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ABSTRACT: Starting from microeconomic foundations, we derive a general
formula for the aggregation of outputs of heterogeneous firms (or sectors), and
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aggregate economy. The firms are subject to temporary technology shocks, but
the aggregate output has radically different dynamical properties, and a special
form of long memory and nonlinearity never used hitherto. We study, analytically,
the implied time series properties of the new process characterizing aggregate
GDP per capita. This process is more persistent than any dynamically-stable
linear process (e.g. autoregressions) and yet is mean-reverting (unlike unit-root
processes), and its volatility is of a greater order of magnitude than that of any
of its components. This amplification of volatility means that even small shocks
at the micro level can lead to large fluctuations at the macro level. The process
is also characterized by long cycles which have random lengths and which are
asymmetric. Increased monopoly power will tend to reduce the amplitude and
increase the persistence of business cycles. Strikingly, we find that the nonlinear
aggregate process has an S-shaped decay of memory, similar to the data but unlike
linear time series models such as the widely-used Auto-Regressive Integrated
Moving-Average (ARIMA) processes and their special cases (including fractional
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1 Introduction

Starting from microeconomic foundations, we derive a formula for the aggrega-
tion of outputs of heterogeneous firms (or sectors). These firms are subject to
temporary technology shocks within an otherwise conventional model of Real
Business Cycles (RBCs), but the aggregate output has a special form of long
memory and nonlinearity, not discovered hitherto. One of the implications of
our results is that two of the most counterfactual aspects of current RBC mod-
els, i.e. the lack of persistence and the need for large aggregate shocks,! are
successfully dealt with inter alia solely through going beyond the assumption of
a representative firm. FEarlier work on the effect on time-series memory of ag-
gregating over heterogeneous entities includes Robinson (1978), Granger (1980),
Lewbel (1994), Chambers (1998), Forni and Reichlin (1998), Linden (1998), Pe-
saran (1999), Lippi and Zaffaroni (2000). Furthermore, dissatisfaction with the
simple unit-root hypothesis in Auto-Regressive (AR) macroeconomic models, and
the need for alternatives such as long memory models, has been highlighted in
the work of Diebold and Rudebusch (1989), Haubrich and Lo (1991), Rudebusch
(1993), Diebold and Senhadji (1996). In AR models, memory decays exponen-
tially (Integrated of order 0) or is infinite (Integrated of order 1), but nothing
in between. Long memory models fill this gap, and our work will give rise to a
new nonlinear type of such a model, from microeconomic foundations. Strikingly,
we find that the analytic nonlinear aggregate process for GDP has an S-shaped
decay of memory, similar to the data but unlike linear time series models such as
the widely-used Autoregressive Integrated Moving-Average (ARIMA) processes
and their special cases, including fractional Integration.

One of our contributions is to develop a general equilibrium model, based
on the monopolistic competition framework of Dixit and Stiglitz (1977), that
deals with the heterogeneity of the productive sector while preserving analytic
tractability. Previous studies of the effect of aggregation on persistence started
by modelling the economy as divided across N sectors, each one following its
own growth path, then showing that the aggregate output over these N sectors
is more persistent than an individual sector’s output. While making a useful
contribution as a starting point, this early approach did not incorporate the
feedback mechanism which is at the heart of general equilibrium theory.

There is an additional problem with the existing linear aggregation methods.
In the aggregation literature obtaining explicit time series results, the logarithms
of components of GDP have been modelled as (say) AR processes, then added up.
This geometric averaging is not compatible with the way GDP data are compiled,
for example by adding the levels of GDP components whose logarithms may follow

!The internal propagation mechanism of RBCs has been characterised as weak, and they
require unrealistically large economy-wide technology shocks to account for the variations in
the Solow residuals. See for instance Rotemberg and Woodford (1996) and Muellbauer (1997).



a linear process.? Another contribution of our paper is to solve analytically
this aggregation problem explicitly, within an even more general aggregation
framework motivated by economic theory.

In spite of the very general setting of our paper, we are able to obtain an
explicit closed form solution for the equilibrium. This solution holds for general
distributions of firms. It is highly nonlinear, yet it is sufficiently tractable that
its time-series properties can be obtained by analytical methods. As expected,
it is much richer than in the previous aggregation approach and features several
effects that were masked by the straightforward arithmetic averaging. We find
that the result is an unconventional nonlinear time series process for GDP. It is
radically different from the process followed by the firms’ productivities, which
are conventional ‘stationary’ ARMA processes. This new process is nonlinear,
more persistent than any dynamically-stable ARMA and yet is mean-reverting
(unlike unit-root processes). Its volatility is of a greater order of magnitude than
that of any of its components. This amplification of volatility means that even
small shocks at the micro level can lead to large fluctuations at the macro level.
The process is also characterized by long cycles which have random lengths and
which are asymmetric. Our explicit formulae allow us to trace and quantify the
effect of economically-meaningful parameters. For example, increased monopoly
power will tend to reduce the amplitude and increase the persistence of business
cycles. Our explicit formulae also allow us to estimate, in a simple way, the time
series behaviour of GDP from the data without having to resort to simulations or
calibrations. We find that the data do not support the autocorrelation function
(ACF) specifications of ARIMA models, but support the S-shaped ACF which
is implied by our economic model. Relative to linear (e.g. ARIMA) models, the
ACF of our aggregate process implies a slower decay of memory initially, followed
by a steep drop.

The plan is as follows. In Section 2, we modify a standard RBC model of mo-
nopolistic competition by assuming that the productivity of firms are subject to
idiosyncratic and to common (economy-wide) shocks. We then derive the funda-
mental intertemporal equilibrium path of the economy and we derive analytically
the dynamic process followed by GDP per capita. In Section 3, we introduce the
statistical setup for the new aggregation procedure which followed from solving
the economic model of Section 2. We then work out the time series properties of
GDP per capita. The derivations are collected in an Appendix where the novel
econometric results on aggregation are derived, and which also contains solu-
tions to technical problems that are of independent interest, including a lemma
of potential applicability in statistics and applied mathematics.

2Tt is standard practice in economics to model linearly the process driving logarithms of
positive variables. If levels (not logarithms) were modelled as a linear process, then the changes
would be in absolute (not relative or percentage) terms. Furthermore, if the errors were not
restricted to be positive, then the level of the series (e.g. component of GDP) could become
negative in the model.



2 Framework

In an environment with technological shocks, firms whose technology progresses
at an above-average rate will operate at a below-average cost. In turn, these firms
will have an incentive to lower their price so as to expand their market share.
Consequently, the weight of these firms in the economy will increase relative to the
weight of firms which experience an adverse shock. Additionally, to the extent
that the output of one firm can be used as the input of another, a favourable
technological shock to one firm will ultimately benefit the whole economy. Simply
aggregating over N growth paths, as the literature on aggregation has done so far,
would have amounted to assuming there is no substitutability across sectors and
no inter-industry trade. One of the most appealing features of general equilibrium
theory is that agents do not use ad-hoc rules, but adjust their behaviour to other
agents’ actions; and this is the approach we adopt in our model.

Modelling a heterogeneous productive sector under uncertainty requires us to
make choices. Should firms operate under constant returns to scale, the firms with
the lowest production cost could undercut their competitors and, under perfect
competition, drive them out of business. Some mechanism must be invoked that
will yield an optimal size for the firm. Our own choice is to obtain an optimal
firm’s size by using a framework of monopolistic competition of Dixit and Stiglitz
(1977). Such a monopolistically competitive setup has recently been used by
Devereux, Head and Lapham (1993, 1996) and by Gali (1999) in RBC models,
showing that it was more successful than perfect competition. Our results are
therefore directly comparable to theirs and guarantee that the effects obtained
are indeed due to aggregation and not to some other feature.

Subsection 2.1 outlines our baseline model, a discrete-time RBC model with
a large fixed number of heterogeneous monopolistically competitive firms a la
Dixit-Stiglitz and a representative infinitely-lived agent @ la Ramsey, and where
accounting is performed in terms of some numéraire. Subsection 2.2 solves for the
model’s equilibrium at any given period, while Subsection 2.3 derive the optimal
dynamic link between the static equilibria.

2.1 Outline of the model
2.1.1 Intermediate input sector

Technology There is a fixed number N of infinitely-lived monopolistically com-
petitive firms, each one producing a non-storable differentiated product. Firm n
produces according to a standard Cobb-Douglas production function which takes
capital and labour as inputs

nt = Hn,t kz,tlrlL,it’h S (07 1) (1)

where g, is its output at time ¢, 0,,; is its technical efficiency and k4, l, are
the inputs of labour and capital used up by the firm. Each firms’ productivity
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0, is subject to technology shocks that follow processes which will be detailed
in (23) of Section 3.

