
<th>Greece</th>
<th>Spain</th>
<th>Portugal</th>
<th>Austria</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) No sample restrictions</td>
<td></td>
</tr>
<tr>
<td>(\eta_\xi), (b)</td>
<td>0.420</td>
<td>0.657</td>
<td>1.030</td>
<td>0.299</td>
<td>0.402</td>
<td>0.612</td>
<td>0.297</td>
<td>0.189</td>
<td>0.140</td>
<td>0.499</td>
<td>0.383</td>
<td>0.340</td>
</tr>
<tr>
<td>(0.024)</td>
<td>(0.016)</td>
<td>(0.014)</td>
<td>(0.021)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(0.015)</td>
<td>(0.046)</td>
<td>(0.007)</td>
<td>(0.019)</td>
<td>(0.017)</td>
<td>(0.038)</td>
<td></td>
</tr>
<tr>
<td>(\eta_\lambda)</td>
<td>0.134</td>
<td>0.008</td>
<td>0.100</td>
<td>0.115</td>
<td>0.151</td>
<td>0.229</td>
<td>0.173</td>
<td>0.128</td>
<td>0.163</td>
<td>0.095</td>
<td>0.125</td>
<td>0.296</td>
</tr>
<tr>
<td>(0.009)</td>
<td>(0.018)</td>
<td>(0.016)</td>
<td>(0.015)</td>
<td>(0.008)</td>
<td>(0.007)</td>
<td>(0.004)</td>
<td>(0.01)</td>
<td>(0.005)</td>
<td>(0.007)</td>
<td>(0.004)</td>
<td>(0.007)</td>
<td></td>
</tr>
<tr>
<td>Pareto distribution</td>
<td></td>
</tr>
<tr>
<td>(\eta_\xi), (b)</td>
<td>-1.395</td>
<td>-2.295</td>
<td>-2.111</td>
<td>-1.241</td>
<td>-1.272</td>
<td>-1.220</td>
<td>-0.920</td>
<td>-0.922</td>
<td>-0.714</td>
<td>-1.791</td>
<td>-1.772</td>
<td>-1.342</td>
</tr>
<tr>
<td>(0.089)</td>
<td>(0.120)</td>
<td>(0.103)</td>
<td>(0.083)</td>
<td>(0.042)</td>
<td>(0.097)</td>
<td>(0.106)</td>
<td>(0.215)</td>
<td>(0.012)</td>
<td>(0.067)</td>
<td>(0.064)</td>
<td>(0.190)</td>
<td></td>
</tr>
<tr>
<td>(\eta_\lambda)</td>
<td>0.556</td>
<td>0.973</td>
<td>1.205</td>
<td>0.520</td>
<td>0.523</td>
<td>0.954</td>
<td>0.462</td>
<td>0.374</td>
<td>0.173</td>
<td>0.638</td>
<td>0.432</td>
<td>0.697</td>
</tr>
<tr>
<td>(0.031)</td>
<td>(0.073)</td>
<td>(0.146)</td>
<td>(0.044)</td>
<td>(0.031)</td>
<td>(0.018)</td>
<td>(0.016)</td>
<td>(0.052)</td>
<td>(0.022)</td>
<td>(0.025)</td>
<td>(0.020)</td>
<td>(0.078)</td>
<td></td>
</tr>
<tr>
<td>Exponential distribution</td>
<td></td>
</tr>
<tr>
<td>(\eta_\xi), (b)</td>
<td>-0.942</td>
<td>-2.097</td>
<td>-1.605</td>
<td>-0.936</td>
<td>-0.855</td>
<td>-0.358</td>
<td>-0.753</td>
<td>-0.718</td>
<td>-0.547</td>
<td>-1.421</td>
<td>-1.470</td>
<td>-1.092</td>
</tr>
<tr>
<td>(0.016)</td>
<td>(0.000)</td>
<td>(0.251)</td>
<td>(0.048)</td>
<td>(0.022)</td>
<td>(0.012)</td>
<td>(0.18)</td>
<td>(0.197)</td>
<td>(0.013)</td>
<td>(0.049)</td>
<td>(0.060)</td>
<td>(0.066)</td>
<td></td>
</tr>
<tr>
<td>(\eta_\lambda)</td>
<td>0.554</td>
<td>0.658</td>
<td>0.942</td>
<td>0.410</td>
<td>0.549</td>
<td>0.635</td>
<td>0.476</td>
<td>0.320</td>
<td>0.306</td>
<td>0.592</td>
<td>0.506</td>
<td>0.607</td>
</tr>
<tr>
<td>(0.030)</td>
<td>(0.024)</td>
<td>(0.094)</td>
<td>(0.015)</td>
<td>(0.008)</td>
<td>(0.018)</td>
<td>(0.014)</td>
<td>(0.036)</td>
<td>(0.011)</td>
<td>(0.014)</td>
<td>(0.012)</td>
<td>(0.054)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>941</td>
<td>659</td>
<td>156</td>
<td>684</td>
<td>1675</td>
<td>398</td>
<td>260</td>
<td>193</td>
<td>283</td>
