ON THE FISHER-KONIECZNY INDEX OF PRICE CHANGES SYNCHRONIZATION

D.A Dias, C.Robalo Marques
P.D.Neves, J.M.C.Santos Silva

WP 7-04 June 2004

The analyses, opinions and findings of these papers represent the views of the authors, they are not necessarily those of the Banco de Portugal.

Please address correspondence to Carlos Robalo Marques, Economic Research Department, Banco de Portugal, Av. Almirante Reis nº. 71, 1150-165 Lisboa, Portugal; Tel: 351 213128330; Fax: 351 213107805; email: cmrmarques@bportugal.pt
On the Fisher-Konieczny Index of Price Changes Synchronization

D.A. Dias*, C. Robalo Marques†, P.D. Neves‡, J.M.C. Santos Silva§

Abstract

This note provides a structural interpretation for the index of price changes synchronization proposed by Fisher and Konieczny (2000, Economics Letters, 68, 271-277) and shows that it can be used to test the hypothesis of uniform staggering.

Key words: Homogeneity tests, Price changes synchronization, Uniform staggering

JEL classification codes: C12, D40, L16.

1. INTRODUCTION

Fisher and Konieczny (2000) studied the price setting behaviour of Canadian newspapers using an ad hoc measure of price synchronization, and tested the hypothesis of uniform price staggering using a $\chi^2$ goodness-of-fit test.\(^1\) In this note we provide a structural interpretation for the index of price changes synchronization proposed by Fisher and Konieczny (2000), and show that it can be used to test the hypothesis of uniform staggering.

Let us assume that the researcher is interested in studying the price setting behaviour of $N$ firms selling the same product and that a data set with the $N$ prices in $T+1$ equally

---

* Banco de Portugal. E-mail: dbdias@bportugal.pt.
† Banco de Portugal. E-mail: cmrmarques@bportugal.pt.
‡ Banco de Portugal and Universidade Católica Portuguesa. E-mail: pneves@bportugal.pt.
§ ISEG/Universidade Técnica de Lisboa. E-mail: jmcss@iseg.utl.pt.
\(^1\) Here we focus on price synchronization and staggering across firms. The situation is similar if interest is focused on the intra-firm price setting behaviour.
spaced periods is available.\(^2\) Let \(p_t\) denote the proportion of firms that changed the price of the product between periods \(t-1\) and \(t\). The synchronization index proposed by Fisher and Konieczny (2000, p. 274, Table 2) can be computed as

\[
FK = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (p_t - \bar{p})^2} = \frac{s_{p_t}^2}{\sqrt{\bar{p}(1-\bar{p})}},
\]

where \(\bar{p} = \frac{1}{T} \sum_{t=1}^{T} p_t\) and \(s_{p_t}^2\) are the sample mean and variance of \(p_t\), respectively.

The rational behind this index is as follows. According to Fisher and Konieczny (2000), in case of perfect synchronization, either all firms change their prices, or no price is changed. In this case \(p_t\) is a binary variable and \(s_{p_t}^2 = \bar{p}(1-\bar{p})\), leading to \(FK = 1\). On the other hand, when \(p_t = \bar{p}, \forall t\), the index will be equal to 0. This corresponds to the case of uniform price staggering in which a proportion \(\bar{p}\) of all firms change their prices every period. Therefore, given \(\bar{p}\), \(FK\) measures the proximity of \(s_{p_t}^2\) to its upper bound.

Values of \(FK\) between 0 and 1 are interpreted as measuring the degree of price synchronization. However, from the work of Fisher and Konieczny (2000) it is not possible to give a structural interpretation to values of \(FK\) different from 0 or 1, which makes the index difficult to interpret. For example, apparently, there is no reason to prefer \(FK\) to its square, which is a ratio of variances rather than standard deviations.