Producer optimization The monopoly firms do not own any capital. In-
stead, they hire, in each period, physical capital and labour on competitive fac-
tor markets. Because the Modigliani-Miller theorem applies to our setting, this
assumption entails no loss of generality. The nominal profit of firm n in period ¢
is

Tnt = Dngnt — (U kng + Wily )

where, in period ¢, p,: is the price of the product, w; is the nominal wage rate
and 7; is the nominal rental. The firm is facing a demand curve which we will
derive in (5) of Subsection 2.2.1. Hence, it is facing a sequence of unrelated profit
maximizing problems and its objective in period t is

kmax ﬁn,tqn,t — (;Lvt kn,t + wtln,t> s SUbjeCt to 0n7t ]{7;17t l711,7t’y = Qnt- (2)
n,tytn,t

Ownership Each firm will make a positive profit in each period, making a
firm’s ownership valuable. Firm ownership is traded in a stock market as shares
of stocks and a firm’s profits are immediately distributed to its shareholders as
dividends. The representative agent initially holds all the shares and share prices
will adjust to make him willing to do so in every period.

2.1.2 Final good sector

The final good industry, operating under perfect competition, uses the specialised
inputs to produce a final good according to the standard CES aggregation func-
tion, see for instance Bénassy (1996),

1 N 1/p
Ye = [Nlp Z qz,t] ) p S (07 1)7 (3)
n=1

where 3, is the aggregate output of the final good industry. Since this production
function exhibits constant returns to scale in the inputs qg., and since this sector
is perfectly competitive, final good firms make zero profits, and their number
and the distribution of their ownership is immaterial. Notice that the elasticity
of substitution between any two products is 1/ (p — 1). The final good industry
generates a derived demand for the differentiated products, which, we will see,
displays a constant elasticity of demand 1/ (p — 1).

The aggregate output y; can be used either for consumption or for physical
investment purposes. Investment in period ¢ increases the capital stock of period
t + 1, i.e. with a one period lag. In order to be able to derive a closed form



solution for the intertemporal equilibrium of our economy, we need to assume, as
in Devereux et al. (1993, 1996), a 100% depreciation rate on capital. Hence, the
stock of capital in period ¢ + 1 is equal to the investment of period ¢. All capital
is purchased by the representative consumer. The assumption of full depreciation
will be relaxed later in Corollary 2 of Section 3.

2.1.3 Representative agent

There is one infinitely-lived representative agent in this economy. He inelastically
supplies labour, and we normalize labour supply at [; = 1. He also owns all the
share of stock and all of the outstanding capital.

Asset markets The consumer can invest in two types of financial investments,
both risky: physical capital and shares of stocks. Let {uvf,;},~, be the (endoge-
nous) sequence of ex-dividend capitalized real values of firm n and let {m,;},~,
be its stream of real profits and/or dividends. The ex-dividend real value vf, of
this portfolio, the gross real return on the market portfolio 7;, and the aggregate
real profits 7,1 are

N — _ N

- __ — _ /Uft+1 + 7Tt+1 h — _

Uft = Ufn7t, ) = ———, WNEere me41 = 7Tn,t+1-
n=1 vft n=1

Let 7,1 be the gross real return on investing in physical capital, which is equal
to the rental, by the 100% depreciation assumption. At an equilibrium, aggregate
real profits 7,1 are fixed percentage of aggregate output 4,1 and the same is true
for 4;1. Therefore, the stream of dividends {7, },~, can be duplicated by investing
in physical capital which means that these two risky assets are collinear.> Hence,
the gross return on the market portfolio must be equal to the gross return on
physical capital

i,

t = U

where 7; is this common gross real return. Let a; be the real value of the financial
wealth of the consumer at the end of period ¢t. At an equilibrium, the consumer
must hold all physical capital k,,; and the market portfolio vf,. His equilibrium
financial wealth must be

at:kHl +ﬁt7 VtENU{O}

3Note that, because of our representative consumer assumption, the equilibrium consump-
tion allocation determines all the marginal utilities of every contingent consumption plan, i.e.
they define a complete set of Arrow-Debreu state-contingent securities, see for instance Tal-
main (1999). This set of shadow securities can be used to price (by arbitrage) any arbitrary
(stochastic or deterministic) stream of payoffs.



Since both components of @, have the same gross return, 7, is also the gross
return on the consumer’s portfolio. Let the consumer’s consumption (of final
goods) be ¢, his dynamic budget constraint can be expressed as

Ay = 11 + Wy — G,

where w; is the real wage in period ¢, and we recall that the consumer supplies one
unit of labour per period. Given the (endogenous) initial market capitalization
of the firms {vfn’_l}nNzl and the initial stock of capital in the economy kg, his
initial financial wealth is a_; at the end of t = —1, and is 7pa_; at the beginning
of t =0, where

a_1 = ko —+ E—l and %Oa_l = %0 (ko —+ W—l) .

We are now in a position to state the consumer optimization.

Consumer optimization The consumer wants to maximise the present value
of its expected utility subject to his budget constraint:

max_ F,p
Ct:{poao}t

o)
Z ' log ct] St ap = a1 +wy — ¢, and a_q = ko +vf _,,
=0

(4)
and subject to the transversality condition implied by the intertemporal budget
constraint, where {p,a,}, refers to the optimal portfolio allocation at time t,
i.e. the weights of each asset in the consumer’s portfolio. Here E,; [¢] is the
expectation operator taken conditionally on the information available at time 7,
0 is the rate of time preference and the utility of consumption is logarithmic.

2.2 Equilibrium
2.2.1 Producers’ optimum

The producers’ optimization problems, both in the final good sector and in the
intermediate input sector, are static: they maximize period by period as their
decision in one period does not affect their problem in any other period.

Final good industry Cost minimization of (3) gives rise to the derived demand
for good n, ¢,+, as a function of its own price p,, of the price of the final good
p: and of total output of final good y;

1/(1-p) N
Dy Ys . 1 1 1
nt = | — = Wth—_—_—g ,
Int [ﬁn,t] N ! v N (5)

with v = p/ (1 — p) € R,

4Equation (5) expresses the derived demand for intermediate input n. The elasticity of this
demand is 1/(p — 1) which implies that the optimal pricing strategy of the individual producer
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Intermediate input industry We now turn to deriving the minimal unit cost
of the monopoly firm. Solving the cost minimization problem associated with (2),
we find that every monopoly firm in the economy will choose to operate with the
same capital /labour ratio, which consequently will be equal to the economy-wide
capital /labour ratio k;

i 7 W
—=———=%k =1,2,...,N.
lmt 1_7% ts n ) <y ) (6)

The derived demand for labour and capital by the intermediate input firm n
producing g, is

and [,; = qu’lta. (7)
nit Kt

k7 g,
ke, = t  Angt

7 en,t

Optimal prices The static nature of the various firms’ optimization problem
enables us to calculate the various prices and outputs as a function of the cur-
rent state variables (kt,{en,t}jf:l) without reference to other periods. The profit
maximizing policy of firm n is a fixed mark-up (1/p) over cost. Using the opti-
mal capital/labour ratio (6) and the derived demand for the two factors (7), the
optimal price charged is

~ W 1

it = ————————D. 8

N (T )
Using this and the aggregate price level of (5), we find that the ratio of prices is
inversely proportional to the ratio of productivities

Or,
P _ Unt 9)

ﬁn,t et 7

where the aggregate productivity 6; is obtained as

0;

1 N
52O (10)
n=1

Substituting (9) into (8) gives us w; which can then be plugged into (6), and we
get

wy=(1—7)pb k] and i; = (11)

is to set a constant mark-up of (1 — p)/p = v~! over its unit cost. The variable v~ turns out

to perform two functions in our set-up: () it measures monopoly power, and (iz) it measures
the degree of complementarity across the N monopolistically-competitive firms of the economy.
We will not attempt to disentangle these two aspects.
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Factor allocation and final output Substituting for the relative price from
(9) into the demand function for good n given by (5), we obtain the output of

good n as
0, 1/(1-p)
w3 % (12)

Substituting into the firms’ demand for labour (7), we find

I, = O 1w
.t 92/(17p) k] N

Aggregating over all monopoly firms, and recalling that labour is only used in
the production of intermediate inputs and that the consumer inelastically supplies
one unit of labour in each period (I; = 1), we have the per-capita production

N
_ _ Y _ 1
1_;ln,t_m<:>yt_9tkt. (13)

Interpretation In each period, only the final good has a final use (as the
intermediate inputs do not contribute directly to utility and cannot be used for
investment). Hence, the question of resource allocation in period t consists in
finding how to allocate the two factors (k; which is predetermined and [, = 1
which is fixed) so as to maximize the output of the final good y;. The optimal
allocation we found is that firm n will hire labour ,, ; and capital k,,; in quantities

91/ 91/

It = %ﬁ and  ky, = %QL:
leading to a final output production per capita of y, = 0, k;. Equation (13) can
be used as a black-box to translate the stock of capital k; and the productivity
of the economy 6, into final output ;. In fact, if a central planner were to be put
in charge of the distribution of factors at time ¢ with the goal of maximizing final
output y;, he would choose exactly the same resource allocation: because firms
all use the same mark-up, they distort factor allocation symmetrically resulting
in no static relative distortion of resources. However, absolute factor income is
distorted as profits claim a share of national income.

