BANCO DE PORTUGAL
Economic Research Department

WAGES AND THE RISK
OF DISPLACEMENT

Anabela Carneiro
Pedro Portugal

WP 10-03 July 2003

The analyses, opinions and findings of these papers represent the views of the authors, they are not necessarily those of the Banco de Portugal.

Please address correspondence to Pedro Portugal, Economic Research Department, Banco de Portugal, Av. Almirante Reis nº 71, 1150-165 Lisboa, Portugal, Tel.#351-213128410; Fax#351-213107804; email:jppdias@bportugal.pt;
Wages and the Risk of Displacement*

Anabela Carneiro‡ and Pedro Portugal†

July 2003

Abstract

In this paper a simultaneous-equations model of firm closing and wage determination is developed in order to analyse how wages adjust to unfavorable shocks that raise the risk of displacement through firm closing, and to what extent a wage change affects the exit likelihood. The results show that the fear of job loss generates bargaining concessions instead of compensating differentials. A novel result that emerges from this study is that firms with a higher incidence of minimum wage earners are more vulnerable to adverse demand shocks due to their inability to adjust wages downward. In fact, minimum wage restrictions were seen to increase the failure rates.

JEL classification: J31; J65
Keywords: wages; displacement risk; concessions

1 Introduction

The extent of job destruction and, in particular, firm closing and job loss due to sector reallocation, has been a matter of great concern in recent years, with empirical research on gross job flows experiencing a tremendous growth in the past decade. The studies on the decomposition of net employment flows emphasize the importance of job creation and job destruction through the entry and exit of firms. According to Davis et al. (1996), about one-fourth of annual job destruction in the U.S. takes place at plants that shutdown, while startups account for one-sixth of annual job creation. In Portugal, annual job flows produced by both plant births and plant deaths account for almost half of total gross employment flows (Blanchard and Portugal, 2001).

However, the literature on flows of jobs is mostly employment accounting, whereas wages/prices and fluctuations in labor demand are never considered. As pointed out by Hamermesh (1993): “...data on gross flows of jobs tell us

*We thank Lucena Vieira for excellent computational assistance and Fundação para a Ciência e Tecnologia for financial support (research grant POCTI/ECO/35147/99).
†Faculdade de Economia da Universidade do Porto and CETE.
‡Banco de Portugal and Universidade Nova de Lisboa.
nothing directly about the magnitude of the wage or output elasticities of employment changes through the births and deaths of establishments, or growth or contraction in existing establishments."

Recently, a considerable number of studies have been examining how the wages of displaced workers vary (over a long-term period) compared to workers who are not displaced [see, among others, Jacobson et al. (1993), Stevens (1997) and Margolis (1999)]. Nonetheless, few studies have yet analyzed how that wage variation affects the probability of displacement. In fact, the theoretical and empirical research on the role of wages on plant closings is remarkably sparse. Most of the empirical literature on plant closings has been concentrated on the effect of unions in the probability that a firm (plant) shuts down.¹

Hamermesh (1988) was the first who explicitly addressed this issue, developing a model in which workers and firms contract over wages and employment probabilities. Since then empirical research in this area has not seen great improvement. The exceptions are the studies of Dunne and Roberts (1990) and Blanchflower (1991).

Hamermesh (1988, 1991 and 1993) modeled the relationship between wage changes and the probability of job displacement due to plant closing, in order to determine the necessary wage concessions to keep plants from closing. The model estimates also allowed him to compute the elasticity of labor demand through plant closings.

The model is set within a theoretical contract framework in which workers contract with their employers for a package that includes a probability that the job will exist and a wage premium above the entry-level wage (reservation wage). In fact, when workers sort themselves among firms, one of the risks they consider is that exogenous product-market shocks may cause the firm to close down. From the perspective of the contractual relationship between employers and employees the role of joint investments in specific training may be viewed as a buffer that can cushion against negative shocks and, thus, partially insulate the firm from unfavorable market conditions. That is, since an internal labor market may operate with employers and employees sharing the rents originated by firm-specific human capital, the adjustment to negative shocks may be partially absorbed through wage concessions. The possibility of wage concessions is, of course, precluded if workers are paid legal minimum wages.

Hamermesh’s model has two main predictions. The first points to a negative relationship between the excess of wages over the reservation wage and the probability of closing, suggesting that shocks that increase the probability of displacement reduce the magnitude of the wage increase. The second points to the existence of a positive relationship between the reservation wage and the probability of closure due to the existence of compensating differentials for the ex ante risk of displacement.

In order to test these predictions, Hamermesh (1998, 1991) used a longitudinal household sample from the Panel Study of Income Dynamics (PSID) that

¹See Addison et al. (2002, pp. 23-24) for a summary of the international evidence of union effects on plant closings for Britain and the United States. Their own study is about the effects of worker representation on plant closings in Germany.
includes 114 workers who left their previous job between 1977-81 because the plant shut down, and 2,433 household heads who were not displaced during this period. His results revealed that shocks that increase the probability of displacement also significantly reduce the wage increase. In other words, average wages grow less rapidly in plants that will soon close, suggesting that firms’ adjustment to price shocks are partially absorbed into wages. Concerning the second prediction of the model, no robust evidence was found in favor of the existence of compensating differentials for the ex ante risk of displacement. In fact, and contrary to what was expected, a negative coefficient was found for the reservation wage, a finding that Hamermesh interpreted as reflecting the dominance of the income effect of higher earnings on the demand for security.

Dunne and Roberts (1990) used a simultaneous-equations approach to examine how the probability of plant closing affects the wage paid to employees and how wages affect the probability of closure. For this purpose they develop a two-equation empirical model of plant failure and wage determination in order to estimate both the compensating differential employees required for the risk of plant closing and the effect of wage changes on the probability of plant failure.

Using longitudinal data on over 6,500 manufacturing plants from the U.S. Annual Survey of Manufactures for the years 1974-78, they found evidence in favor of the existence of compensating differentials for the risk of displacement due to plant closing. In fact, workers in a plant that has the average probability of failure in the sample, earn 7.3% higher wages than workers with a zero probability of failure. This result, however, remains robust only for plants owned by multi-plant firms. Finally, the results revealed that wage increases have little effect on the probability of plant failure. Indeed, a ten percent increase in wages, holding plant revenue fixed, increases the probability of failure by only 0.15 percentage points.

Using microdata on 5,300 individuals from the British Social Attitude Survey between 1983 and 1989, Blanchflower (1991) analyzed how the risk of unemployment may affect wages. He added to a classic Mincerian cross-section wage equation a range of variables related to the extent of excess supply in the labor market. One of these variables is a proxy for the risk of displacement due to plant closure. Using a Nash bargaining framework he derived that wages should be a declining function of the probability of firm closure. The empirical estimates for the full sample revealed that workers who reported that they expected their plant to close earn, on average, 8% less, ceteris paribus. This result seems to suggest that, if anything, fear of job loss will generate bargaining concessions instead of compensating differentials.