<td>1055</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>(b) Restriction: reservation wage > unemployment benefits</td>
<td></td>
</tr>
<tr>
<td>(\eta_\xi), (b)</td>
<td>0.296</td>
<td>0.366</td>
<td>0.464</td>
<td>0.214</td>
<td>0.292</td>
<td>0.237</td>
<td>0.263</td>
<td>0.226</td>
<td>0.156</td>
<td>0.349</td>
<td>0.342</td>
<td>0.311</td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.010)</td>
<td>(0.028)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.005)</td>
<td>(0.012)</td>
<td>(0.007)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.012)</td>
<td>(0.019)</td>
<td></td>
</tr>
<tr>
<td>(\eta_\lambda)</td>
<td>0.183</td>
<td>0.112</td>
<td>0.174</td>
<td>0.151</td>
<td>0.152</td>
<td>0.251</td>
<td>0.182</td>
<td>0.129</td>
<td>0.163</td>
<td>0.541</td>
<td>0.138</td>
<td>0.155</td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.002)</td>
<td>(0.011)</td>
<td>(0.004)</td>
<td>(0.002)</td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.005)</td>
<td></td>
</tr>
<tr>
<td>Pareto distribution</td>
<td></td>
</tr>
<tr>
<td>(\eta_\xi), (b)</td>
<td>-0.981</td>
<td>-1.279</td>
<td>-0.952</td>
<td>-0.887</td>
<td>-0.725</td>
<td>-0.873</td>
<td>-0.815</td>
<td>-0.701</td>
<td>-0.600</td>
<td>-1.254</td>
<td>-1.584</td>
<td>-0.838</td>
</tr>
<tr>
<td>(0.025)</td>
<td>(0.030)</td>
<td>(0.015)</td>
<td>(0.016)</td>
<td>(0.020)</td>
<td>(0.021)</td>
<td>(0.041)</td>
<td>(0.074)</td>
<td>(0.033)</td>
<td>(0.023)</td>
<td>(0.030)</td>
<td>(0.009)</td>
<td></td>
</tr>
<tr>
<td>(\eta_\lambda)</td>
<td>0.398</td>
<td>0.610</td>
<td>0.445</td>
<td>0.374</td>
<td>0.392</td>
<td>0.399</td>
<td>0.434</td>
<td>0.372</td>
<td>0.174</td>
<td>0.493</td>
<td>0.364</td>
<td>0.361</td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.009)</td>
<td>(0.021)</td>
<td>(0.013)</td>
<td>(0.008)</td>
<td>(0.011)</td>
<td>(0.014)</td>
<td>(0.025)</td>
<td>(0.029)</td>
<td>(0.008)</td>
<td>(0.015)</td>
<td>(0.011)</td>
<td></td>
</tr>
<tr>
<td>Exponential distribution</td>
<td></td>
</tr>
<tr>
<td>(\eta_\xi), (b)</td>
<td>-0.785</td>
<td>-0.752</td>
<td>-0.807</td>
<td>-0.880</td>
<td>-0.519</td>
<td>-0.502</td>
<td>-0.681</td>
<td>-0.535</td>
<td>-0.549</td>
<td>-1.160</td>
<td>-1.362</td>
<td>-0.998</td>
</tr>
<tr>
<td>(0.016)</td>
<td>(0.013)</td>
<td>(0.015)</td>
<td>(0.012)</td>
<td>(0.010)</td>
<td>(0.010)</td>
<td>(0.027)</td>
<td>(0.076)</td>
<td>(0.014)</td>
<td>(0.025)</td>
<td>(0.050)</td>
<td>(0.044)</td>
<td></td>
</tr>
<tr>
<td>(\eta_\lambda)</td>
<td>0.470</td>
<td>0.481</td>
<td>0.448</td>
<td>0.369</td>
<td>0.409</td>
<td>0.496</td>
<td>0.451</td>
<td>0.358</td>
<td>0.301</td>
<td>0.494</td>
<td>0.463</td>
<td>0.469</td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.009)</td>
<td>(0.023)</td>
<td>(0.009)</td>
<td>(0.005)</td>
<td>(0.015)</td>
<td>(0.014)</td>
<td>(0.018)</td>
<td>(0.012)</td>
<td>(0.007)</td>
<td>(0.010)</td>
<td>(0.015)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>835</td>
<td>590</td>
<td>107</td>
<td>630</td>
<td>1531</td>
<td>319</td>
<td>250</td>
<td>164</td>
<td>279</td>
<td>942</td>
<td>392</td>
<td>154</td>
</tr>
</tbody>
</table>