kt7

2.2.2 Consumer’s equilibrium

Any solution to the consumer’s problem (4) must be an Euler path. In particular,
for any asset x with real gross return i,,.; in period ¢ + 1, the consumer will
invest in this asset at time ¢ up to the point where

Lk, {“‘”1} . (14)

Ct Ct+1



2.3 Dynamic equilibrium

A dynamic equilibrium is a process for prices and for the allocation of resources
and output such that: (7) the producers are optimizing in every period (their
static problem), (i) the consumer is optimizing (his intertemporal problem), (i)
the goods markets and the asset markets clear in every period. Setting prices and
quantities as in Subsection 2.2.1 ensures that the producers are optimizing and
that the goods market are in equilibrium. The asset markets consists of the
market for shares of stocks and of the market for physical capital. The market
for shares is in equilibrium if the representative agent wants to hold 100% of the
existing shares, i.e. if (14) holds for all {{imt}zo}f:l when the agent owns all
the firms. Clearly, physical capital is the only outlet for aggregate accumulation.
The market for physical capital is in equilibrium when the aggregate output not
used for immediate consumption is equal to the amount of capital required in the
next period, i.e.
ki1 = sy, s =1-— 27 (15)
Yt

where s; is the national savings rate. Equilibrium in the physical capital market
obtains when the consumer can lease, at time ¢ + 1, all the capital k;; he accu-
mulated in period ¢, at a rental that validates his expectations for that period.

Finally, the consumer must be optimizing; i.e. the Euler equations (14), his
dynamic budget constraint in (4) and the intertemporal budget constraint must
all be satisfied. In particular, the Euler equation must be satisfied for the real
gross return on physical capital i;,1. Substituting for i;,; from (11), we find

1 6it+1} 1 { Syp ]
— E. _ = E. . 16
Ct i { Ct4+1 (1 - St) 0, k? g 0, (1 - St+1) St k’? ( )

Using the method of repeated substitutions, we find that

1
]_—St

— 146ypE [—]
I — 8441

= [1+8*+---+(S*)T]+(s*)THE.t[ 1

} , where s* = 6 vp.
1= 8411

One solution to this difference stochastic equation corresponds to the transver-
sality condition lim, o, (s*)™"" Eajs [1/(1 = 844,41)] = 0, which will hold if the
national savings rate is bounded away from 100%. It can be shown that this
condition implies that the intertemporal budget constraint holds. This solution
corresponds to

st =5"=06p, vVt e NU{0}, (17)
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and is our equilibrium solution. The other Euler equations (14) for the gross
returns on equity {in,t}le determine the valuation of the firms {vfn,t}i:]:l.

Substituting from (17) for s; into (13), we obtain the dynamic equation for
GDP per capita, characterizing our fundamental path, as

ye =00 () yiy- (18)

The dynamic properties of the process {y;} of (18) will be determined once we
derive those of {6;}, where 6, is defined in (10). We now turn to the derivation
of the implied time series properties of GDP.

3 The effect of heterogeneity on the Time Series
properties

In standard RBC models which give rise to ARs, memory decays exponentially
(dynamically-stable AR roots) or is infinite (unit root), but nothing in between,
as the AR root of largest magnitude increases to 1. Macroeconomic processes
require a more elaborate characterization, and we shall show that the economic
model outlined in the previous section gives rise to a process which is very different
from ARs.

Why are the published results in the time series literature on aggregation not
applicable here? There are a number of complications that our economic model
gives rise to:

1. The aggregation is not linear (arithmetic mean) and is not log-linear (ge-
ometric mean), either of which could have been handled by current tech-
niques. Here, we have a hybrid made of the arithmetic sum of geometric
ARs. This results in a highly nonlinear process, for which linear models
(e.g. ARIMA; see Abadir and Taylor (1999) for precise definitions) will not
capture all the salient features.

2. Dependence between the various firms (hence AR components of the ag-
gregate) complicates the setup, and the time series properties have not
been worked out in the general case, except in Granger (1980) where the
aggregation is log-linear and the dependence structure is simplified.

3. The results of Abadir and Talmain (1998) make it now tractable to char-
acterize explicitly the effect of the nonlinear transformation of time series.
However, they do not consider any of the aggregation issues raised here.

All these complications are not avoided by non-CES aggregation. Any other
method which sums geometric ARs (i.e. which sums the levels of technology
shocks whose logarithms follow a linear process) will run into similar nonlineari-
ties. This aggregation is essential in economics, where one often aggregates levels

11



of variates which are strictly positive (hence not representable by Normal ARs
in levels which can become negative). The main distinction of our aggregation
approach is encapsulated in the following simplified example of two different ag-
gregations:

N N
S logans # log (z q>
n=1 n=1

where the ¢,;’s follow some multiplicative process such that g,: > 0 and their
changes are in percentage terms. The left hand side is the aggregation studied in
the time series literature, but it is not the one that arises in economics: compo-
nents of, say, GDP are not log-transformed before being added up. However, the
right hand side is what arises from a proper aggregation of positive components
of GDP, and this gives rise to a sum of multiplicative processes which is a nonlin-
ear function even when components are added linearly (special case of our CES
in (3)). The distinction may seem subtle, but it introduces an important statis-
tical nonlinearity, as we will demonstrate in this section. Some of the resulting
conclusions will be strikingly different from those in the existing literature, and
the main highlights are:

1. through the heterogeneity of firms, temporary shocks are magnified into a
more persistent process, and this furthers our understanding of the propa-
gation, magnitude and persistence of such shocks;

2. we are able to trace and quantify the effect of economically-meaningful
parameters (e.g. extent of monopolistic power in the economy) on these
time series patterns;

3. the resulting process is highly nonlinear, behaving as mean-reverting in
some cases but like a random walk in other cases, all within the same
model (unlike existing statistical long-memory models);

4. the slowly-decaying S-shaped autocorrelation function (measuring the per-
sistence of business cycles) implied by our economic model turns out to be
close to the one observed from the data, but very different from the one
implied by parsimonious ARIMA models.

We now introduce in Subsection 3.1 the setup for solving the dynamics in (18)
for GDP per capita, which follow from the microeconomic foundations. In Sub-
section 3.2, the time series properties are derived and described, and the setup
is generalized to allow for any nonzero depreciation rate. Finally, Subsection 3.3
considers further properties and empirical implications of the dynamic process.

12



3.1 Statistical setup

Let the individual sequences {6,,},~, be generated by the geometric (multiplica-
tive) AR process

1Og gn,t = Uy, + ap, 10g Qn,t—l + Ents (19)

where |a,| < 1 and {e,.},~, ~ IN(0,02) is a sequence of Independent Normal
variates with zero mean and variance o2. After Theorem 1, we give a condition
(likely to be satisfied in practice) which extends our results to more general
ARMA processes, so the full complexity of an ARMA is not yet needed at this
stage of derivations.

In (19), we condition upon 6, o = 1, since the model is unaffected by the value
of 0,0. To see this, rewrite the process as

1Og én,t = :&’n + an 10g én,t—l + Ents

where én,t = 0,.t/0n0 (giving én,O = 1) and fi,, = p,, + (a, — 1) 1logb,,0, so that
any other value of 0,y can be absorbed into a redefined ,, without changing the
dynamic structure of (19). Furthermore, in all the derivations of the previous
section, expectations are taken conditionally on the information available at time
t = 0, so that randomness begins with ¢ = 1.

In (19), the unconditional mean of log6,,; is u, /(1 — ), which varies over
n even when p is fixed (unless u = 0). We are interested in having a varying
unconditional mean, modelled parsimoniously. We therefore simplify the setup
by assuming henceforth that p,, = u for all n.

Let 7 € NU{0} and v € R,. Then, the autocorrelation function of {0%}21
for any given n is

_ Ut t47

Ttt4r = — ———— (20)
v Ut tVttr t+r

Vzoia;(lfagf)
exp (T -1

V202 (1—a2t 202 (1-ar"H7) 7
\/exp< ?ila%n)> —1\/exp( <1—a% )> -1

where v; .4, is the autocovariance function of {07’;7,5}21; see the Appendix for
details.” For large t (or small of), this function behaves as

l/20'2
exp (1_(1’% ar ) —1
Ttpdr = 22
exp ( ") —1

2
1-az

(21)

"We define the autocovariance by v, = E [(:ct” —E[z¥]) (:EQ’+T -E [:EQ’+T])] instead of
the usual E [(z} — E[2f]) (¥, , — E[2}])] which is designed only for (asymptotically) station-
ary series. Also, our definition of the autocorrelation function differs from the common one,
Ut 47 /Vrt, which can exceed 1 for nonstationary series.
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which does not depend on ¢, because the process is strictly stationary only asymp-
totically (as t — 00). It is however (dynamically-)stable for all ¢t € N, because
la| < 1.