Some case studies also showed that unions may agree to moderate wage demands if jobs are threatened, and if such moderation is likely to generate a clear improvement in employment security [see, for example, Cappelli’s (1985) case study in the meatpacking and tire industries]. As mentioned by Cappeli, the possibility of shutdowns at the firm level may be a particular threat to employment security, because seniority systems that usually protect most workers

2For a demonstration of this prediction see Blanchflower (1991, Appendix A, pp. 492-494).
from layoffs generally do not offer protection against firm closings. In the face of a firm shutdown insider workers are all equal.

In sum, the empirical research on the effect of wages on firm closings (and vice versa) is still in the beginning and looking for a solid stylized fact concerning the relationship between wages and the risk of displacement. Do workers require a compensating differential for the risk of displacement? Or, on the contrary, are they able to accept wage moderation in order to avoid the firm's shutdown? Are wages an important determinant of firm exit?

Using a nationally representative data set that links employers and employees, this study will examine how wages adjust to a negative demand shock that raises the risk of displacement through firm closing and to what extent a wage change affects the exit likelihood. The role of a mandatory minimum wage on the firm's exit decision will also be analyzed.

This work attempts to give an additional contribution to the empirical literature on wages and the risk of displacement on three distinct grounds. The first is related to the use of an appropriate and representative data set to analyze the relationship between wages and the risk of displacement. In fact, the Portuguese data from Quadros de Pessoal (QP) can be described as a longitudinally matched worker-firm sample with a rich set of information on workers' characteristics, their wages, and their work environment. This will enable us to address a number of questions that cannot be adequately answered in the absence of firm or worker data.

The second is related to the use of a simultaneous-equations approach in order to account for the possible endogeneity of wages and the probability of displacement. As it seems clear that an increase in the firms' failure rate may affect wage changes because it raises the risk of displacement, it also seems clear that a wage change may affect the exit likelihood because it reduces, all else being equal, firm's profitability.

Third and finally, this study makes an important contribution by examining the effect of a mandatory minimum wage on the failure rate. Despite the great effort dedicated to research on the effect of minimum wages on unemployment, namely, youth unemployment, we are not aware of any study that explicitly looks at the relationship between minimum wages and firms' exits. Are firms with a higher proportion of minimum wage earners more vulnerable to product shocks due to their inability to adjust wages downward?

The plan of the paper is as follows. Section 2 presents the simultaneous-equations model of firm closing and wages. In this Section we also develop the basic hypothesis regarding which factors should matter for exit and discuss the wage determinants. In Section 3 the data set is described. Section 4 reports the empirical results and Section 5 concludes.
2 The Empirical Model of Firm Closing and Wages

2.1 Purpose
The empirical model of firm closing and wages presented in this Section attempts to tackle three different questions. The first is to examine how wages adjust to a negative demand shock that raises the probability of displacement through firm closing. The second is to determine how wages themselves affect the exit likelihood. The third is to analyze the effect of a mandatory minimum wage on the failure rate.

With respect to the first issue, the objective is to examine if a higher risk of displacement may lead workers to accept wage concessions or if, on the contrary, that threat leads workers to demand a compensating differential. In fact, in the face of a risk of layoff two forces may be at work. First, workers may demand higher wages in order to compensate them for the higher risk of displacement. This is the prediction of the competitive model with its roots in Smith (1974). Fear of unemployment has to be compensated, like any other disutility, with a wage premium. Second, workers may accept wage moderation (concessions) in order to avoid the firm closing and subsequent displacement. This hypothesis is consistent with the idea that pay is fixed in a bilateral bargain where the fear of unemployment acts to weaken workers’ bargaining position [Blanchflower (1991)]. If the first force prevails a positive correlation between wages and the probability of plant closing should be expected. Conversely, if it is the second force that prevails, a negative correlation should be expected.

Concerning the second issue, the effect of wages on firm’s profitability, and consequently on firm’s survival, is analyzed. The effect of wage levels in the probability of firm closing may be ambiguous. One would expect that all else being equal, firms with lower wages would have higher expected profits, and thus be more likely to survive. However, high wages may simply be viewed as mirroring high productivity and, thus, there might be no correlation.

In the third issue, particular attention will be devoted to the role of minimum wages on firms’ closure. In fact, the adjustment to negative demand shocks may be partially absorbed through wage concessions. Nonetheless, the possibility of wage concessions is precluded if workers are paid legal minimum wages. Thus, we examine if a mandatory minimum wage imposes severe restrictions in wages adjustment to unfavorable demand shocks that may accelerate the firm’s exit decision.

At this point the reasons that led to choosing a model of firm closing and not plant closing should be mentioned. The option to use information at the firm level instead of at the plant level is justified by two main reasons. First, the important management bargaining decisions in a multi-plant firm are made at the corporate level, not at the plant, and reflect the priorities of the firm as a whole. In particular, wage policies are mainly relevant at the firm level. Second, it seems that when it is the firm that is at risk of closing, the unemployment
threat is stronger than when it is an establishment of a multi-plant firm. In large multi-plant firms plant shutdowns may be used in addition to layoffs as a means of reducing capacity in the face of unfavorable shocks in the product demand. A plant shutdown may even occur with no layoffs, as workers from closing plants are reemployed in other plants of the same firm. Indeed, in some situations the shutdown of a plant may be a less costly bargaining strategy and, thus, would be preferable to a wage concession strategy. The empirical evidence for Portugal suggests that due to higher adjustment costs (mainly the costs of firing workers) and in the face of unforeseen temporary shocks, it is preferable to employers, under certain circumstances, to close down instead of adjusting their level of employment by laying off workers [Blanchard and Portugal (2001)].

2.2 The Empirical Model

As mentioned above, the three main objectives of the empirical model of firm closing and wages are:

(i) to examine how wages in period $t-1$ are affected by a higher risk of displacement due to a threat of firm closure in period t;

(ii) to examine the relationship between the wage paid to an individual worker in the last year on the job (period $t-1$) and the probability that the firm closes in the next year (period t);

(iii) to analyze whether a higher incidence of minimum wage earners in period $t-1$ affects the firm’s failure rate in period t.