Source: European Community Household Panel, 1994-99
Note: Bootstrap standard deviations in parenthesis
Appendix Table 2
Average Benefit and Offer Probability Elasticities of Reservation Wages and Unemployment Duration by Country, Using Actual Accepted Wages, 1993-98

<table>
<thead>
<tr>
<th>Country/Elasticity</th>
<th>Germany</th>
<th>Denmark</th>
<th>Netherlands</th>
<th>Belgium</th>
<th>France</th>
<th>U.K.</th>
<th>Ireland</th>
<th>Italy</th>
<th>Greece</th>
<th>Spain</th>
<th>Portugal</th>
<th>Austria</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_{\xi, b})</td>
<td>(0.237)</td>
<td>(0.385)</td>
<td>(0.385)</td>
<td>(0.139)</td>
<td>(0.230)</td>
<td>(0.227)</td>
<td>(0.227)</td>
<td>(0.156)</td>
<td>(0.187)</td>
<td>(0.349)</td>
<td>(0.348)</td>
<td>(0.240)</td>
</tr>
<tr>
<td>(\eta_{\xi, \lambda})</td>
<td>(0.019)</td>
<td>(0.027)</td>
<td>(0.078)</td>
<td>(0.017)</td>
<td>(0.023)</td>
<td>(0.039)</td>
<td>(0.032)</td>
<td>(0.023)</td>
<td>(0.026)</td>
<td>(0.028)</td>
<td>(0.045)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>(\eta_{\theta, b})</td>
<td>(0.109)</td>
<td>(0.079)</td>
<td>(0.087)</td>
<td>(0.109)</td>
<td>(0.103)</td>
<td>(0.198)</td>
<td>(0.131)</td>
<td>(0.120)</td>
<td>(0.182)</td>
<td>(0.113)</td>
<td>(0.095)</td>
<td>(0.126)</td>
</tr>
<tr>
<td>(\eta_{\theta, \lambda})</td>
<td>(0.008)</td>
<td>(0.005)</td>
<td>(0.015)</td>
<td>(0.009)</td>
<td>(0.008)</td>
<td>(0.020)</td>
<td>(0.014)</td>
<td>(0.015)</td>
<td>(0.016)</td>
<td>(0.007)</td>
<td>(0.012)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Pareto distribution</td>
<td></td>
</tr>
<tr>
<td>(\eta_{\theta, b})</td>
<td>(-1.660)</td>
<td>(-1.828)</td>
<td>(-0.959)</td>
<td>(-1.254)</td>
<td>(-1.006)</td>
<td>(-0.587)</td>
<td>(-1.310)</td>
<td>(-1.229)</td>
<td>(-0.735)</td>
<td>(-2.011)</td>
<td>(-1.709)</td>
<td>(-1.509)</td>
</tr>
<tr>
<td>(\eta_{\theta, \lambda})</td>
<td>(0.090)</td>
<td>(0.172)</td>
<td>(0.350)</td>
<td>(0.160)</td>
<td>(0.275)</td>
<td>(0.054)</td>
<td>(0.163)</td>
<td>(0.159)</td>
<td>(0.043)</td>
<td>(0.115)</td>
<td>(0.281)</td>
<td>(0.189)</td>
</tr>
<tr>
<td>Exponential distribution</td>
<td></td>
</tr>
<tr>
<td>(\eta_{\theta, b})</td>
<td>(-1.328)</td>
<td>(-1.631)</td>
<td>(-1.363)</td>
<td>(-1.013)</td>
<td>(-1.082)</td>
<td>(-0.362)</td>
<td>(-1.051)</td>
<td>(-0.874)</td>
<td>(-0.630)</td>
<td>(-1.736)</td>
<td>(-1.353)</td>
<td>(-1.505)</td>
</tr>
<tr>
<td>(\eta_{\theta, \lambda})</td>
<td>(0.077)</td>
<td>(0.170)</td>
<td>(0.268)</td>
<td>(0.116)</td>
<td>(0.255)</td>
<td>(0.028)</td>
<td>(0.143)</td>
<td>(0.135)</td>
<td>(0.042)</td>
<td>(0.095)</td>
<td>(0.258)</td>
<td>(0.184)</td>
</tr>
<tr>
<td>(\eta_{\theta, \lambda})</td>
<td>(0.254)</td>
<td>(0.337)</td>
<td>(0.436)</td>
<td>(0.364)</td>
<td>(0.258)</td>
<td>(0.378)</td>
<td>(0.364)</td>
<td>(0.258)</td>
<td>(0.378)</td>
<td>(0.364)</td>
<td>(0.258)</td>
<td>(0.378)</td>
</tr>
<tr>
<td>(\eta_{\theta, \lambda})</td>
<td>(0.022)</td>
<td>(0.026)</td>
<td>(0.089)</td>
<td>(0.025)</td>
<td>(0.027)</td>
<td>(0.044)</td>
<td>(0.034)</td>
<td>(0.023)</td>
<td>(0.025)</td>
<td>(0.043)</td>
<td>(0.029)</td>
<td>(0.042)</td>
</tr>
<tr>
<td>(n)</td>
<td>129</td>
<td>115</td>
<td>24</td>
<td>60</td>
<td>120</td>
<td>59</td>
<td>45</td>
<td>27</td>
<td>32</td>
<td>153</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>