At least three comments are in order for 7., comparing it to the well-known
asymptotic autocorrelation function o], of {log#,,},>, (i.e. the autocorrelation
function of an arithmetic AR):

1. As 7 — o0, the function (21) declines exponentially as o (by expanding
the exponential in the numerator).

2. More generally, a small-o,, expansion (expanding exp[e] for o, — 0) of
the function will reproduce the asymptotic autocorrelation function o] of
{log6,,:};°,. The same is true for v — 0. The general rule that gives rise
to such results is derived in Abadir and Talmain (1998).

3. For non-trivial o,,, the autocorrelation function depends on o,,, which ac-
tually carries the same weight as v, in contrast to the usual arithmetic
AR where o, has no effect at all on autocorrelations. This will have im-
portant implications for the effect of o,, on autocorrelation functions when
analysing the nonlinear aggregation. It is a feature that does not arise in
the traditional literature on aggregation in time series.

Now, recall that the aggregate 6, is given by (10). Let

Xy

1 N
= >0 (22)
n=1

where {6,,,},, are generated by (19). Clearly, the aggregate X; is a highly
nonlinear function of the impulses (shocks) e,; of (19), which are driving the
stochastics in this system; see the Appendix (espec. the beginning of the proof of
Theorem 1) for more details. These shocks ¢, ; can be decomposed into orthogonal
components, so that we write

108 0y = 14 n 108 Oy 1 + Uny + 5,64, (23)
with

{uns}e, ~ IN(0,w)) and Elu,uks) =0, Vk #n,
{e}2, ~ IN(0,4%) and Efuné,] =0.

The u,,; are idiosyncratic shocks, whereas the €, are common shocks whose impact
is transmitted to individual series via the scaling parameters given by the [3,,. By
definition and without loss of generality, the two types of shocks are independent

14



of each other. Furthermore, there is no loss of generality in using {e;},~, ~
IN(0,1) and

Bnét = Bn¢et = ﬂnet (24)

in order to replace Bnét by f,e: in (23), which we shall do henceforth. It is also
assumed that 1 € Ry for simplicity.

The underlying probability measure is defined over time (¢) and space (n),
and in the latter case, it is the one from which the individual parameters a,, w?
and (3, are drawn. One may specify a joint density for o, w? and 3, but there is
no reason to believe that they interact in a systematic way: «,, is independent of
the errors, with the idiosyncratic and common errors being mutually independent
by definition. It is therefore enough to specify the marginal densities of a, w?
and (. For simplicity, we will assume that o € (0,1), w € R, and § € R, are
continuous variates with density functions f, (a), f, (w) and f3(3), respectively.
We will further assume that:

1. the variate a € (0,1) is distributed according to the Beta density f, (a) =
% (1= )" /B(gas ha);

2. the variate w € R, is distributed according to the Generalized Gamma
density f,, (w) = A¥ew L exp [—h,w*] /T (g.); and

3. the variate § € R, is distributed according to the Generalized Gamma
density f5(8) = /\hffﬁ’\gﬁ*l exp [—hgﬁ’\} /T (9p);

where I' (o) is the Gamma (generalized factorial) function, B(g,h) =T (g) ' (h) /T (g + h)
is the Beta function, the parameters g,, he are all positive and further:

e h, € (0,1}, such that we exclude the unrealistic case of h, > 1 where AR
roots close to unity are almost ruled out;

e \ € (2,00) and gu,95 € (%, oo), implying the exclusion of the unrealistic
case where w = 0 and § = 0 are the most ‘likely’ values (mode of the
density).

The first assumed density is typical in the literature on aggregation; e.g. see
Granger (1980). The next two assumptions are required because of the relevance
of the variance in our geometric AR setting (unlike in the literature on arithmetic
ARs). They are reasonable, in practice, because of two reasons. First, one
would expect the average variance of idiosyncratic shocks (w?) and/or of the
amplification of common shocks (3,) to be finite. Secondly, the likelihood of
survival (existence) of firms should decline rapidly (e.g. exponentially) as the
size of the risk they are exposed to becomes larger; both after a possible mode

of the density near (but not at) zero. The Generalized Gamma is a very rich
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class incorporating many known densities as special cases; for example, the y?,
exponential, Weibull and one-sided Normal are all nested within it.

To illustrate that a Generalized Gamma is not an unreasonable assumption,
we include Figures 1 and 2 where we plot f, (w) and f3(83) for some parameter
values and compare them to the histograms for the published data. The source
is the Risk Measurement Services of LBS (1988), where a listing of the 2,150 UK
corporations’ beta and specific risk for 1988 is found. The standard deviation of
the idiosyncratic risk is simply the product of the published specific risk (given
as a percentage of common risk) and of the standard deviation of the common
risk.

The way we have defined (3, in (23)-(24) shows that the variance ¢* of the
economy-wide shock need not be forced to take unrealistically large levels in prac-
tice. Representative-firm models force 3, = ( for all firms n (i.e. no variance), so
that the variance 1) has to do all the work of accounting for the variance in 3e; (or
3é;), while in reality the existing heterogeneity of firms will already contribute
to the variance of our factor 3,¢e; (or 3,¢;).°

3.2 Time series properties of GDP per capita

Now, the question of interest is whether the autocorrelation function of the ag-
gregate series {X;} = {N~! nyzl 0}, ¢} decays more slowly than the rate in (20)
belonging to any of its typical components 6, ;, and also how it compares to the
everlasting memory of random walks. The common assumption here and in the
literature on aggregation is that N is large. However, we depart from the main
line of proofs used in the literature on the aggregation of time series. The stan-
dard approach has so far been to derive the spectrum of {9,”“5}:2 | for the special
case v — 0, then approximating the spectrum of the aggregate series, from which
one finally approximates its autocorrelation function. Instead, we take the more
direct approach of deriving the autocorrelation function of {X;} from those of

{67,},-,, and this for any v € R,.7

It can be shown that the variance of 3, is inversely proportional to h?/ ’\, namely
hiy *Var(8,) = [T (95 + %) /T (98)] — [T (95 + %) /T (95)]”-

"We needed a general result for any such v. The cost of such a generalization is that we
assumed Normality of ¢, for any given n (but not as n varies), as opposed to a general
distribution with finite first four moments which would be required for the standard analysis
of spectral estimation to go through.

16



Theorem 1 The autocovariance function of {X,} is
Vitrr = E[XiXpyr] — B[X4] B[ X 4,]

72 (16) 79549 (y4¢ (¢ 4 7) /4)3 (909 1) < I (go + he) >
(22 (t — 1)t (t+7— 1) (t+ 7)) hy 2 AT (92) T (98) T (90)

exp |vu (2t +71) +

95+2 hj;/)\ T hi/)\

exp | ——— 2| —1],

2
2 (4h3)*
and its corresponding autocorrelation function is

) [m] B

2
Viitr 2(4n3) A

ViVirers
exp | ——=| —1,|exp |—=| —

2(4h§) 2(411%) X

The approximations that are reported in this theorem are known as leading-
term approximations. They give the dominant term in the expansions of func-
tions. For more details on such issues, see Abadir (1999). The other terms, which
are alternating in sign, can be obtained as infinite series from the Appendix, but
they would add expository complications without affecting the message of this
paper.

By a standard lag-polynomial factorization in time series analysis, the leading-
term approximations given in the theorem are unaffected if the microeconomic
processes followed by the technology shocks are dynamically-stable ARMA in-
stead of AR(1) processes, as long as the AR root with largest modulus is not a
repeated or conjugate root.® This is the case if the density function of these other
roots is stochastically dominated by the density f, (o) as @ — 1.

It is possible to use spectral analysis, which is in a one-to-one relation with
autocovariances, subject to extra caution since the spectra of nonstationary series
are not time-invariant. Here, we simply infer the amplitude of cycles from the
autocovariance function, and the frequency of cycles from the autocorrelation
function.” We must stress that our measures of time-dependence are formulated

tt+r =

>

8This extension is very general. By the Wold decomposition, any stationary process has
an MA representation with time-invariant coefficients in its lag-polynomial. Furthermore, this
polynomial can be approximated arbitrarily closely by Padé approximants, namely the ratio of
two low-order polynomials, which is precisely the parsimonious ARMA representation.

9Non-Normal processes could contain more information than is revealed by their first two
moments. However, we focus on them here, because they answer our questions about amplitude
(volatility) and persistence (memory) of business cycles.
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in terms of moments, rather than with reference to a particular statistical model
which may or may not be correct. For example, we do not use AR parameters
as measures of the extent of time-dependence, since these would be inadequate
in the current context.