The basic model consists of two equations. The first describes the probabilistic event of a displacement due to plant closure, and is specified from the following equation:

$$
\pi_{ijt}^* = \alpha_1 X_{jt} + \alpha_2 Z_{ijt} + \alpha_3 W_{ijt}^* + \alpha_4 \Phi(W_{Mit} - 1) + \nu_{1ijt}
$$

where $Y_{ijt} = 1$ if $\pi_{ijt}^* < 0$ and $Y_{ijt} = 0$ if $\pi_{ijt}^* \geq 0$.

π_j^* is a latent variable reflecting the future profitability of firm j. X_j is a vector of firm characteristics, Z_{ij} a vector of worker characteristics and W_{ij}^* the natural logarithm of the wage paid to worker i by firm j. $\Phi(W_{Mit})$ denotes the probability of a given worker receiving the minimum wage. α’s are the parameters to be estimated and ν_{1ijt} is a normally distributed random variable with zero mean and unit variance.

The second equation of the model is a conventional human capital wage equation with controls for local labor market conditions and some firm characteristics. Generically, the wage equation is defined as:

$$
W_{ijt-1} = \beta_1 U_{jt-1} + \beta_2 V_{ijt-1} + \beta_3 \pi_{ijt}^* + \nu_{2ijt-1}
$$

where $W_{ijt-1} = \text{Max}(W_{Mit-1}, W_{ijt-1}^*)$ and W_{Mit-1} is the mandatory minimum wage in period $t - 1$.
The wage paid to worker i in firm j is a function of a set of workers’ characteristics included in vector V_{ij}, firm and local labor market characteristics defined in vector U_j and π^*_{ij}. In the data it is not possible to observe π^*_{ij}. All we can say is whether π^*_{ij} is or is not below a given threshold (the minimum level of profits that guarantees the firm’s continued existence). In the latter case, the firm will continue its operations, otherwise it will close down. Thus, the probability of displacement through firm closing is defined as $P_{ijt} \equiv \Pr(\pi^*_{ijt} < 0)$. β’s are the unknown parameters to be estimated and υ_{2ijt} is a normally distributed random variable (zero mean and constant variance).

The dependent variable in the failure equation is a binary variable that takes the value of one if the worker was displaced in year t due to firm closure, zero otherwise. A set of firm variables that may affect the firm’s decision to close are identified below.

In order to control the exogenous demand shocks that may affect the probability of firm closing, the average growth rate of real sales in the last three years is used as a proxy for firm-specific shocks. Controlling for firm-specific (idiosyncratic) shocks enables one to examine if, in the face of an identical exogenous shock, and all else being equal, firms with lower wages are less likely to close down or not.

Even though firm or sectoral demand shifts certainly affect the rate of firm closing, other forces are also at work. Jovanovic (1982) showed that patterns of employer growth and firm (plant) failure are consistent with a process of within-industry selection in which inefficient producers decline and fail. This selection process leads to substantial variation in the probability of exit across firms (plants) within an industry. In fact, while plant deaths are part of the normal process of the entry and exit of firms, the post-entry patterns of growth and failure vary considerably with observed employers’ characteristics [Dunne et al. (1989)]. This reasoning suggests that the risk of displacement due to firm closing varies not only with the demand for the firm’s output but also with employer’s efficiency relative to competing firms in the same industry. Being so, a set of firm’s characteristics that are related to its performance in the output market may affect the firm’s own probability of survival. The factors to be included in the empirical model as exit determinants will now be identified. With the exception of past sales growth, all variables are measured in the year that precedes the potential exit event (period $t-1$).

It has been largely shown in the empirical literature on firm survival that firm size and age are negatively associated with failure rates [see, for example, Kumar (1985), Evans (1987), Hall (1987), Dunne et al. (1989), Audretsch and Mahmood (1994), Mata and Portugal (1994) and Mata et al. (1995)]. These results are consistent with Jovanovic’s (1982) model of industry evolution, according to which firms start with no knowledge about their efficiency. As time goes by and firms observe their performance in the output market, they gradually learn about their efficiency. This information is then incorporated

3Sales in year t correspond to annual sales of the previous year. Sales were deflated using the CPI (base=1991).
into their current size. Efficient firms grow and survive, while inefficient ones contract and fail. Thus, large and old firms are successful firms, and, for this reason, they should have higher survival probabilities.

Thus, measures of the size and age of the firm are included in the failure equation. The size of the firm is defined as the natural logarithm of its total employment. Since the information about the date of a firm’s creation is only available after 1993, and in order to use the same criteria to measure age in the 1993-95 period, we used as a proxy for firm age the tenure (in years) of the worker with the longest tenure within the plant. A linear spline function is used to define the effect of the age of the firm.

The firm’s market share is used as a measure of product market competition. Monopoly power generates monopoly rents and consequently higher profits. If employers are able to appropriate part of these rents, it should be expected that firms with increased market share are less likely to fail. The market share is obtained by the ratio between a firm’s sales and total (5 digit) sector’s sales.

Firm ownership characteristics may affect the exit likelihood. Two indicators of ownership type will be used, namely the number of establishments with which each firm operates and the proportion of foreign capital. For the former a dummy variable that takes the value one if the firm is a multi-plant firm (0 otherwise) will be included in the model. Single-plant firms are far less likely to shutdown a plant than a multi-plant firm, since single-plant operations can be viewed as having greater closing costs as they involve the exit of the own firm. Therefore, plants in multi-unit firms have higher probability of closing. The empirical evidence has been showing that multi-plant firms use the shutdown margin more often than their single-plant counterparts [see, for instance, Mata and Portugal (1994), Machin (1995) and the recent studies of Addison et al. (2002) and Bernard and Jensen (2002)]. On the contrary and analogously, multi-plant firms are far less likely to close than single-plant firms.

The proportion of foreign capital may itself be an indicator of unobserved quality of the firm and may affect the probability of closure. Doms and Jensen (1998) found that multinational plants have superior observable characteristics. However, it is also well known that multinationals have a higher propensity to relocate production within firms, which may lead to an increased probability of closure [see, for example, Harris and Hassasazadeh (2002)].

If analyzing the effects of individual wage levels on the probability of firm closing, it is necessary to have a measure of revenue per employee in order to be able to compare firms. Firms that have higher variable costs, holding revenue fixed, are less likely to cover their fixed costs in the long-run and thus more likely to close down. Real sales per worker (in logs) is used as a measure of firm’s revenue per employee.

Finally, among the firm’s characteristics, a set of industry (one-digit)\(^4\) and regional dummies (NUTs II)\(^5\) are also included in the failure equation. Since the data include firm closures that occurred in 1994, 1995 and 1996, three time

\(^4\)At one-digit level there are nine sectors according to the Portuguese Classification of Economic Activities (CAE).

\(^5\)At NUTs II mainland Portugal is split into 5 geographical areas.
dummies were also added to the model in order to control for macroeconomic conditions.