Source
European Community Household Panel, 1994-99

Note
Bootstrap standard deviations in parenthesis
WORKING PAPERS

2000

1/00 UNEMPLOYMENT DURATION: COMPETING AND DEFECTIVE RISKS
 — John T. Addison, Pedro Portugal

2/00 THE ESTIMATION OF RISK PREMIUM IMPLICIT IN OIL PRICES
 — Jorge Barros Luís

3/00 EVALUATING CORE INFLATION INDICATORS
 — Carlos Robalo Marques, Pedro Duarte Neves, Luís Morais Sarmento

4/00 LABOR MARKETS AND KALEIDOSCOPIC COMPARATIVE ADVANTAGE
 — Daniel A. Traça

5/00 WHY SHOULD CENTRAL BANKS AVOID THE USE OF THE UNDERLYING INFLATION INDICATOR?
 — Carlos Robalo Marques, Pedro Duarte Neves, Afonso Gonçalves da Silva

6/00 USING THE ASYMMETRIC TRIMMED MEAN AS A CORE INFLATION INDICATOR
 — Carlos Robalo Marques, João Machado Mota

2001

1/01 THE SURVIVAL OF NEW DOMESTIC AND FOREIGN OWNED FIRMS
 — José Mata, Pedro Portugal

2/01 GAPS AND TRIANGLES
 — Bernardino Adão, Isabel Correia, Pedro Teles

3/01 A NEW REPRESENTATION FOR THE FOREIGN CURRENCY RISK PREMIUM
 — Bernardino Adão, Fátima Silva

4/01 ENTRY MISTAKES WITH STRATEGIC PRICING
 — Bernardino Adão

5/01 FINANCING IN THE EUROSYSTEM: FIXED VERSUS VARIABLE RATE TENDERS
 — Margarida Catalão-Lopes

6/01 AGGREGATION, PERSISTENCE AND VOLATILITY IN A MACROMODEL
 — Karim Abadir, Gabriel Talmain

7/01 SOME FACTS ABOUT THE CYCLICAL CONVERGENCE IN THE EURO ZONE
 — Frederico Belo

8/01 TENURE, BUSINESS CYCLE AND THE WAGE-SETTING PROCESS
 — Leandro Arozamena, Mário Centeno

9/01 USING THE FIRST PRINCIPAL COMPONENT AS A CORE INFLATION INDICATOR
 — José Ferreira Machado, Carlos Robalo Marques, Pedro Duarte Neves, Afonso Gonçalves da Silva

10/01 IDENTIFICATION WITH AVERAGED DATA AND IMPLICATIONS FOR HEDONIC REGRESSION STUDIES
 — José A.F. Machado, João M.C. Santos Silva
2002

1/02 QUANTILE REGRESSION ANALYSIS OF TRANSITION DATA
— José A.F. Machado, Pedro Portugal

2/02 SHOULD WE DISTINGUISH BETWEEN STATIC AND DYNAMIC LONG RUN EQUILIBRIUM IN ERROR CORRECTION MODELS?
— Susana Botas, Carlos Robalo Marques

3/02 MODELLING TAYLOR RULE UNCERTAINTY
— Fernando Martins, José A. F. Machado, Paulo Soares Esteves

4/02 PATTERNS OF ENTRY, POST-ENTRY GROWTH AND SURVIVAL: A COMPARISON BETWEEN DOMESTIC AND FOREIGN OWNED FIRMS
— José Mata, Pedro Portugal

— João Valle e Azevedo

6/02 AN “ART”, NOT A “SCIENCE”? CENTRAL BANK MANAGEMENT IN PORTUGAL UNDER THE GOLD STANDARD, 1854 -1891
— Jaime Reis

7/02 MERGE OR CONCENTRATE? SOME INSIGHTS FOR ANTITRUST POLICY
— Margarida Catalão-Lopes

8/02 DISENTANGLING THE MINIMUM WAGE PUZZLE: ANALYSIS OF WORKER ACCESSIONS AND SEPARATIONS FROM A LONGITUDINAL MATCHED EMPLOYER-EMPLOYEE DATA SET
— Pedro Portugal, Ana Rute Cardoso

9/02 THE MATCH QUALITY GAINS FROM UNEMPLOYMENT INSURANCE
— Mário Centeno

10/02 HEDONIC PRICES INDEXES FOR NEW PASSENGER CARS IN PORTUGAL (1997-2001)
— Hugo J. Reis, J.M.C. Santos Silva