Recall that X; = 67, with v = p/ (1 — p) € R, as the parameter measuring
the degree of substitutability and/or competition between the components g, ; of
GDP. We can now state the following remarks on the theorem relating to {X;}:

1. Clearly, the (autoco)variance of the series changes over time, indicating that
the process which we have for {X;} is not strictly stationary. As we shall
see in Remarks 6-8 below, it is a long-memory process and there are cases
where it can even behave like a random walk. One can only talk about
‘the’ (autoco)variance of the series with reference to some point in time.
The remarks to follow will either presume conditioning on a fixed point
in time, or tracing the evolution as time passes. Furthermore, (31) of our
Appendix gives the mean of the stochastic trend of {X;}, which turns out
to be time-varying and not symmetric around any value in R, .

2. An increase of A implies that fewer large values of § and w are likely to be
observed (as implied by the density function of the Generalized Gamma),
which should dampen the magnitude of shocks to ;. As one would expect,
the exponential term containing (¢ + 7'))‘/ % in Vii4r of our theorem shows
that this is indeed the case: the amplitude of the business cycle declines
as A increases beyond 4. As for the persistence of the cycle, the effect is
less pronounced and generally shortens the cycle (see Remarks 6-8 below
for more detail).

3. What are the effects of v, g, and h, on the amplitude of the business
cycle? The parameters v~! (mark-up, or degree of complementarity and/or
monopoly power), hgl (extent of common shock and heterogeneity of firms)
and h! (extent of idiosyncratic shock) have an important influence. The
effect of changing hgl and h ' on the diffusion (amplification) of common
shocks is similar to changing v* by varying v. Letting either of hEl, h;torv
tend to zero dampens the amplitude of the business cycles, while increasing
them will have a dampening effect only if A > 4 (i.e. if the decay of the tail
of the density of § and w is sufficiently fast). Finally, of the two shocks in
our model, the common shock is the more potent one, as is seen from the last
exponential term of V; ;. in the theorem. The spread of the two shocks is
also positively related to gz and g, with both increasing the autocovariance
of the series over time, albeit in a weaker way than the scaling parameters
hgl and h'. Notice that the parameters of the distribution of «,, have
little relative impact, so long as roots close to unity are not excluded (i.e.
given our earlier assumption of h, € (0,1]), with the impact of roots close
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to zero (i.e. effect of g,) being virtually non-existent.!'® The parameters
of the Beta density for «,, are not as important as the other heterogeneity
parameters A and h,, once these are accounted for (which is not the case
in the time series literature). Some technical aspects of this phenomenon
are discussed after (31). This is another manifestation of the importance
of scaling in nonlinear models; see the discussion in Remark 3 after (21).

4. What are the effects of v, g, and h, on the persistence of the business cycle?
Here, v and hgl have an important influence, but i ' does not. The effect
of hgl on the persistence of common shocks is similar to v* as v varies,
which we shall analyse more fully in Remarks 6-8 below. Other parameters
have a lesser effect on memory, if at all.

5. We have talked about the effect of parameters in our setting of heteroge-
neous firms. Now we need to compare our theorem’s result with representative-
firm models. In the latter, when a firm is hit by dynamically-stable tech-
nology shocks, we can use (20). When it faces a geometric random walk
(unit root)

log x; = log ;1 + &4, {ei}r2, ~IN(0,07),
the procedure leading to (20) and given in the first part of the Appendix
would yield
2 2

v-o

2
(1) exp [V20%t] — 1
rt,t—i—T = )

exp 202 (t+ 7)) — 1

1
s = |

(2t + 7')] (exp [P0%t] — 1),

where the superscript o) refers to the unit root case, and lowercase v,
and 7, refer to the case of a single AR series (no aggregation). Note the
linearity of the exponentials in »? and ¢, and the absence of a t + 7 term
in the numerator’s exponential. Exponential terms appear, because we are
dealing with a geometric random walk instead of an arithmetic one. We
are now able to compare our theorem to representative-firm models.

6. Ast — oo or ¥ — o0, the binomial expansion gives

T T2

—
l4+-~ld———
Tty T

10Unlike the result for h,, the one about the ineffectual parameter g, is usual in the time
series literature. It has allowed the generalization of the density of «, to a semiparametric
specification to be introduced with no additional complications; see for example Lippi and
Zaffaroni (2000).

19



so that
Rityr =~ exp|—

(1) v o
rt,t—i—T = exXp | — 9 T,

where the decay rate of our theorem’s R, is faster than the one for the
unit-root process, rgt)ﬂ, as either t, 7 or v increase.!!
. As 7 — 00, one may analyse the memory features of the process as we
consider points that are further apart in time, and we have
_1
A2 : v ((t + 1) =28 (t + 7'))
Ripyr ~ |exp|———=| —1] exp|—
) 2
2 (4h3)>

4 (4h3)

" L2052
Tidir = /1 —exp[—1202t] exp [— 5 7‘]

where the decay rate of Ry, in terms of 7 is again faster than for r§71t)+7.

. As v — 0, the rate of decay of the memory of {X;} is slower than the
corresponding ] of the stable (|a,,| < 1) AR of (20), whatever measure of
autocorrelation is adopted, as we have

t
Ry, ~
bt t+71
(1) [_1
T o~ :
b4 PR

The result for R; ;. is striking: we recover the behaviour of the random
walk for our process, even though there are no unit roots in any of the
components of the aggregate X;. The resulting effect is that our model will
generate seemingly random-walk behaviour as v — 0, though the model
has generally less memory than a random walk. This may help interpret
the findings of a near-unit-root in some macroeconomic series when simple
(log-)linear models are fitted to the data.

Direct comparison of the nonstationary’s Ry 14, with the stationary’s r; ;4. (not the unit-

)

root’s 1, ¢, ,) of (20) for extreme parameter values would require writing |o|” = exp [7log|a]]

then doing some manipulations. Long-memory processes like {X;} = {N~! ij:l 0, .} will

have more memory than its stable components {Gfm}, and looking at autocovariances (ampli-
tudes) or Vi 4,/Vi: would be more instructive if comparing processes with different memory
characteristics.
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9. The parameter v = p/(1 —p) € Ry is the inverse of the mark-up, and
is inversely related to complementarity and to monopoly power. The case
v — 0 where complementarity and/or monopoly power increase leads to the
aggregate series having very long memory, to the point of being confounded
with a unit root (Remark 8). This contrasts with perfect substitutability
and/or competition where v — oo (Remark 6) leading to less memory in
the aggregate series, and a clear distinction from the permanent memory of
a unit root. Unlike (log-)linear models, our nonlinear model can generate
both types of behaviour, depending on v, and provides a rich framework
for analysing economies with different characteristics.

10. The interpretation of the special case of extreme complementarity and/or
monopoly power is worth exploring in depth. When v — 0, CES aggrega-
tion collapses to Cobb-Douglas geometric averaging, as studied in the time
series literature albeit in a less general context which typically omits depen-
dent (economy-wide) shocks there. Granger (1980) seminal paper being an
exception to this omission of the dependent case, why are his results differ-
ent (e.g. compared to Remarks 3 and 8 here)? In a paragraph starting at
the end of his p.235, Granger (1980) talks about approximating the spec-
trum of the aggregate of stochastically dependent AR series in terms of the
spectra of independent series, dropping the interaction terms as a simpli-
fying approximation. Whereas we approximate the target autocovariance
of {X,} directly, he approximates the aggregate (X; in our context) by its
mean, then uses this for a further approximation of the spectrum (hence
ACF). The ACF of {X;} and the ACF of its mean are very different. The
latter disregards interactions over time between the terms in the compo-
nents of the aggregate X;, and the heterogeneity of the §’s is unfortunately
cancelled out by the approximation of X; by its mean: only E[3,] (but
not Var((,) etc.) remains in Granger’s approximation. The difference be-
tween the two approaches is highlighted by the more recent warnings of
the econometric literature on functional central limit theorems, where cor-
relations build up instead of cancelling out. It also explains why we end
up with unit-root like behaviour as v — 0, which is a stronger I(1) form
of memory than Granger’s I(1 — ¢/2), ¢ > 0, in his notation (his dy, and
d, are 0 here), this stronger memory being due to the interaction of the
dependent terms.

11. The autocovariance function V; ;- is not level-invariant; that is, it naturally
depends on u. However, the leading term of the autocorrelation function
Ry 14+~ in our theorem does not depend on p.

We now need a result linking the memory of {X,} = {N"* 3N | 0, +} to the
required one for the per capita GDP {y;}, by means of X; = 6; and (18).
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Corollary 1 The leading terms of the autocorrelation functions of {log X;} and
{logy;} coincide.

The Cobb-Douglas parameter 7 has almost no impact on the memory of y;,
as it is swamped by the long-memory impact of aggregation, and all the previous
remarks following our theorem on {X;} apply to {y:} too. The series {X;} can
be thought of as a nonlinear “common stochastic trend” which drives the series
of interest; e.g. GDP per capita {y;}.