Previous studies such as Cooper et al. (1994) and Mata and Portugal (2002) found human capital to be a good predictor of firm survival. We also consider the possibility that human capital affects the firm’s performance and hence its failure rate, and include a set of variables that characterize workers’ skills and that identify the composition of the firm’s workforce with respect to schooling, tenure (and its square), age and gender. The variable gender takes the value one for females and zero for males. The variable education is measured as the number of years of schooling completed and tenure is defined as the number of years with the current employer. The variable age is defined as a dummy variable that equals one if the individual belongs to each age group out of the four considered: less than 25, 25-34, 35-54 and more than 54 (the omitted category).

The dependent variable in the wage equation is defined as the natural logarithm of the real monthly base wage paid to an individual worker in the year that precedes the displacement. The monthly base wage was deflated by the Consumer Price Index (CPI; base=1991).

The wage equation includes a set of controls for personal characteristics such as: gender, education, age (and its square), tenure (and its square) and qualification level. A set of dummies are used for the levels of qualification. Seven categories are considered: manager and highly professional, professional, supervisors, highly skilled and skilled, semi-skilled and unskilled, non-defined (a residual category) and apprentices (the reference category).

In order to assure that the effect of a higher risk of unemployment on wages is due to firm shutdown and not to differences in the risk of layoff in the local labor markets, the local unemployment rate is used to control for those differences. The local unemployment rate is defined at the disaggregated level of NUTs III.6

The firm characteristics included in the wage equation are the firm size, sales per worker and a set of industry (one-digit)7 and regional (NUTs II) dummies. In order to account for macroeconomic conditions time dummies are also added to the model.

6It should be noted that for the period of analysis of this study (1993-95), unemployment rates are only defined at the regional level at NUTs II. In order to have a proxy for unemployment at a more disaggregated level of NUTs III (28 geographical areas for mainland), the ratio between annual job applications registered in each employment center and total employment (defined at NUTs III using data from QP) will be used.

The information on job applications registered in each employment center was obtained from Monthly Statistics - Institute for Employment and Vocational Training (IEFP).

7In this case we employ just 7 sectoral dummies, since the sector of Electricity, Gas and Water, that accounts for a few number of non-displaced workers, was excluded because no plant closings were observed in this sector.
3 The Data

The data set used in this study was obtained from Quadros de Pessoal (QP) and includes all workers that lost their jobs in 1994, 1995 or 1996 due to firm closure and were present in the QP registers in the year that preceded the displacement. A control group constituted by a random sample of workers who were employed in the year prior to the displacement in firms that did not close in the following year is also included.

The survey has three characteristics that make it particularly suitable for the analysis of the relationship between wages and the risk of firm closing. First, it covers all firms employing paid labor in Portugal. Second, it has a longitudinal dimension which allows us to follow firms and individuals over time. Third, it contains information on both firms and its workers.

To be sure that exits are accurately identified, we required that a firm be absent from the QP two or more consecutive years in order to be classified as a closure. Additionally, and to avoid the inclusion of false exits, workers that appeared in the database in the period after displacement with a year of admission in the new job less than the year of displacement minus one were dropped.

In order to be allowed to construct the variables that account for firm’s recent evolution, we impose that workers be present in the QP registers in each of the three years that preceded the firm shutdown and employed with the same employer over those years. This requirement means that an individual must have at least two years of tenure in the year prior to displacement. This selection rule, although primarily dictated by data availability considerations, results in an analysis sample of stably employed individuals. On average, the sampled individuals have 26 years of labor force experience and over 11 years of employer tenure.

We also limited the sample to full-time workers aged between 18 and 64 in the year prior to displacement. Since the minimum wage is defined as a monthly wage, the full-time job requirement allows to identify minimum wage earners more accurately. In this context, wages are measured as monthly wages.

We have also excluded those individuals for which information was incomplete for the year before displacement, namely those with zero wage. Finally, and in order to minimize the effects of the presence of outliers, we drop the 0.1% top and the 0.1% bottom observations for the wage and sales variables.

After these exclusions we obtained a sample of 35,922 full-time workers that were displaced between 1994-96 due to firm closing, aged between 18-64 and

8Thus, this source does not cover operated family businesses without wage-earning employees and self-employment. Public administration is also excluded.
9If, for example, a worker’s displacement year is 1994 and he (she) appears in the database in the post-displacement period with a year of admission in the new job of 1992 or less, he (she) is excluded from the sample.
10Hence, for workers displaced in 1994 the data should be available for the 1991-93 period, for workers displaced in 1995 for the period of 1992-94 and for workers displaced in 1996 for the 1993-95 period.
11For the three years before displacement in the case of the variable sales.
with at least two years of tenure in the year prior to displacement.

The control group includes three sub-samples and was constructed in the following way. For each year prior to the displacement year we obtained a random sample of around 300,000 workers that were employed in firms that did not close.12 For each of these three groups we excluded those individuals that were not present in the QP files in each of the three years before displacement and those who were not employed in the same firm over those years. The sample was also limited to full-time workers aged between 18-64 in the year prior to displacement. After excluding those observations with missing values on the explanatory variables and the extreme observations (outliers) for wages and sales, we obtained a control group of 230,102 non-displaced workers.

Table 1 presents the descriptive statistics of the sample for the two groups of workers: displaced and non-displaced. As can be seen in Table 1, on average, displaced workers are slightly younger, less qualified and with fewer years of tenure and education. They also earn, on average, less than non-displaced workers. The pool of displaced workers includes more females and minimum wage earners.

According to firms’ characteristics, the proportion of displaced workers that comes from small, young and single-plant firms is higher when compared to the sample of non-displaced workers. For the former the real average growth rate of firms’ sales in the last three years is negative (-7.6%), while for the latter that same rate is positive (1.4%). Displaced workers are also employed in firms with a reduced market power (measured by market share).