11/02 THE ANALYSIS OF SEASONAL RETURN ANOMALIES IN THE PORTUGUESE STOCK MARKET
— Miguel Balbina, Nuno C. Martins

12/02 DOES MONEY GRANGER CAUSE INFLATION IN THE EURO AREA?
— Carlos Robalo Marques, Joaquim Pina

13/02 INSTITUTIONS AND ECONOMIC DEVELOPMENT: HOW STRONG IS THE RELATION?
— Tiago V.de V. Cavalcanti, Álvaro A. Novo

2003

1/03 FOUNDING CONDITIONS AND THE SURVIVAL OF NEW FIRMS
— P.A. Geroski, José Mata, Pedro Portugal

2/03 THE TIMING AND PROBABILITY OF FDI: AN APPLICATION TO THE UNITED STATES MULTINATIONAL ENTERPRISES
— José Brandão de Brito, Felipa de Mello Sampayo

3/03 OPTIMAL FISCAL AND MONETARY POLICY: EQUIVALENCE RESULTS
— Isabel Correia, Juan Pablo Nicolini, Pedro Teles
FORECASTING EURO AREA AGGREGATES WITH BAYESIAN VAR AND VECM MODELS
— Ricardo Mourinho Félix, Luís C. Nunes

CONTAGIOUS CURRENCY CRISIS: A SPATIAL PROBIT APPROACH
— Álvaro Novo

THE DISTRIBUTION OF LIQUIDITY IN A MONETARY UNION WITH DIFFERENT PORTFOLIO RIGIDITIES
— Nuno Alves

COINCIDENT AND LEADING INDICATORS FOR THE EURO AREA: A FREQUENCY BAND APPROACH
— António Rua, Luís C. Nunes

WHY DO FIRMS USE FIXED-TERM CONTRACTS?
— José Varejão, Pedro Portugal

NONLINEARITIES OVER THE BUSINESS CYCLE: AN APPLICATION OF THE SMOOTH TRANSITION AUTOREGRESSIVE MODEL TO CHARACTERIZE GDP DYNAMICS FOR THE EURO-AREA AND PORTUGAL
— Francisco Craveiro Dias

WAGES AND THE RISK OF DISPLACEMENT
— Anabela Carneiro, Pedro Portugal

SIX WAYS TO LEAVE UNEMPLOYMENT
— Pedro Portugal, John T. Addison

EMPLOYMENT DYNAMICS AND THE STRUCTURE OF LABOR ADJUSTMENT COSTS
— José Varejão, Pedro Portugal

THE MONETARY TRANSMISSION MECHANISM: IS IT RELEVANT FOR POLICY?
— Bernardino Adão, Isabel Correia, Pedro Teles

THE IMPACT OF INTEREST-RATE SUBSIDIES ON LONG-TERM HOUSEHOLD DEBT: EVIDENCE FROM A LARGE PROGRAM
— Nuno C. Martins, Ernesto Villanueva

THE CAREERS OF TOP MANAGERS AND FIRM OPENNESS: INTERNAL VERSUS EXTERNAL LABOUR MARKETS
— Francisco Lima, Mário Centeno

TRACKING GROWTH AND THE BUSINESS CYCLE: A STOCHASTIC COMMON CYCLE MODEL FOR THE EURO AREA
— João Valle e Azevedo, Siem Jan Koopman, António Rua

CORRUPTION, CREDIT MARKET IMPERFECTIONS, AND ECONOMIC DEVELOPMENT
— António R. Antunes, Tiago V. Cavalcanti

BARGAINED WAGES, WAGE DRIFT AND THE DESIGN OF THE WAGE SETTING SYSTEM
— Ana Rute Cardoso, Pedro Portugal

UNCERTAINTY AND RISK ANALYSIS OF MACROECONOMIC FORECASTS: FAN CHARTS REVISITED
— Álvaro Novo, Maximiano Pinheiro