We have given the autocorrelation function of { X;} in our theorem. For large
t or T, it is possible to obtain an explicit expression for the ACF of {log X,}. This
is done by the method in Abadir and Talmain (1998). Here, it implies doing a
large-hg, h,, (i.e. small-variance) expansion, which downplays higher order terms
of the exponential (logfl) expansion. Applied to either of the preceding Remarks
6 or 7, the result is a slow decay of memory. For a given v, the main interest is in
the formula of Remark 7, which yields the memory features of the process as we
consider points that are further apart in time; i.e. large 7. For {logy;}, letting a
denote a positive arbitrary constant which is not a function of h,, we get

\/§ 4h2 %
Rt,t+7' = ( ﬁ)2 vt (25)
V2t (1 - (4;%)*? a7’2) 4a

which shows that memory increases with large hg (low sectoral heterogeneity, i.e.
little diversity) and small v (large complementarity and/or monopoly power). In
our setting, the effect of h,, is not as powerful as in the available time series models
of linear aggregation of arithmetic ARs. Nonlinear aggregation of dependent
series downplays the effect of h,. In contrast, the effects of v and hg are much
more important.

The assumption, in Section 2, of a 100% depreciation rate is unrealistic but
it allows us to have a closed form solution for the dynamics of {y;}. How robust
are the derived time series properties to this assumption? Let d € (0, 1] be the
depreciation rate of the capital stock in the economy, and assume that capital
accumulation occurs according to a Lucas-Prescott (1971) type of specification
(cf Abadir and Talmain (2001)) as

ke = ki_‘fl (St—lyt—l)da (26)

e.g. due to adjustment costs, and (s;_1y;_1) is investment in physical capital for
the next period. Notice that we have not solved for the process {s;} explicitly in
this equation. However, this turns out to be inessential, as the following result
shows.

Corollary 2 The leading term of the autocorrelation function of {logy,} is in-
variant to d € (0, 1], when s; € [sy, 1] where s; > 0.
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The main effect of depreciation on the autocovariance function of {log y;} is to
scale down its amplitude by a factor of d?. As for correlations, their invariance to
scaling implies that the leading term of the autocorrelation function is unchanged
by the value of d, and our previous remarks about the ACF go through without
modification.

3.3 Further properties and empirical implications

Our paper has characterized the time series process that arises from the economic
model, and has explored its properties and implications. However, it has not
derived the optimal (if any) identification, estimation and inference procedures
for dealing with its parameters, as this goes beyond the scope of this paper. For
an illustration of some of the problems that can arise and the magnitude of the
task, see Stoker (1984) and Trivedi (1985). In the remainder of this section, we
shall presume that the parameters of the densities f, () have been identified by
estimation from the micro data; cf. Figures 1-2. As it turned out in the theorem,
only a subset of these parameters really matters for the dynamics of GDP per
capita, {y;}. We now outline a simple procedure to summarize the time series
behaviour of {logy;} which does not involve estimating the parameters of the
underlying economy. The procedure fits a simplified autocorrelation function
derived from our theorem and corollary, thus describing how {log v, } evolves over
time without having to identify the underlying parameters.

The procedure is as follows. Normalize the scaling factor in (25) such that
R, = 1, and estimate from the data by (say) nonlinear least squares the resulting
autocorrelation function

v

(1 + (4hé)_% a7’2>7ﬁ )

The formula of V;;., in our theorem also suggests that the other measure of
autocorrelation, V; ., /V;, will decay at the rate

1/>‘
1_|_ i_i_i (Z)% S
hy ' hy ) " \2

when A > 4. One may nest both functional forms into the autocorrelation func-
tion

by 703
(1 + by |7] 2) (27)
for 7 € Z, and where by, by, b3 are all positive. Figure 3 illustrates its rate of decay

compared to a fractionally-integrated 1(1/3) series, AR(1) processes with a root
very close to 1, and an AR(2) with both roots very close to 1. Not only is our
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aggregate process more persistent than these ARs (as demonstrated also alge-
braically in the remarks following the theorem), but it also has a hyperbolically-
decaying S-shape which is very different from the exponential decay implied by
dynamically-stable AR models and from the immediate hyperbolic decay of frac-
tionally integrated processes. More generally, relative to linear (e.g. ARIMA)
models, the ACF of our aggregate process implies a slower decay of memory
initially, followed by a steep drop.

Why could ARIMA models not reproduce this S-shape? The AR contributes
exponentially-decaying components, while every MA lag contributes a single im-
pulse (jump) in the ACF. The Integrated component provides a hyperbolic decay
when fractional orders are allowed; but, again, no concave parts that could look
anything like our ACF’s S-shape. See also the figures in Granger and Newbold
(1986, pp. 16, 20, 28). The only way an ARIMA (a1, as,as) could generate an
S-shape is by having a3 equal to a very large fraction of the data: every point of
concavity of the ACF curve near the origin (about 1/3 of the ‘data’ in Figure 3)
would be reproduced by as many MA lags. Such an unparsimonious model would
not satisfy any Information Criterion (e.g. AIC or BIC) anyway. Furthermore,
standard RBC models have indicated that {logy;} would follow autoregressions
of at most order 2 (implying either the permanent memory of a unit root, or
exponential decays of ACFs as in our Figure 3), but not general ARIMA; e.g. see
McCallum (1989, pp. 23, 43).

As an example to illustrate how our functional form (27) fits the data com-
pared to AR models, we use UK and US data on the logarithm of GDP per
capita. The data are annual 1948-99 and 1927-98, respectively, and they give us
estimates of the autocorrelations over 1958-99 and 1937-98, respectively. Esti-
mating autocorrelations for earlier periods within this dataset would have given
unreliable results, since means and covariances would have been estimated with
less than 10 observations. Using the nonlinear least squares routine of SPSS
v.10, we estimate our (27) and compare it to the estimated autocorrelation of an
AR(2). Figures 4 and 5 present the results. For the AR(2), the estimated roots
are 0.999 and —0.058 for the UK, 0.995 and —0.037 for the US. The R? based
on mean-corrected sums of squares from these nonlinear regressions are 0.56 and
0.50, respectively. The fit is worse than the one based on our (27) whose cor-
rected R? are 0.82 and 0.83, respectively. Furthermore, our functional form gives
a shape that is much closer to the observed data than the one implied by the AR.
The latter implies a functional form which is almost linear, given how close the
estimates are to a unit root.

An important point arises again from this limited empirical exercise. If the
data were generated by our nonlinear economic process, erroneously fitting an
AR model would give near unit roots such that the fitted ACF is almost linear
and as close as possible to the data’s true S-shaped ACF. This is another reason,
in addition to Remark 8 above (following Theorem 1), why unit roots may seem
excessively common in macroeconomic datasets.
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Another important and related point comes out of comparing AR models of
the same dataset, when estimated in two different ways: nonlinear fitting of the
implied ACF (as above) versus linear estimation in the time domain. The latter
estimated roots become 0.999 and +0.058 for the UK, and 0.974 and 0.633 for
the US. The change in the latter estimate is particularly striking, and reveals
the extent to which AR models are inadequate (misspecified) for the US data:
fitting ARs in the time domain gives very different answers from fitting them in
the ACF domain.

Finally, after our theorem we have mentioned a possible refinement to our
functions, by taking the smaller-order terms from the series expansion. These
terms are oscillating, and could help represent some small cyclical deviations
around our S-shaped curve. This could add some improvement to the fit of our
functions but is beyond the main purpose of our paper.

4 Concluding remarks
Our findings can be summarized as follows:

1. We provided a fully specified microeconomically-founded model and derive
explicitly its fundamental equilibrium. This step enabled us to study ana-
lytically the time-series property of the solution. The economic model gives
rise to long-memory, and to a nonlinear process. A single-sector model with
one AR would have had exponential decay of memory and would not have
given rise to long memory (except for a unit root, which leads to infinite
memory). Aggregation means that linear ARIMA macromodels will not
pick up the nonlinearity. We have shown how the autocorrelation function
of log-linear models would be much less affected by the variance of the
shocks than our nonlinear model, and how different the time series prop-
erties of these two models are. This means that the usual assumption of
linearity is not innocuous, not even as a first-order approximation. We
have illustrated how the slowly-decaying S-shaped autocorrelation function
implied by our economic model turns out to be close to the one observed
from the data, but very different from the one implied by standard linear
models.

2. Persistence, endogenous cycles and overreaction: small temporary shocks
in our model lead to long memory, without requiring unit roots. There
is no need for large shocks at the microeconomic level in order to gener-
ate large macroeconomic fluctuations. Both the common and idiosyncratic
shocks matter and are magnified exponentially at the macro level, though
the former is more potent than the latter. Their size is positively related to
the amplitude of the aggregate shock, but negatively related to the aggre-
gate memory (temporary large shocks are more frequent, hence more easily
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reversed). The decay of memory is however much slower than the usual
exponential rate for stable ARs.

. The effect of a higher degree of complementarity across sectors and/or mo-
nopolistic power in the economy is longer memory, but the amplitude of the
cycle is reduced. With higher monopoly power, firms do not adjust their
output so much after shocks, so there are less fluctuations but more persis-
tence. This complements the findings of Blundell, Griffith and Van Reenen
(1993). Furthermore, as monopoly power increases, our nonlinear model
will generate behaviour that seems increasingly like a random walk, even
though there are no unit roots in any of the components of the aggregate,
and though the model has generally less memory than a random walk.