12The sample was drawn according to a normal random number generator.
Table 1: Sample Characteristics (Means and Standard Deviations)

<table>
<thead>
<tr>
<th></th>
<th>Displaced</th>
<th></th>
<th>Non-displaced</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>St. Dev.</td>
<td>Mean</td>
<td>St. Dev.</td>
</tr>
<tr>
<td>Workers’ Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (in years)</td>
<td>37.3</td>
<td>0.113</td>
<td>38.5</td>
<td>0.107</td>
</tr>
<tr>
<td>Tenure (in years)</td>
<td>9.8</td>
<td>0.082</td>
<td>11.9</td>
<td>0.085</td>
</tr>
<tr>
<td>Education (in years)</td>
<td>5.8</td>
<td>2.830</td>
<td>6.4</td>
<td>3.231</td>
</tr>
<tr>
<td>Proportion of Female</td>
<td>0.442</td>
<td>0.368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of Minimum Wage Earners</td>
<td>0.143</td>
<td>0.056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualification Levels (proportion of workers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manager and Highly Professional</td>
<td>0.018</td>
<td>0.029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional</td>
<td>0.017</td>
<td>0.031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervisors</td>
<td>0.051</td>
<td>0.057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly Skilled and Skilled</td>
<td>0.527</td>
<td>0.543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi-skilled and Unskilled</td>
<td>0.279</td>
<td>0.262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apprentices</td>
<td>0.057</td>
<td>0.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-defined</td>
<td>0.051</td>
<td>0.044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firms’ Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (total employment)</td>
<td>108.4</td>
<td>426.2</td>
<td>1135.1</td>
<td>2701.2</td>
</tr>
<tr>
<td>Past Sales Growth</td>
<td>-0.076</td>
<td>0.391</td>
<td>0.014</td>
<td>0.354</td>
</tr>
<tr>
<td>Market Share</td>
<td>0.013</td>
<td>0.060</td>
<td>0.118</td>
<td>0.250</td>
</tr>
<tr>
<td>Proportion of Foreign Capital</td>
<td>0.031</td>
<td>0.161</td>
<td>0.094</td>
<td>0.269</td>
</tr>
<tr>
<td>Proportion of Multi-plant Firms</td>
<td>0.165</td>
<td>0.413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm Age (proportion of workers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5 years</td>
<td>0.134</td>
<td>0.046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-10 years</td>
<td>0.181</td>
<td>0.086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 10 years</td>
<td>0.685</td>
<td>0.869</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real Sales per Worker (in logs)</td>
<td>8.419</td>
<td>1.111</td>
<td>8.825</td>
<td>1.172</td>
</tr>
<tr>
<td>Real Monthly Wage (in logs)</td>
<td>10.973</td>
<td>0.432</td>
<td>11.175</td>
<td>0.490</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>35,922</td>
<td></td>
<td>230,102</td>
<td></td>
</tr>
</tbody>
</table>

Notes: (i) all variables, except past sales growth, are measured in the year prior to displacement; (ii) sales per worker and the monthly wage are in 1991 PTE (escudo); 1 EUR ≡ 200.482 PTE.
4 Estimation and Empirical Results

4.1 Estimation Method

In order to estimate the simultaneous-equations model of firm closing and wages presented in Section 2, it will be necessary to choose an adequate method of estimation. It is well known that the ordinary least squares (OLS) estimator is generally inconsistent when applied to a structural equation in a simultaneous-equations system.

Beyond this difficulty, our empirical model of firm closing and wages has a particularity, since one of the endogenous variables is a binary variable while the other is a censored variable. In fact, while the failure equation is specified as a probit model, the wage equation is a tobit model with lower censoring at the minimum wage. Thus, we are in the presence of a simultaneous-equations model with mixed dichotomous and censored variables.

The conventional method for estimating simultaneous-equations models is the method of instrumental variables. As suggested by Maddala (1983, p. 246), a two-stage procedure will allow us to estimate a two-equation model in which one of the variables is censored while the other is only observed as a dichotomous variable. The two-stage estimation method involves the following steps. The first step is to write the reduced-forms equations for the endogenous variables. Next, estimate the reduced-forms equations and keep the predicted values. Finally, estimate the structural equations replacing the endogenous variables by the predicted values obtained from the reduced-forms regressions.

The empirical model defined by equations (1) to (3) specifies both the probability of closure and wages as endogenous. Hence, the reduced form of the equation system in the latent variables is:

\[
\pi_{ijt} = \Pi_1 K_{ijt-1} + \varepsilon_{1ijt}, \quad Y_{ijt} = 1(\pi_{ijt} < 0) \tag{4}
\]

\[
W_{ijt-1}^* = \Pi_2 K_{ijt-1} + \varepsilon_{2ijt-1}, \quad W_{ijt-1} = Max(W_{M_{ijt-1}}, W_{ijt-1}^*) \tag{5}
\]

where \(K\) includes all the exogenous variables in \(X, Z, U\) and \(V\).

The reduced-form parameters can be estimated by applying maximum likelihood to the probit and tobit models in equations (4) and (5), respectively.

Estimating the reduced-form for \(\pi_{ijt}^*\) by the probit method will allow us to obtain the predicted probability of displacement through firm closing, \(\hat{P}\). Estimating the reduced-form for \(W_{ijt-1}^*\) by the tobit method will enable us to obtain the predicted value of the monthly wage (\(\hat{W}^*\)) and the estimated probability that a given observation is a limit observation, \(\Phi(\hat{W}_{M})\). In other words, \(\Phi(\hat{W}_{M})\) measures the estimated probability of a given worker receiving the minimum wage.

This procedure is unconventional, but provides a simple and elegant solution to the specification of the two sources of endogeneity from wages to failure rates. On the one side, the impact of the level of wages on the chances of firm closure.
And, on the other side, the influence of minimum wage restrictions on the ability to accommodate negative shocks.

The structural wage equation is estimated in the second-stage tobit after replacing the probability of displacement through firm closing (P) by its predicted value (\hat{P}). The structural failure equation is estimated in the second-stage probit after replacing the monthly wage (W^*) by its predicted value (\hat{W}^*) and after including the estimated probability of being a minimum wage earner, $\Phi(\hat{W}_M)$. This last procedure will enable us to examine the effect of a mandatory minimum wage on the failure rate.

4.2 Empirical Results

The parameter estimates of the simultaneous-equations model of firm closing and wages are presented in Tables 2 (structural failure equation) and 3 (structural wage equation). The estimation strategy consists of having, as far as possible, a complete set of controls to examine whether a robust association between wages and the probability of firm closing (and vice-versa) can be identified. The variables that characterize employers’ performance such as past sales growth, firm age, market share, multi-plant firm and proportion of foreign capital contribute to the identification of the wage equation. In the structural probit model of firm closing, the regional unemployment rate and the qualification levels are omitted.

Columns 1 and 2 of Table 2 report results (coefficients estimates and marginal effects, respectively) for a specification in which the probability of firm closing depends on an extensive set of firm characteristics, the skill composition of the workforce, monthly wages (predicted) and the estimated probability of being a minimum wage earner. A range of dummy variables for industries, regions and years are also included.

According to Table 2, past sales growth, firm size and age, market share, multi-plant firm, proportion of foreign capital and sales per worker are significantly correlated with the probability of firm closing. In particular, the results reveal that firms experiencing a decline in sales growth are clearly more likely to close. This seems to imply that sales contraction can be used as a strong predictor of firm failure. Indeed, the fact that a firm has grown in the past signals that it has been performing well. Moreover, the estimates reported in Table 2 show that small firms are clearly more likely to close than large firms. This result is conventional enough and, in particular, is in line with the one obtained for Portugal in the study of Mata et al. (1995) using a sample of newly born manufacturing plants.