2004

HOW DOES THE UNEMPLOYMENT INSURANCE SYSTEM SHAPE THE TIME PROFILE OF JOBLESS DURATION?
— John T. Addison, Pedro Portugal
| 2/04 | REAL EXCHANGE RATE AND HUMAN CAPITAL IN THE EMPIRICS OF ECONOMIC GROWTH
— Delfim Gomes Neto |
| 3/04 | ON THE USE OF THE FIRST PRINCIPAL COMPONENT AS A CORE INFLATION INDICATOR
— José Ramos Maria |
| 4/04 | OIL PRICES ASSUMPTIONS IN MACROECONOMIC FORECASTS: SHOULD WE FOLLOW FUTURES MARKET EXPECTATIONS?
— Carlos Coimbra, Paulo Soares Esteves |
| 5/04 | STYLISTED FEATURES OF PRICE SETTING BEHAVIOUR IN PORTUGAL: 1992-2001
— Mónica Dias, Daniel Dias, Pedro D. Neves |
| 6/04 | A FLEXIBLE VIEW ON PRICES
— Nuno Alves |
| 7/04 | ON THE FISHER-KONIECZNY INDEX OF PRICE CHANGES SYNCHRONIZATION
— D.A. Dias, C. Robalo Marques, P.D. Neves, J.M.C. Santos Silva |
| 8/04 | INFLATION PERSISTENCE: FACTS OR ARTEFACTS?
— Carlos Robalo Marques |
| 9/04 | WORKERS’ FLOWS AND REAL WAGE CYCLICALITY
— Anabela Carneiro, Pedro Portugal |
| 10/04 | MATCHING WORKERS TO JOBS IN THE FAST LANE: THE OPERATION OF FIXED-TERM CONTRACTS
— José Varejão, Pedro Portugal |
| 11/04 | THE LOCATIONAL DETERMINANTS OF THE U.S. MULTINATIONALS ACTIVITIES
— José Brandão de Brito, Felipa Mello Sampayo |
| 12/04 | KEY ELASTICITIES IN JOB SEARCH THEORY: INTERNATIONAL EVIDENCE
— John T. Addison, Mário Centeno, Pedro Portugal |
| 13/04 | RESERVATION WAGES, SEARCH DURATION AND ACCEPTED WAGES IN EUROPE
— John T. Addison, Mário Centeno, Pedro Portugal |
| 14/04 | THE MONETARY TRANSMISSION IN THE US AND THE EURO AREA: COMMON FEATURES AND COMMON FRICTIONS
— Nuno Alves |
| 15/04 | NOMINAL WAGE INERTIA IN GENERAL EQUILIBRIUM MODELS
— Nuno Alves |
| 16/04 | MONETARY POLICY IN A CURRENCY UNION WITH NATIONAL PRICE ASYMMETRIES
— Sandra Gomes |
| 17/04 | NEOCLASSICAL INVESTMENT WITH MORAL HAZARD
— João Ejarque |
| 18/04 | MONETARY POLICY WITH STATE CONTINGENT INTEREST RATES
— Bernardino Adão, Isabel Correia, Pedro Teles |
| 19/04 | MONETARY POLICY WITH SINGLE INSTRUMENT FEEDBACK RULES
— Bernardino Adão, Isabel Correia, Pedro Teles |
| 20/04 | ACCOUNTING FOR THE HIDDEN ECONOMY: BARRIERS TO LEGALITY AND LEGAL FAILURES
— António R. Antunes, Tiago V. Cavalcanti |
2005

1/05 SEAM: A SMALL-SCALE EURO AREA MODEL WITH FORWARD-LOOKING ELEMENTS
— José Brandão de Brito, Rita Duarte

2/05 FORECASTING INFLATION THROUGH A BOTTOM-UP APPROACH: THE PORTUGUESE CASE
— Cláudia Duarte, António Rua

3/05 USING MEAN REVERSION AS A MEASURE OF PERSISTENCE
— Daniel Dias, Carlos Robalo Marques

4/05 HOUSEHOLD WEALTH IN PORTUGAL: 1980-2004
— Fátima Cardoso, Vanda Geraldes da Cunha

5/05 ANALYSIS OF DELINQUENT FIRMS USING MULTI-STATE TRANSITIONS
— António Antunes

6/05 PRICE SETTING IN THE AREA: SOME STYLIZED FACTS FROM INDIVIDUAL CONSUMER PRICE DATA
— Emmanuel Dhyne, Luis J. Álvarez, Hervé Le Bihan, Giovanni Veronese, Daniel Dias, Johannes Hoffmann, Nicole Jonker, Patrick Lünnemann, Fabio Rumler, Jouko Vilmunen

7/05 INTERMEDIATION COSTS, INVESTOR PROTECTION AND ECONOMIC DEVELOPMENT
— António Antunes, Tiago Cavalcanti, Anne Villamil

8/05 TIME OR STATE DEPENDENT PRICE SETTING RULES? EVIDENCE FROM PORTUGUESE MICRO DATA
— Daniel Dias, Carlos Robalo Marques, João Santos Silva

9/05 BUSINESS CYCLE AT A SECTORAL LEVEL: THE PORTUGUESE CASE
— Hugo Reis

10/05 THE PRICING BEHAVIOUR OF FIRMS IN THE EURO AREA: NEW SURVEY EVIDENCE

11/05 CONSUMPTION TAXES AND REDISTRIBUTION
— Isabel Correia

12/05 UNIQUE EQUILIBRIUM WITH SINGLE MONETARY INSTRUMENT RULES
— Bernardino Adão, Isabel Correia, Pedro Teles

13/05 A MACROECONOMIC STRUCTURAL MODEL FOR THE PORTUGUESE ECONOMY
— Ricardo Mourinho Félix

14/05 THE EFFECTS OF A GOVERNMENT EXPENDITURES SHOCK
— Bernardino Adão, José Brandão de Brito