. There is eventual mean-reversion in the cycles generated by our model, un-
like in infinite-memory unit-root models. The length of the cycle is random,
and the process is not periodic.

. Mean-reversion, coupled with long memory, implies that an economy can
get ‘stuck’ in a mode for a while, and have asymmetric business cycles
for that duration (e.g. post-war expansion, subsequent recessions). Mean-
reversion acts as an attractor: there is a slow tendency to the long-term
trend, with occasional bursts away from it.

. An implication of our result is that the individual components of GDP will
not be co-moving with aggregate GDP, because of the latter’s long-memory
property. This analytical observation is supported by the empirical findings
of Gregoir and Lenglart (1999).

. The aggregation over heterogeneous units does not reduce variability: the
standard intuition from the Laws of Large Numbers and the Central Limit
Theorems (CLTs) would be misleading in our time-series context, and one
should think of Functional CLTs (FCLTSs) instead. In the latter, correla-
tions build up over time, instead of cancelling out over different units. The
autocorrelation of sums of variates is greater than the autocorrelation of
the components, thus producing long memory. Intuitively, this arises be-
cause of the increased likelihood of correlation of one of the components
with another (possibly different) component at a later date.
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APPENDIX

Derivation of (20). The variate z; = 6,,; of (19) can be written as

Y

t—1
Ty = exp E alei;
=0

where we use as shorthand « for «,, and €; ~ IN(u, 0?) for p+ &, ~ IN(u, 02),
in the first proof given in this Appendix. Then,

E [(xtl:t-&-'r)y] =E

t—1 T—1
exp [V ((1 +a”) Z e i+ Z Oéj5t+7——j) ” )
j=0 J=0

where empty sums are taken to be zero, by convention. By the independence
of the sequence {e;}, and by the moment generating function (MGF) of the

distribution N(u,o?)

we get

E [(xt$t+T)V]

E [exp [be;]] = exp {bu +—

b2
2 )

t—1 T7—1

B t—1 T—1 2 9
= exp |vu ((1+a7)2aj+20/> +y20 ((1+a7)22a2j+2a2j>]
i =0 =0

J=0 Jj=0

= exp (Vi

(I+a)(1—-a)+1—a” 2?(1+a")’(1—a?)+1—a*
+
1 -« 2 1—a?

= €exp I — o

_V,u (2 — ot (1 T OzT)) N 1202 (1 —O—Of) (2 — ot (1 +a7>>‘| ‘

2(1—-a?)

Finally, by a similar method,

E[z{]

t—1
E [exp [VZajet_]”
=0
t—1 9 o t—1
exp [yuZaj + 2 ZO(2]]
=0 =0
vu(l—at)  v20?(1—a?)
eXpl 1—a 2(1— a?) ]
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so that the autocovariance function of z} is

tire = Elniwe)] - BRE [24,]
B vu(2—at(1+a7)) V2 (1+a)(2—-a®(1+a"))
- eXp{ 1-a i 2(1— a?) ]
vu(2—at (14+a7)) 2?2 —a®(1+a®))
_eXp{ 1—a 2(1— a2) ]

- eXp{ 1-a N 2(1— a?)
25207 (1 — o2t
« (exp véota™ (1 —a*) 1
1—a?

and its autocorrelation function is as stated in (20).

vu(2—at(1+a7)) v¥e?(2—-a*(1+ a2T))]

The following lemma is required for the proof of our theorem.

Lemma 1 For & a Generalized-Gamma variate with density function

ARgE M
I (g¢)

where X € (2,00) and ge € Ry, we have

exp [—hg{ A]

2¢

3 A X +9§*%
5= b2 b2
E [gg exp (ng)} ~ —i (gg:)g <2h5) exp ((

for ¢ + Age € Ry and large b € R,
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Proof. By a change of variable followed by expanding and taking the leading
term for large b € Ry [e.g. see Abadir’s (1999) fractional Hermite polynomials],

B (¢ exp (b¢”)]

)\hgg
o / €69 o (bE? — el dé

12

$+oe .
2/2mh (b—g)* b3 1233 7\ 1y <2h b%>—2(§+95+%(j—€)+%€)+%
I" (ge) 4he ! ¢ ‘

2¢ _1
vl S N G
= ———¢ Xp T
T (ge) b3 \ 2he (2he)>  4he

where (§) = T'(a+1)/[['(a— £+ 1)) are the binomial coefficients. Inciden-
tally, the derivations provide an asymptotic expansion for the Meijer G function
which includes hypergeometric functions as a special case, and is of intrinsic
mathematical interest. It is also of statistical interest because it can be refor-
mulated to give the leading term of the MGF of a Generalized-Gamma variate
(since €2 is also another Generalized Gamma variate). I

Proof of Theorem 1. It can be seen that the results displayed earlier in
this Appendix go through for any 6, ;, with the parameter equivalencies

a < ap,

{575} — {un,t+ﬁnet}7

2 2 2
o° — wn—i—ﬂm

so that
[ t—1 A
Oy = exp | Y ad (upij+ 5n€t—j)] ;
L j=0
) vp(2—al (1+al)) v (W2+067) (1+a])(2— o (1+a]))
Eon Qn Qn T = = = )
n [(Ont0n,e7)"] exp 1—o, + 2(1—a2)
y vp(1—at) VA (w2+6) (1—a)
.‘n[ﬁ } = exp T + 21— a2) :
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The penultimate expression is readily generalizable to

i— t+7—1
Eojn [(0n,i0r11+)"] = Eajn |exp VZ oy, (Un—j + Bper—j) +v Oéi; (Uk,tr—j + Brliir y)”

L _j0 j=

O

t+1—1
= E.n |exp VE aunt jtv E akukHT —j

L _]0

+VZ (/Bnai + ﬁko‘ﬁ ) e—j + 0 ZaketJrT J”

t+7—1 ]/2(,()2 t—1 w .
= exp |vu (Z ol + Z ) +— N 4 —E 5 a?
=0 =0 =0
U2 t—1 V 2 T—1
+T k
Bt LS
R i T .
1—a, 1 — ag 2(1—-a2) 2(1—a2)
P (B -0) | oF (1 af)  28,B00(1 ~abo))
2 1—04721 1—a? 1 — oo
i (1 — o)
1—al, 1—af" V2 (w2 4 62) (1 —a2)
- eXp[”“(l—an+ 1—ak)+ 2(1— a2)
P (6t ) (1= ad™™) 25,5001~ el
2(1-a3) 1 — anay ’

when k # n, and where it is understood that the conditioning of the expectation
is with respect to both n, k defined on the same space {1,2,... N} and generically
referred to by E,.
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We need
Eo\n [XtXtJrT]

(Ee) 5]

o\n

1 14 14 14 14
- F o|n 9 0nt+7+ze Hkt—i-T]
n=1 k#n
B ii (2 — ok (1+a;))+y2(w%+ﬂi)(l+a)(2—a (14 o))
- N2 1—ap 2(1—a2)
1—aof l—a?”) V2 (w2 + 32) (1 —a2)
+ ) exp |v =+ + -
k; p[“(l—an 1— o 2(1—a2)
(B (=0l 5,507 (1 abal)
2(1—a3) 1 — apay
and
LN
Eo\n [Xt] - N Z Eo|n [ez,t}

_ ;iexp vp(L—ap) V(W5 + 87) (1-af)
N 1—ay, 2(1—a2)

for the autocovariance function of {X;} to be derived as
-‘/;’t+7— =E [XtXt+T] —E [Xt] E [Xt+7] . (28)

For large N, the operators
1N
n=1

are exchangeable (by the Law of Large Numbers), with E,, denoting the expecta-
tion taken with respect to the distribution of parameters of the individual series
subscripted by n (or k). By the law of iterated expectations, E, [Ey, [¢]] =
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E,+[¢] = E[¢], the latter being the required expectation for (28), and we have

V;f,tJrT (29)

[vu 2—o,(14+07))
1— o,

1
N E,exp

12

PR+ (L ap) (2= a2 (1 + )
2(1—a2)
1—af  1-af | (e 8) (- ad)
2(1—-a2)

v (wi+ Br) (L—of™) | v2B.Bhof (1 ajal)
5 +
2(1—a3) 1 — apop

+E,Erexp |vu
1—a, 1— oy

vp(l—al) vV (wh+06) (1 —a)
_E”eXp[ 1— 2(1—a2)

v (1 — ab) . V2 (w2 + 32) (1 — agt+2f)]

En

exp[ 1—a, 2(1-a2)

1— ‘ 2 2+ 2 1— ot 1— t+71

NGRS YOy
- Gk

12

E,
1—ay, 2(1—a2)

v (@R + 08) (1= ™) | v2B,Brof (1 - a;az>>”

2(1-a3) 1 — anoy

B, [ex (Vﬂ(l—am 2 ( + ) <1—a%f)>]

1—ay, i 2(1—a2)
v (1 —akm) N V2 (w% + ﬁi) (1 — a2t+2m)
ex
Pl7 1, 2(1—a2)
= ‘N/t,t+r = Giyyr — HiHyy o,

E,

for 34, # 0. Notice that the drawings from the densities of «,w, 3 are done for
firm n independently from firm &, when k # n, so that the joint expectation can
be written in terms of the iterated marginals as E, ;. [¢] = E,, [Ex [¢]]. It is seen
in the resulting formula for V;;,, that a non-trivial common stochastic shock
(38,, # 0) introduces a lot more persistence in the aggregate series than when all
B, = 0 (in which case V; i, ~ 0 above). For (’s small relative to w’s, one may
even get frequent negative autocovariances as opposed to long cyclical behaviour.
The latter is what we need to analyse now.