13The econometric results were obtained using LIMDEP version 8.0. In both equations the t-ratios correspond to the corrected covariance matrix for the two-step estimator using the methodology developed by Murphy and Topel (1985).

14The exceptions are firm size and sales per worker, since these variables constitute an important determinant of individual wages as well.
The estimates of the coefficients on firm’s age using splines indicate a negative and significant effect of age on the probability of displacement. However, after a decade the negative effect of age starts to vanish, becoming positive for very old firms (more than 53 years).

The variable market share has a strong negative effect on the probability of closing, suggesting that monopoly power generates rents that may function as a buffer that cushions against negative shocks.

As expected, workers that are part of a multi-plant firm are less likely to be displaced due to firm closing than workers that are part of a single-plant firm. The same is true for workers that are part of firms with a large proportion of foreign-owned capital.

Sales per worker, a proxy for productivity, have a negative impact on the probability of closing. Thus, low productivity firms, all else being equal, are more likely to close down.

Concerning the variables that identify the composition of the firm’s workforce, the estimates show that firms with a higher proportion of female, older, less-educated and less-tenured workers are more likely to close. In particular, we should mention the negative effect of tenure on the probability of closure. As long as higher tenure reflects higher investments in specific training and/or better matches (that is, job matches that enhance productivity), joint investments in specific training may also be viewed as a buffer than can cushion against negative shocks and, thus, partially insulate the firm from unfavorable market conditions. Hence, a negative relationship should be expected between worker’s tenure and the probability of firm closing. In this context, we interpret the positive coefficient estimate associated with the gender variable as an indication that females engage in on-the-job training investments less intensively than do males.

High-wage paying firms face higher hazard rates than low-paying firms, *ceteris paribus*. After controlling for an extensive set of employers’ characteristics and for the skill composition of the workforce, the results reveal that firms that pay higher wages, holding revenue per employee fixed, are less likely to survive. In fact, the marginal effect of a 1% increase on monthly wages in the probability of displacement is 0.00029 (see column 2 of Table 2). Since the average job displacement rate through firm closing in the population is around 6.3%, a 1% wage increase is associated with a 0.46% increase in the probability of job displacement through firm closing.

Finally, the two-step probit results report a positive and significant effect of the probability of receiving the minimum wage on the failure rate, suggesting that firms with a higher incidence of minimum wage workers face higher exit rates than those with a smaller incidence. A one point increase in the proportion of minimum wage earners increases the probability of displacement by 0.014 percentage points. Since, on average, the proportion of minimum wage earners in the population is around 13% and the average job displacement rate is 6.3%, a 10% increase in the proportion of minimum wage earners increases the probability of displacement through firm closing by 0.29%.

In fact, the possibility of wage concessions is precluded if workers are paid
legal minimum wages. Thus, firms with a higher proportion of minimum wage earners may have lower chances of survival due to their inability to adjust wages downward in the face of a negative demand shock.
Table 2: Failure Equation - Two-step Probit Results
Full-time Workers (N=266024)
Dependent variable: displaced=1

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficient</th>
<th>Marginal Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Past Sales Growth</td>
<td>-0.323</td>
<td>-0.049</td>
</tr>
<tr>
<td></td>
<td>(-30.5)</td>
<td></td>
</tr>
<tr>
<td>Firm Size</td>
<td>-0.251</td>
<td>-0.038</td>
</tr>
<tr>
<td></td>
<td>(-75.5)</td>
<td></td>
</tr>
<tr>
<td>Firm Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-0.056</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>(-5.0)</td>
<td></td>
</tr>
<tr>
<td>AgeS5</td>
<td>-0.007*</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(-0.5)</td>
<td></td>
</tr>
<tr>
<td>AgeS10</td>
<td>0.069</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(23.0)</td>
<td></td>
</tr>
<tr>
<td>Market Share</td>
<td>-1.383</td>
<td>-0.208</td>
</tr>
<tr>
<td></td>
<td>(-28.1)</td>
<td></td>
</tr>
<tr>
<td>Multi-plant Firm</td>
<td>-0.069</td>
<td>-0.010</td>
</tr>
<tr>
<td></td>
<td>(-7.2)</td>
<td></td>
</tr>
<tr>
<td>Proportion of Foreign Capital</td>
<td>-0.245</td>
<td>-0.037</td>
</tr>
<tr>
<td></td>
<td>(-13.3)</td>
<td></td>
</tr>
<tr>
<td>Sales per Worker</td>
<td>-0.065</td>
<td>-0.010</td>
</tr>
<tr>
<td></td>
<td>(-14.8)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.135</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>(14.1)</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>-0.012</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(-5.5)</td>
<td></td>
</tr>
<tr>
<td>Worker Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>-0.079</td>
<td>-0.011</td>
</tr>
<tr>
<td></td>
<td>(-4.2)</td>
<td></td>
</tr>
<tr>
<td>25-34</td>
<td>-0.059</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>(-4.0)</td>
<td></td>
</tr>
<tr>
<td>35-54</td>
<td>-0.042</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td>(-3.3)</td>
<td></td>
</tr>
<tr>
<td>Tenure/100</td>
<td>-1.852</td>
<td>-0.279</td>
</tr>
<tr>
<td></td>
<td>(-11.9)</td>
<td></td>
</tr>
<tr>
<td>Tenure/100 Squared</td>
<td>4.559</td>
<td>0.687</td>
</tr>
<tr>
<td></td>
<td>(10.2)</td>
<td></td>
</tr>
<tr>
<td>Monthly Wage (predicted)</td>
<td>0.191</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>(6.5)</td>
<td></td>
</tr>
<tr>
<td>Φ(W_{M}) (predicted)</td>
<td>0.095</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>(2.6)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-0.541*</td>
<td>-0.081</td>
</tr>
<tr>
<td></td>
<td>(-1.7)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Continued

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-likelihood</td>
<td>-88476.8</td>
</tr>
<tr>
<td>Chi-squared</td>
<td>33654.0</td>
</tr>
</tbody>
</table>

Notes: (i) a set of industry, regional and time dummies are included in the specification; (ii) AgeS5=(Age-5) if Age>5, 0 otherwise; AgeS10=(Age-10) if Age>10, 0 otherwise; (iii) t-ratios are in parentheses; (iv) all estimates are significant at 1%, except those with an *.