15/05 MARKET INTEGRATION IN THE GOLDEN PERIPHERY – THE LISBON/LONDON EXCHANGE, 1854-1891
— Rui Pedro Esteves, Jaime Reis, Fabiano Ferramosca

2006

1/06 THE EFFECTS OF A TECHNOLOGY SHOCK IN THE EURO AREA
— Nuno Alves, José Brandão de Brito, Sandra Gomes, João Sousa

2/02 THE TRANSMISSION OF MONETARY AND TECHNOLOGY SHOCKS IN THE EURO AREA
— Nuno Alves, José Brandão de Brito, Sandra Gomes, João Sousa
3/06 MEASURING THE IMPORTANCE OF THE UNIFORM NONSYNCHRONIZATION HYPOTHESIS
 — Daniel Dias, Carlos Robalo Marques, João Santos Silva

4/06 THE PRICE SETTING BEHAVIOUR OF PORTUGUESE FIRMS EVIDENCE FROM SURVEY DATA
 — Fernando Martins

5/06 STICKY PRICES IN THE EURO AREA: A SUMMARY OF NEW MICRO EVIDENCE

6/06 NOMINAL DEBT AS A BURDEN ON MONETARY POLICY
 — Javier Díaz-Giménez, Giorgia Giovannetti, Ramon Marimon, Pedro Teles

7/06 A DISAGGREGATED FRAMEWORK FOR THE ANALYSIS OF STRUCTURAL DEVELOPMENTS IN PUBLIC FINANCES
 — Jana Kremer, Cláudia Rodrigues Braz, Teunis Brosens, Geert Langenus, Sandro Momigliano, Mikko Spolander

8/06 IDENTIFYING ASSET PRICE BOOMS AND BUSTS WITH QUANTILE REGRESSIONS
 — José A. F. Machado, João Sousa

9/06 EXCESS BURDEN AND THE COST OF INEFFICIENCY IN PUBLIC SERVICES PROVISION
 — António Afonso, Vítor Gaspar

10/06 MARKET POWER, DISMISSAL THREAT AND RENT SHARING: THE ROLE OF INSIDER AND OUTSIDER FORCES IN WAGE BARGAINING
 — Anabela Carneiro, Pedro Portugal

11/06 MEASURING EXPORT COMPETITIVENESS: REVISITING THE EFFECTIVE EXCHANGE RATE WEIGHTS FOR THE EURO AREA COUNTRIES
 — Paulo Soares Esteves, Carolina Reis

12/06 THE IMPACT OF UNEMPLOYMENT INSURANCE GENEROSITY ON MATCH QUALITY DISTRIBUTION
 — Mário Centeno, Alvaro A. Novo

13/06 U.S. UNEMPLOYMENT DURATION: HAS LONG BECOME LONGER OR SHORT BECOME SHORTER?
 — José A.F. Machado, Pedro Portugal e Juliana Guimarães

14/06 EARNINGS LOSSES OF DISPLACED WORKERS: EVIDENCE FROM A MATCHED EMPLOYER-EMPLOYEE DATA SET
 — Anabela Carneiro, Pedro Portugal

15/06 COMPUTING GENERAL EQUILIBRIUM MODELS WITH OCCUPATIONAL CHOICE AND FINANCIAL FRICTIONS
 — António Antunes, Tiago Cavalcanti, Anne Villamil

16/06 ON THE RELEVANCE OF EXCHANGE RATE REGIMES FOR STABILIZATION POLICY
 — Bernardino Adão, Isabel Gareia, Pedro Teles