2. AN INTERPRETATION OF \(FK\)

Consider a stylized economy were there are two kinds of firms. Firms of type 1 are characterized by uniform staggering, with a fixed proportion of firms adjusting their prices every period (as in Taylor, 1980, p. 4). Let \(\theta_1\) be the proportion of firms of type 1 that adjust their prices in a given period and define \(\alpha\) as the proportion of firms of type 1 in the population. Firms of type 2 have perfect price synchronization as defined by Fisher and Konieczny (2000). Suppose that the probability that firms of type 2

\(^2\)Throughout we assume that the same number of firms is observed in all periods. In case some observations are missing in some periods, only the firms with complete records are used to avoid the potential problems caused by non-random missing values.
change their prices in a given period is equal to $\theta_2$. In this case, the proportion of price changes in a given period is

$$p_t = \alpha \theta_1 + s_t (1 - \alpha)$$

where $s_t$ is an indicator which equals 1 if firms of type 2 change their prices in period $t$, being zero otherwise. Therefore, $s_t$ is a Bernoulli random variable with parameter $\theta_2$. It is easy to see that

$$E (p_t) = \alpha \theta_1 + \theta_2 (1 - \alpha);$$
$$V (p_t) = \theta_2 (1 - \theta_2) (1 - \alpha)^2.$$

Under suitable conditions, $\theta_1$, $\theta_2$ and $\alpha$ can be estimated by the method of moments. If it is further assumed that $\theta_1 = \theta_2 = \theta$, estimation becomes much simpler. In this case, $E (p_t|\theta_1 = \theta_2) = \theta$, $V (p_t|\theta_1 = \theta_2) = \theta (1 - \theta) (1 - \alpha)^2$. Using the notation introduced before, $\bar{p}$ is an estimator for $\theta$ and $\alpha$ can be estimated from the relation

$$V (p_t|\theta_1 = \theta_2) \theta (1 - \theta) = \theta (1 - \theta) (1 - \alpha)^2 = (1 - \alpha^2).$$

The empirical counterpart of this expression is

$$\frac{s_{pt}^2}{\bar{p} (1 - \bar{p})} = FK^2.$$

Therefore, the $FK$ index can be interpreted as a method of moments estimator of $(1 - \alpha)$, the proportion of firms in the economy that have synchronized prices, in a world where there are two types of firms with opposite price setting behaviours and $\theta_1 = \theta_2$. Of course, this estimator is only valid under the restrictive assumptions made to characterize the stylized economy considered here. Consequently, in general, $FK$ will not estimate a structural parameter. Nevertheless, in empirical applications, the $FK$ index may always be interpreted as the proportion of type 2 firms that would be needed in our stylized economy to generate the degree of price changes synchronization found in the real world.
3. TESTING FOR UNIFORM PRICE STAGGERING

Under the assumptions of the previous section, uniform staggering occurs only when \( s_{p_t}^2 = FK = 0 \). This is because type 1 firms are assumed to have a non-random behaviour. If, on the other hand, it is assumed that price changes of type 1 firms are uniformly staggered as in Calvo (1983), \( FK \) cannot be used to estimate \( \alpha \). However, in this context, the \( FK \) index can be used to test the uniform price staggering hypothesis \( H_0 : E(p_t) = \theta, \forall t \iff \alpha = 0 \).

Fisher and Konieczny (2000) used a \( \chi^2 \) goodness-of-fit test to check the validity of the hypothesis that the \( NT\bar{p} \) observed price changes are uniformly distributed over the \( T \) time periods. Although the authors do not present the test statistic used, from their description is possible to conclude it was computed as

\[
Q_{FK} = \sum_{t=1}^{T} \left( \frac{(Np_t - N\bar{p})^2}{N\bar{p}} \right),
\]

which the authors treat as having a \( \chi^2_{(T-1)} \) distribution. However, the validity of the test based on \( Q_{FK} \) hinges on the independence between the observations, but in the present setup the observed price changes for each firm are not independent. Indeed, in this problem, the maximum number of price changes that can be observed in a given period is \( N \), whereas under independence this upper bound would be \( NT\bar{p} \). Therefore, this form of dependence reduces the variance of the data, making the denominator of \( Q_{FK} \) too large. Hence, a test based on \( Q_{FK} \) and on the assumed reference distribution will under-reject the null, leading to a power loss.