Table 3 reports the two-step tobit results of the wage equation. The basic specification includes a set of controls for workers’ characteristics, firm size and sales per worker as two important determinants of individual wages, the local unemployment rate and the instrumented probability of displacement due to firm closing. A set of industry, regional and time dummies are also included in the specification. All the exogenous variables are statistically significant at the 1% level of significance and have the expected signs.

The effect of the probability of closing on monthly wages is negative and also statistically significant. This implies that a worker employed in a firm that will close earns less in the year prior to displacement than a similar worker employed in a non-closing firm. Converting the coefficient of -0.459 to an elasticity results in a value of -0.029 evaluated at the mean failure rate in the sample. In other words, workers in a firm that has the average probability of failure in the population (6.3%), earn (one year prior to closing) around 3% less than workers in a firm with zero probability of failure (a useful artificial benchmark).15 This empirical result indicates the existence of wage concessions for workers employed in firms with a higher probability of failing.

This empirical evidence seems to contradict the theoretical prediction that workers employed in firms with a higher probability of displacement require a compensating differential for the risk of layoff. The compensating differential for the \textit{ex ante} risk of displacement may exist. The evidence of a positive relationship between wage levels and failure rates reported in the probit equation is consistent with the existence of higher wages due to compensating differentials, that may accelerate in the short-run the process of closure.16 However, the results obtained from the wage equation seem to suggest that in the face of an \textit{ex post} risk of displacement the compensating differential for the risk of layoff is offset by the need to moderate wages in order to avoid the firm’s shutdown.

15If \hat{W}_1 is the predicted wage in a firm with an average failure probability of 0.063 and \hat{W}_0 is the predicted wage in a firm that has no probability of failing, then the relative wage differential is calculated as $\ln(\hat{W}_1/\hat{W}_0) = ([-0.459] \times [0.063]) = -0.029$.

16Since in the basic specification of Table 2 a control for tenure in the job was included, we can interpret the individual monthly wage as the worker’s reservation wage.
Table 3: Wage Equation - Two-step Tobit Results
Full-time Workers (N=266024)
Dependent variable: log of real monthly wage

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficient</th>
<th>Marginal Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>-0.158</td>
<td>-0.152</td>
</tr>
<tr>
<td></td>
<td>(-100.8)</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>0.050</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td>(160.6)</td>
<td></td>
</tr>
<tr>
<td>Age/100</td>
<td>2.643</td>
<td>2.536</td>
</tr>
<tr>
<td></td>
<td>(52.6)</td>
<td></td>
</tr>
<tr>
<td>Age/100 Squared</td>
<td>-2.499</td>
<td>-2.397</td>
</tr>
<tr>
<td></td>
<td>(-40.7)</td>
<td></td>
</tr>
<tr>
<td>Tenure/100</td>
<td>0.479</td>
<td>0.460</td>
</tr>
<tr>
<td></td>
<td>(15.0)</td>
<td></td>
</tr>
<tr>
<td>Tenure/100 Squared</td>
<td>-0.492</td>
<td>-0.472</td>
</tr>
<tr>
<td></td>
<td>(-5.3)</td>
<td></td>
</tr>
<tr>
<td>Qualification Levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manager and Highly Professional</td>
<td>0.742</td>
<td>0.712</td>
</tr>
<tr>
<td></td>
<td>(101.5)</td>
<td></td>
</tr>
<tr>
<td>Professional</td>
<td>0.542</td>
<td>0.520</td>
</tr>
<tr>
<td></td>
<td>(84.6)</td>
<td></td>
</tr>
<tr>
<td>Supervisors</td>
<td>0.421</td>
<td>0.404</td>
</tr>
<tr>
<td></td>
<td>(77.0)</td>
<td></td>
</tr>
<tr>
<td>Highly Skilled and Skilled</td>
<td>0.198</td>
<td>0.190</td>
</tr>
<tr>
<td></td>
<td>(43.5)</td>
<td></td>
</tr>
<tr>
<td>Semi-skilled and Unskilled</td>
<td>0.075</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>(16.2)</td>
<td></td>
</tr>
<tr>
<td>Non-defined</td>
<td>0.349</td>
<td>0.335</td>
</tr>
<tr>
<td></td>
<td>(58.4)</td>
<td></td>
</tr>
<tr>
<td>Firm Size</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>(23.8)</td>
<td></td>
</tr>
<tr>
<td>Sales per Worker</td>
<td>0.070</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>(90.2)</td>
<td></td>
</tr>
<tr>
<td>Regional Unemployment Rate</td>
<td>-0.060</td>
<td>-0.058</td>
</tr>
<tr>
<td></td>
<td>(-35.9)</td>
<td></td>
</tr>
<tr>
<td>Probability of Displacement (predicted)</td>
<td>-0.479</td>
<td>-0.459</td>
</tr>
<tr>
<td></td>
<td>(-37.0)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>9.356</td>
<td>8.976</td>
</tr>
<tr>
<td></td>
<td>(678.1)</td>
<td></td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>-76453.8</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>0.31</td>
<td></td>
</tr>
</tbody>
</table>

Notes: (i) a set of industry, regional and time dummies are included in the specification;
(ii) t-statistics are in parentheses;
(iii) all estimates are significant at 1%, except those with an *.

19
5 Conclusion

In this paper we have investigated how wages adjust to unfavorable shocks that raise the risk of displacement through firm closing, and to what extent a wage change affects the exit likelihood. For this purpose, a simultaneous-equations model was applied to a large longitudinally linked employer-employee data set of workers displaced due to firm closing. Three main conclusions emerge from this exercise.

First, after controlling for employers’ heterogeneity and the skill composition of the workforce, the results indicated that wages have a strong and positive impact on the failure rate. High-wage paying firms face higher exit rates than low-paying firms, \textit{ceteris paribus}. Indeed, a 1% increase in monthly wages raises the probability of displacement through firm closing by 0.46%.

Second, a negative and strong effect of the probability of closing on wages was found, favoring the hypothesis that the risk of unemployment depresses wages. Workers employed in firms at risk earn 3% less one year prior to closing than workers in firms with no risk of closure. This robust empirical evidence reinforces the hypothesis that instead of requiring a compensating differential for a higher risk of displacement, workers in firms at risk are able to agree upon wage concessions/moderation in order to avoid the firm’s shutdown.