17/06 AN INPUT-OUTPUT ANALYSIS: LINKAGES VS LEAKAGES
 — Hugo Reis, António Rua

2007

1/07 RELATIVE EXPORT STRUCTURES AND VERTICAL SPECIALIZATION: A SIMPLE CROSS-COUNTRY INDEX
 — João Amador, Sónia Cabral, José Ramos Maria
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/07</td>
<td>THE FORWARD PREMIUM OF EURO INTEREST RATES</td>
<td>Sónia Costa, Ana Beatriz Galvão</td>
</tr>
<tr>
<td>3/07</td>
<td>ADJUSTING TO THE EURO</td>
<td>Gabriel Fagan, Vítor Gaspar</td>
</tr>
<tr>
<td>4/07</td>
<td>SPATIAL AND TEMPORAL AGGREGATION IN THE ESTIMATION OF LABOR DEMAND FUNCTIONS</td>
<td>José Varejão, Pedro Portugal</td>
</tr>
<tr>
<td>5/07</td>
<td>PRICE SETTING IN THE EURO AREA: SOME STYLISED FACTS FROM INDIVIDUAL PRODUCER PRICE DATA</td>
<td>Philip Vermeulen, Daniel Dias, Maarten Dossche, Erwan Gautier, Ignacio Hernando, Roberto Sabbatini, Harald Stahl</td>
</tr>
<tr>
<td>6/07</td>
<td>A STOCHASTIC FRONTIER ANALYSIS OF SECONDARY EDUCATION OUTPUT IN PORTUGAL</td>
<td>Manuel Coutinho Pereira, Sara Moreira</td>
</tr>
<tr>
<td>7/07</td>
<td>CREDIT RISK DRIVERS: EVALUATING THE CONTRIBUTION OF FIRM LEVEL INFORMATION AND OF MACROECONOMIC DYNAMICS</td>
<td>Diana Bonfim</td>
</tr>
<tr>
<td>8/07</td>
<td>CHARACTERISTICS OF THE PORTUGUESE ECONOMIC GROWTH: WHAT HAS BEEN MISSING?</td>
<td>João Amador, Carlos Coimbra</td>
</tr>
<tr>
<td>9/07</td>
<td>TOTAL FACTOR PRODUCTIVITY GROWTH IN THE G7 COUNTRIES: DIFFERENT OR ALIKE?</td>
<td>João Amador, Carlos Coimbra</td>
</tr>
<tr>
<td>10/07</td>
<td>IDENTIFYING UNEMPLOYMENT INSURANCE INCOME EFFECTS WITH A QUASI-NATURAL EXPERIMENT</td>
<td>Mário Centeno, Alvaro A. Novo</td>
</tr>
<tr>
<td>11/07</td>
<td>HOW DO DIFFERENT ENTITLEMENTS TO UNEMPLOYMENT BENEFITS AFFECT THE TRANSITIONS FROM UNEMPLOYMENT INTO EMPLOYMENT</td>
<td>John T. Addison, Pedro Portugal</td>
</tr>
<tr>
<td>12/07</td>
<td>INTERPRETATION OF THE EFFECTS OF FILTERING INTEGRATED TIME SERIES</td>
<td>João Valle e Azevedo</td>
</tr>
<tr>
<td>13/07</td>
<td>EXACT LIMIT OF THE EXPECTED PERIODOGRAM IN THE UNIT-ROOT CASE</td>
<td>João Valle e Azevedo</td>
</tr>
<tr>
<td>14/07</td>
<td>INTERNATIONAL TRADE PATTERNS OVER THE LAST FOUR DECADES: HOW DOES PORTUGAL COMPARE WITH OTHER COHESION COUNTRIES?</td>
<td>João Amador, Sónia Cabral, José Ramos Maria</td>
</tr>
<tr>
<td>15/07</td>
<td>INFLATION (MIS)PERCEPTIONS IN THE EURO AREA</td>
<td>Francisco Dias, Cláudia Duarte, António Rua</td>
</tr>
<tr>
<td>16/07</td>
<td>LABOR ADJUSTMENT COSTS IN A PANEL OF ESTABLISHMENTS: A STRUCTURAL APPROACH</td>
<td>João Miguel Ejarque, Pedro Portugal</td>
</tr>
<tr>
<td>17/07</td>
<td>A MULTIVARIATE BAND-PASS FILTER</td>
<td>João Valle e Azevedo</td>
</tr>
<tr>
<td>18/07</td>
<td>AN OPEN ECONOMY MODEL OF THE EURO AREA AND THE US</td>
<td>Nuno Alves, Sandra Gomes, João Sousa</td>
</tr>
<tr>
<td>19/07</td>
<td>IS TIME RIPE FOR PRICE LEVEL PATH STABILITY?</td>
<td>Vitor Gaspar, Frank Smets, David Vestin</td>
</tr>
<tr>
<td>Date</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>20/07</td>
<td>IS THE EURO AREA M3 ABANDONING US?</td>
<td>Nuno Alves, Carlos Robalo Marques, João Sousa</td>
</tr>
<tr>
<td>21/07</td>
<td>DO LABOR MARKET POLICIES AFFECT EMPLOYMENT COMPOSITION? LESSONS FROM EUROPEAN COUNTRIES</td>
<td>António Antunes, Mário Centeno</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/08</td>
<td>THE DETERMINANTS OF PORTUGUESE BANKS’ CAPITAL BUFFERS</td>
<td>Miguel Boucinha</td>
</tr>
<tr>
<td>2/08</td>
<td>DO RESERVATION WAGES REALLY DECLINE? SOME INTERNATIONAL EVIDENCE ON THE DETERMINANTS OF RESERVATION WAGES</td>
<td>John T. Addison, Mário Centeno, Pedro Portugal</td>
</tr>
<tr>
<td>3/08</td>
<td>UNEMPLOYMENT BENEFITS AND RESERVATION WAGES: KEY ELASTICITIES FROM A STRIPPED-DOWN JOB SEARCH APPROACH</td>
<td>John T. Addison, Mário Centeno, Pedro Portugal</td>
</tr>
</tbody>
</table>