In each period, the \( N \) firms decide whether or not they change their prices. The hypothesis of uniform staggering as defined by Calvo (1983) implies that the decisions are independent and that \( E(p_t) = \theta, \forall t \). Therefore, under the null, the total number of price changes in each period is a random variable with binomial distribution with parameters \( N \) and \( \theta \). This hypothesis can be tested using a \( \chi^2 \) homogeneity test for \( H_0 : E(p_t) = \theta, \forall t \). The appropriate test statistic has the form

\[
Q = \sum_{t=1}^{T} \left\{ \left( \frac{(Np_t - N\bar{p})^2}{N\bar{p}} \right) + \left( \frac{N(1-p_t) - N(1-\bar{p}))^2}{N(1-\bar{p})} \right) \right\},
\]
and under the null $Q \sim \chi^2_{T-1}$\footnote{This statistic can be easily generalized to test whether the proportions of price increases and price decreases are constant over the sampling period. However, in this case the test statistic does not have direct relation with the FK index.}. It is easy to see that $Q = (NT) FK^2$, and therefore the FK index can be used to test the hypothesis of uniform staggering as defined by Calvo (1983). Notice that when the null is not rejected that does not imply the acceptance of Calvo’s model since uniform staggering is just one of the model’s characteristics.

**4. AN EXAMPLE**

In order to compute the Portuguese Consumer Price Index, Instituto Nacional de Estatística periodically registers the prices of a large number of products in a representative set of outlets. We illustrate the results presented above using the monthly data on the price of rice, collected by Instituto Nacional de Estatística from January 1998 to January 2001 across the 54 stores with complete records. Since we have data on the prices for 37 months, it is possible to compute $p_t$, the proportion of price changes, for 36 pairs of consecutive observations. Table 1 displays the main results obtained with these data.

| Statistics for the percentage of price changes |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Mean ($\bar{p}$) | Std. Dev. ($s_p$) | $FK$             | $Q$             |
| 0.31790          | 0.08253          | 0.17723          | 61.062          |

On average, about 32% of the prices change every month. In the context of the stylized economy described in section 2, these results correspond to a situation in which about 18% of the stores synchronize their price changes.\footnote{Without imposing the restriction $\theta_1 = \theta_2$, the estimates obtained with the first three moments are as follows (standard errors in parenthesis): $\hat{\theta}_1 = 0.305$ (0.016), $\hat{\theta}_2 = 0.382$ (0.063), $\hat{\alpha} = 0.830$ (0.019).} The p-value associated with $Q_{FK} = (1 - \bar{p}) Q$ and since both tests use the same critical value, it is clear that $Q$ leads to tests with higher power.
the observed value of $Q$ is 0.00413 and, therefore, in this example the hypothesis of uniform price staggering is rejected at any standard significance level. (In this case $Q_{FK} = 41.65048$, to which corresponds a p-value of 0.20381 that would not lead to the rejection of the null.) Taking the usual 5% significance level as a reference, the null of uniform staggering would be rejected for values of $FK$ larger than 0.02635.

5. CONCLUDING REMARKS

The $FK$ index takes uniform staggering as the opposite of perfect synchronization. However, these two situations can coexist: suppose that in a given market all prices are changed every single period. In this case there is uniform staggering with $\bar{p} = 1$ and it can be argued that there is perfect synchronization in the sense that all firms make the same decision in every period. Not surprisingly, in this situation the $FK$ index is indeterminate and $Q$ cannot be computed. Therefore, despite the attractive characteristics of the $FK$ index highlighted here, the quest for appropriate measures of price staggering and synchronization is not over.

ACKNOWLEDGMENTS

João Santos Silva is thankful for the hospitality, working conditions and financial support provided by Banco de Portugal and gratefully acknowledges the partial financial support from Fundação para a Ciência e Tecnologia, program POCTI, partially funded by FEDER.

REFERENCES


*Journal of Monetary Economics*, 12, 383-98.


WORKING PAPERS

2000

1/00 UNEMPLOYMENT DURATION: COMPETING AND DEFECTIVE RISKS
   — John T. Addison, Pedro Portugal

2/00 THE ESTIMATION OF RISK PREMIUM IMPLICIT IN OIL PRICES
   — Jorge Barros Luís

3/00 EVALUATING CORE INFLATION INDICATORS
   — Carlos Robalo Marques, Pedro Duarte Neves, Luís Morais Sarmento

4/00 LABOR MARKETS AND KALEIDOSCOPIC COMPARATIVE ADVANTAGE
   — Daniel A. Traça

5/00 WHY SHOULD CENTRAL BANKS AVOID THE USE OF THE UNDERLYING INFLATION INDICATOR?
   — Carlos Robalo Marques, Pedro Duarte Neves, Afonso Gonçalves da Silva

6/00 USING THE ASYMMETRIC TRIMMED MEAN AS A CORE INFLATION INDICATOR
   — Carlos Robalo Marques, João Machado Mota