Third, minimum wage restrictions were seen to increase the failure rates. A high proportion of minimum wage earners in a firm may preclude the possibility of wage concessions in response to unfavorable shocks, and thus accelerate the exit decision. In other words, firms with a higher incidence of minimum wage earners are more vulnerable to adverse demand shocks due to their inability to adjust wages downward. In fact, beyond the direct effect of wages on the failure rate, a 10% increase in the incidence of minimum wage earners (around 1.3 percentage points) raises the probability of displacement by 0.29%.
References

WORKING PAPERS

2000

1/00 UNEMPLOYMENT DURATION: COMPETING AND DEFECTIVE RISKS
 — John T. Addison, Pedro Portugal

2/00 THE ESTIMATION OF RISK PREMIUM IMPLICIT IN OIL PRICES
 — Jorge Barros Luís

3/00 EVALUATING CORE INFLATION INDICATORS
 — Carlos Robalo Marques, Pedro Duarte Neves, Luís Morais Sarmento

4/00 LABOR MARKETS AND KALEIDOSCOPIC COMPARATIVE ADVANTAGE
 — Daniel A. Traça

5/00 WHY SHOULD CENTRAL BANKS AVOID THE USE OF THE UNDERLYING INFLATION INDICATOR?
 — Carlos Robalo Marques, Pedro Duarte Neves, Afonso Gonçalves da Silva

6/00 USING THE ASYMMETRIC TRIMMED MEAN AS A CORE INFLATION INDICATOR
 — Carlos Robalo Marques, João Machado Mota

2001

1/01 THE SURVIVAL OF NEW DOMESTIC AND FOREIGN OWNED FIRMS
 — José Mata, Pedro Portugal

2/01 GAPS AND TRIANGLES
 — Bernardino Adão, Isabel Correia, Pedro Teles

3/01 A NEW REPRESENTATION FOR THE FOREIGN CURRENCY RISK PREMIUM
 — Bernardino Adão, Fátima Silva

4/01 ENTRY MISTAKES WITH STRATEGIC PRICING
 — Bernardino Adão

5/01 FINANCING IN THE EUROSYSTEM: FIXED VERSUS VARIABLE RATE TENDERS
 — Margarida Catalão-Lopes

6/01 AGGREGATION, PERSISTENCE AND VOLATILITY IN A MACROMODEL
 — Karim Abadir, Gabriel Talmain

7/01 SOME FACTS ABOUT THE CYCLICAL CONVERGENCE IN THE EURO ZONE
 — Frederico Belo

8/01 TENURE, BUSINESS CYCLE AND THE WAGE-SETTING PROCESS
 — Leandro Arozamena, Mário Centeno

9/01 USING THE FIRST PRINCIPAL COMPONENT AS A CORE INFLATION INDICATOR
 — José Ferreira Machado, Carlos Robalo Marques, Pedro Duarte Neves, Afonso Gonçalves da Silva

10/01 IDENTIFICATION WITH AVERAGED DATA AND IMPLICATIONS FOR HEDONIC REGRESSION STUDIES
 — José A.F. Machado, João M.C. Santos Silva

2002

1/02 QUANTILE REGRESSION ANALYSIS OF TRANSITION DATA
 — José A.F. Machado, Pedro Portugal
2/02 SHOUL WE DISTINGUISH BETWEEN STATIC AND DYNAMIC LONG RUN EQUILIBRIUM IN ERROR CORRECTION MODELS?
 — Susana Botas, Carlos Robalo Marques

3/02 MODELLING TAYLOR RULE UNCERTAINTY
 — Fernando Martins, José A. F. Machado, Paulo Soares Esteves

4/02 PATTERNS OF ENTRY, POST-ENTRY GROWTH AND SURVIVAL: A COMPARISON BETWEEN DOMESTIC AND FOREIGN OWNED FIRMS
 — José Mata, Pedro Portugal

 — João Valle e Azevedo

6/02 AN “ART”, NOT A “SCIENCE”? CENTRAL BANK MANAGEMENT IN PORTUGAL UNDER THE GOLD STANDARD, 1854-1891
 — Jaime Reis

7/02 MERGE OR CONCENTRATE? SOME INSIGHTS FOR ANTITRUST POLICY
 — Margarida Catalão-Lopes

8/02 DISENTANGLING THE MINIMUM WAGE PUZZLE: ANALYSIS OF WORKER ACCESSIONS AND SEPARATIONS FROM A LONGITUDINAL MATCHED EMPLOYER-EMPLOYEE DATA SET
 — Pedro Portugal, Ana Rute Cardoso

9/02 THE MATCH QUALITY GAINS FROM UNEMPLOYMENT INSURANCE
 — Mário Centeno

10/02 HEDONIC PRICES INDEXES FOR NEW PASSENGER CARS IN PORTUGAL (1997-2001)
 — Hugo J. Reis, J.M.C. Santos Silva

11/02 THE ANALYSIS OF SEASONAL RETURN ANOMALIES IN THE PORTUGUESE STOCK MARKET
 — Miguel Balbina, Nuno C. Martins

12/02 DOES MONEY GRANGER CAUSE INFLATION IN THE EURO AREA?
 — Carlos Robalo Marques, Joaquim Pina

13/02 INSTITUTIONS AND ECONOMIC DEVELOPMENT: HOW STRONG IS THE RELATION?
 — Tiago V. de V. Cavalcanti, Álvaro A. Novo

2003

1/03 FOUNDING CONDITIONS AND THE SURVIVAL OF NEW FIRMS
 — P.A. Geroski, José Mata, Pedro Portugal

2/03 THE TIMING AND PROBABILITY OF FDI:
 An Application to the United States Multinational Enterprises
 — José Brandão de Brito, Felipa de Mello Sampaio

3/03 OPTIMAL FISCAL AND MONETARY POLICY: EQUIVALENCE RESULTS
 — Isabel Correia, Juan Pablo Nicolini, Pedro Teles

4/03 FORECASTING EURO AREA AGGREGATES WITH BAYESIAN VAR AND VECM MODELS
 — Ricardo Mourinho Félix, Luís C. Nunes

5/03 CONTAGIOUS CURRENCY CRISES: A SPATIAL PROBIT APPROACH
 — Álvaro Novo

6/03 THE DISTRIBUTION OF LIQUIDITY IN A MONETARY UNION WITH DIFFERENT PORTFOLIO RIGIDITIES
 — Nuno Alves
7/03 COINCIDENT AND LEADING INDICATORS FOR THE EURO AREA: A FREQUENCY BAND APPROACH
— António Rua, Luís C. Nunes

8/03 WHY DO FIRMS USE FIXED-TERM CONTRACTS?
— José Varejão, Pedro Portugal

9/03 NONLINEARITIES OVER THE BUSINESS CYCLE: AN APPLICATION OF THE SMOOTH TRANSITION AUTOREGRESSIVE MODEL TO CHARACTERIZE GDP DYNAMICS FOR THE EURO-AREA AND PORTUGAL
— Francisco Craveiro Dias

10/03 WAGES AND THE RISK OF DISPLACEMENT
— Anabela Carneiro, Pedro Portugal