2001

1/01 THE SURVIVAL OF NEW DOMESTIC AND FOREIGN OWNED FIRMS
   — José Mata, Pedro Portugal

2/01 GAPS AND TRIANGLES
   — Bernardino Adão, Isabel Correia, Pedro Teles

3/01 A NEW REPRESENTATION FOR THE FOREIGN CURRENCY RISK PREMIUM
   — Bernardino Adão, Fátima Silva

4/01 ENTRY MISTAKES WITH STRATEGIC PRICING
   — Bernardino Adão

5/01 FINANCING IN THE EUROSYSTEM: FIXED VERSUS VARIABLE RATE TENDERS
   — Margarida Catalão-Lopes

6/01 AGGREGATION, PERSISTENCE AND VOLATILITY IN A MACROMODEL
   — Karim Abadir, Gabriel Talmain

7/01 SOME FACTS ABOUT THE CYCLICAL CONVERGENCE IN THE EURO ZONE
   — Frederico Belo

8/01 TENURE, BUSINESS CYCLE AND THE WAGE-SETTING PROCESS
   — Leandro Arozamena, Mário Centeno

9/01 USING THE FIRST PRINCIPAL COMPONENT AS A CORE INFLATION INDICATOR
   José Ferreira Machado, Carlos Robalo Marques, Pedro Duarte Neves, Afonso Gonçalves da Silva

10/01 IDENTIFICATION WITH AVERAGED DATA AND IMPLICATIONS FOR HEDONIC REGRESSION STUDIES
    — José A.F. Machado, João M.C. Santos Silva

2002

1/02 QUANTILE REGRESSION ANALYSIS OF TRANSITION DATA
    — José A.F. Machado, Pedro Portugal

2/02 SHOULD WE DISTINGUISH BETWEEN STATIC AND DYNAMIC LONG RUN EQUILIBRIUM IN ERROR
    CORRECTION MODELS?
    — Susana Betas, Carlos Robalo Marques
3/02 MODELLING TAYLOR RULE UNCERTAINTY
— Fernando Martins, José A. F. Machado, Paulo Soares Esteves

4/02 PATTERNS OF ENTRY, POST-ENTRY GROWTH AND SURVIVAL: A COMPARISON BETWEEN DOMESTIC AND FOREIGN OWNED FIRMS
— José Mata, Pedro Portugal

— João Valle e Azevedo

6/02 AN “ART”, NOT A “SCIENCE”? CENTRAL BANK MANAGEMENT IN PORTUGAL UNDER THE GOLD STANDARD, 1854-1891
— Jaime Reis

7/02 MERGE OR CONCENTRATE? SOME INSIGHTS FOR ANTITRUST POLICY
— Margarida Catalão-Lopes

8/02 DISENTANGLING THE MINIMUM WAGE PUZZLE: ANALYSIS OF WORKER ACCESSIONS AND SEPARATIONS FROM A LONGITUDINAL MATCHED EMPLOYER-EMPLOYEE DATA SET
— Pedro Portugal, Ana Rute Cardoso

9/02 THE MATCH QUALITY GAINS FROM UNEMPLOYMENT INSURANCE
— Mário Centeno

10/02 HEDONIC PRICES INDEXES FOR NEW PASSENGER CARS IN PORTUGAL (1997-2001)
— Hugo J. Reis, J.M.C. Santos Silva

11/02 THE ANALYSIS OF SEASONAL RETURN ANOMALIES IN THE PORTUGUESE STOCK MARKET
— Miguel Balbina, Nuno C. Martins

12/02 DOES MONEY GRANGER CAUSE INFLATION IN THE EURO AREA?
— Carlos Robalo Marques, Joaquim Pina

13/02 INSTITUTIONS AND ECONOMIC DEVELOPMENT: HOW STRONG IS THE RELATION?
— Tiago V.de V. Cavalcanti, Álvaro A. Novo

2003

1/03 FOUNDRING CONDITIONS AND THE SURVIVAL OF NEW FIRMS
— P.A. Geroski, José Mata, Pedro Portugal

2/03 THE TIMING AND PROBABILITY OF FDI:
An Application to the United States Multinational Enterprises
— José Brandão de Brito, Felipa de Mello Sampayo

3/03 OPTIMAL FISCAL AND MONETARY POLICY: EQUIVALENCE RESULTS
— Isabel Correia, Juan Pablo Nicolini, Pedro Teles

4/03 FORECASTING EURO AREA AGGREGATES WITH BAYESIAN VAR AND VECM MODELS
— Ricardo Mourinho Félix, Luís C. Nunes

5/03 CONTAGIOUS CURRENCY CRISES: A SPATIAL PROBIT APPROACH
— Álvaro Novo

6/03 THE DISTRIBUTION OF LIQUIDITY IN A MONETARY UNION WITH DIFFERENT PORTFOLIO RIGIDITIES
— Nuno Alves

7/03 COINCIDENT AND LEADING INDICATORS FOR THE EURO AREA: A FREQUENCY BAND APPROACH
— António Rua, Luís C. Nunes

8/03 WHY DO FIRMS USE FIXED-TERM CONTRACTS?
— José Varejão, Pedro Portugal

9/03 NONLINEARITIES OVER THE BUSINESS CYCLE: AN APPLICATION OF THE SMOOTH TRANSITION AUTOREGRESSIVE MODEL TO CHARACTERIZE GDP DYNAMICS FOR THE EURO-AREA AND PORTUGAL
— Francisco Craveiro Dias
10/03 WAGES AND THE RISK OF DISPLACEMENT
   — Anabela Carneiro, Pedro Portugal

11/03 SIX WAYS TO LEAVE UNEMPLOYMENT
   — Pedro Portugal, John T. Addison

12/03 EMPLOYMENT DYNAMICS AND THE STRUCTURE OF LABOR ADJUSTMENT COSTS
   — José Varejão, Pedro Portugal

13/03 THE MONETARY TRANSMISSION MECHANISM: IS IT RELEVANT FOR POLICY?
   — Bernardino Adão, Isabel Correia, Pedro Teles

14/03 THE IMPACT OF INTEREST-RATE SUBSIDIES ON LONG-TERM HOUSEHOLD DEBT:
   EVIDENCE FROM A LARGE PROGRAM
   — Nuno C. Martins, Ernesto Villanueva

15/03 THE CAREERS OF TOP MANAGERS AND FIRM OPENNESS: INTERNAL VERSUS EXTERNAL LABOUR
   MARKETS
   — Francisco Lima, Mário Centeno

16/03 TRACKING GROWTH AND THE BUSINESS CYCLE: A STOCHASTIC COMMON CYCLE MODEL FOR THE
   EURO AREA
   — João Valle e Azevedo, Siem Jan Koopman, António Rua

17/03 CORRUPTION, CREDIT MARKET IMPERFECTIONS, AND ECONOMIC DEVELOPMENT
   — António R. Antunes, Tiago V. Cavalcanti

18/03 BARGAINED WAGES, WAGE DRIFT AND THE DESIGN OF THE WAGE SETTING SYSTEM
   — Ana Rute Cardoso, Pedro Portugal

19/03 UNCERTAINTY AND RISK ANALYSIS OF MACROECONOMIC FORECASTS:
   FAN CHARTS REVISITED
   — Álvaro Novo, Maximiano Pinheiro

2004

1/04 HOW DOES THE UNEMPLOYMENT INSURANCE SYSTEM SHAPE THE TIME PROFILE OF JOBLESS
   DURATION?
   — John T. Addison, Pedro Portugal

2/04 REAL EXCHANGE RATE AND HUMAN CAPITAL IN THE EMPIRICS OF ECONOMIC GROWTH
   — Delfim Gomes Neto

3/04 ON THE USE OF THE FIRST PRINCIPAL COMPONENT AS A CORE INFLATION INDICATOR
   — José Ramos Maria

4/04 OIL PRICES ASSUMPTIONS IN MACROECONOMIC FORECASTS: SHOULD WE FOLLOW FUTURES MARKET
   EXPECTATIONS?
   — Carlos Coimbra, Paulo Soares Esteves

5/04 STYLED FEATURES OF PRICE SETTING BEHAVIOUR IN PORTUGAL: 1992-2001
   — Mónica Dias, Daniel Dias, Pedro D. Neves

6/04 A FLEXIBLE VIEW ON PRICES
   — Nuno Alves

7/04 ON THE FISHER-KONIECZNY INDEX OF PRICE CHANGES SYNCHRONIZATION
   — D.A. Dias, C. Robalo Marques, P.D. Neves, J.M.C. Santos Silva