Returning to formula (29) for V; ; ., one may remark the following two aspects.

First, by the mutual independence of the distributions of «,,w,,3,, one can
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substitute

Ey [o] = Eo, [Eg, [Ea, [s]]] = Eu,.p, [Ea, [+]

n

and similarly for Eg [¢]. Second, the main value of the integrals (expectations)
comes from o — 1, and one may exploit this property to solve an otherwise
intractable multiple integral. Let us take one component at a time from V;;,, of
(29), starting with the easiest (latter) one for expository purposes:

e = Bajoxp (Vﬂl(l__a:é ) 2 (Wi;(fé)o%)_ ait))]
_ 2 —
[ [0 () PR ) ]
~ E,,.8, /01 ade1 (1— a>ha—1 exp <y/ﬂfozt1 + wawl)) = (;jha)]
= /Olaga—l (1 — )" exp (vuta' ™) E,, 5, |exp (Maw—l)) = (gi(jéha)

where the approximation makes use of I’'Hopital’s rule. With the help of our
lemma, we can take the required expectations with respect to w and (3 as

_ dr A R N
" B9 ha) T (99) T (g0) \ 4k 4h,,

1
/ Oé)\(t—l)(gw'f'gﬁ—l)‘f'ga—l (1 _ Oé)ha_l
0

42 1 1 2t
4\ (2he)%  (2h)3 2

[N P

Lo LY e
(4% + 4hw) a da.
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By a change of variable replacing o by o'/~ then approximating for large t,

we get

o dr w222\ (2P
C Bl h) T @) (E—1) \ dhy ih.

1 ha—1
1 a
/ jk(gw-&-gg—l)-ﬁ-i—al—l (1 Oﬁ)
0

Y I ) (y2t)%(1+ 1) g
exp |vuto - - ot — | — —+— ) o da
4 (2h5)%  (2hy,)> 2 4hg  4h,

N 4 (v
N B(ga,ha)F(gﬂ)F(gw)(t—1)h°‘< 4hgs

1
/ O/\(gw+gg—1)—1 (1- a)hafl

0

. Y R R ) (y2t>%<1+ 1) ] 4
xXp |vuta - - |a* — | — — 4+ — )| da
4 (2h5)%  (2hy,)> 2 4hg  4h,

A ((zﬂt/z)% v ((V2t/2)

B (gaa ha) I (gﬁ) I (guJ> (t - l)ha

IS

2%hs)*  (2h,

=0

1
/ oA (frgutgs—1) -1 (1— a)h"_l exp (vuta) da,
0

the middle step having been obtained by

1 1 1—«
l—afT=1—(1-(1—a)™T ~ :
a (1-(1-0a) o)
Noting that
I' (ha)

1
/ a1 (1 — )" exp (vuta) da ~ i exp (vut)
0

(vut
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for large t [e.g. see Kummer’s function in Abadir (1999)] with vy € Ry, we can
write

Ry (0
F(ga)F(gﬁ)F(gw) (VM (t — 1) t)h“ 4h5 4h,,

, N
0o 4t2/4 1 1 J oo (_ (1/225/2)5) ) L\
Z ((Qhﬂ) ! (2h.,) ) 2 ¢! <4h/3 " 4hw>

j=0 =0

— AL (go + D) <(V2t/2)%>gﬁ; (M)gwé
F(9a>r(gg)F(gw) (VM (t _ 1) t)ha 4h5 4hw

v SOE 11
w2 (o) () ()]
As in Granger (1980), and in spite of the different setting here (geometric AR), we
find that the Beta parameter b of (30) is relatively unimportant in determining
the time-series features. This is no wonder, since AR roots near 0 have little
impact on aggregate memory, while roots near unity are more critical in this
respect. In terms of the original first Beta parameter, g, acts just as a ‘scaling’
for H; rather than an important parameter (e.g. power of t).

Going back to the required ‘Z,HT of (29), we have now derived an approxi-
mation for H;, and accordingly H;,,. We need to do the same for G;;,. We

start with the same approximation of the integrals (expectations) near « = 1 by
I’'Hopital’s rule, and

NIES
NIES

exp

Gt,t+T

~ E,

2 2 2
vt (Wn + ﬂn) Oéi(tl)>

exp (Vutazl + 5

V2 (t+7) (wi + ﬂk)

Ey

1 ' 2¢ (2 + 2
= Bl p o s / ade (1 — )" exp [ vutal + vt (wn + )
(B <ga7 ha)) o 2

1
o ha—1
B iy [ [arta-a

2
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exp <l/M t+71)al ™+ 5 2(t+T D423 Bt it

a2(t—1)>

2 t 2 2
exp <V (1t +7)+vtB,8ah ") af ™ + At T) (Wit ) ai(HT—l)) dak] dan] :
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By the transformations replacing ay, by ai/ 71 and a, by o (t_l), followed by
the same large-t expansion as before,
1
Gt,t+7— =

(B (9o ha))* ((t = 1) (t +7 = 1))

1 ha—1 20 ()2 2 1 I
1-— n “ vt wy, =+ " 1— o
Ewn,ﬁn [/ & exp <V/Ltan + %O‘i> Ewk,ﬁk / (a—k)
0 Qp, 0 ay

2 2, g2
exp (V (1 (t+7) + vtB,Bran) o + s 7)2(% +5) ai) dak] dan] :

As before, taking expectations with respect to w and integrating «y out,

Gt,tJr‘r

- ir <<u4t<t+f> /2 )
T (Do) B(ga ha))? (E= 1) (t+ 7 — 1)) 1612

1 2122
Mgo—2)- _ t
/ Oén(g 2) 1 (1 _ an)ha 1€Xp <7/l[1,t(]_/n + v 26nai +
0

Nbg

boAge—1)- _
[ e (vt ) o1, By o+ T
0

~

47T (hy) ((y4t (t+7) /4)%)"“ :
(B (9o ha) T (9))* (v (¢ = 1) (E+7 = 1))
vit+1) (A (t+7) /2)%>

exp | vu(t+7) + -
4 (Qhw>§ 4h,,

RN ﬁz) L
Es, |Eg, |e p( 5 /0 (1 (t+7) + B Bran)™

) A
g, v >
t+ vt ot a2 4 ———al - L) | da | |-
exp (V(,u +vtf,0,) o 5 4(2}%)%@ G | da
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Using the binomial expansion, integrating «,, out, then collecting the expansion
again,

Gt,tJrT

12

AT (he) ((l/4t (t+7) /4)3).%5
(B (gavha)r(gw))Q (vpt—-—1)t+7—1)(t+ ))ha 16h2,

exp | v T V4(t+7—)2_(’/2(t+7)/2)
p( w(t+7)+ 4(2%)% ™ )

ol N

Eg,

2t 2 4t2 2t 9
exp (V (ut + vtB,8;) an + V—Bnai +— o — (1/4}{ ) aﬁ) dan”

Eﬁk

2 4(2h,)*

12

exp | vu (2t +7) + _ T

v [+ (t+ 1) (1*/2)? [tz + (t+r)%]
4(2h,)*
h

Eg,

(:u+ Vﬁnﬂk’)ha §=0

_ A7 ( [ (go + ha) )2 (Vi (t+ 1) /4) w73
W2 (t—DtE+7—1)" \I(9a) T () 16,

AR (t+ 7)) (12/2)* [t% +(t+ 7)%] )

exp [ vp (2t +7) + _

4(2h,)* ih,,
B
Eg |exp < 5 ) Eg,

exp (V*103,5 + v* (t+7) 5r/2)
(1t v8,80)" (u(t+7) +vtB,5)" | |
We can use Watson’s lemma to approximate
(b4 vB,6y) (u(t+7) + 115,064)
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by p?(t + 7) when integrating for the expectations with respect to 3, and £3,,.
Our lemma gives these expectations as

Es, lexp (V2;ﬂ72"”> Eg, [exp (VQtﬁnﬂk + M)H
> (p2t) _ 2432 ) 2 (¢ 2
= L e () e ()

- ((y4t@%7)/4);>gﬁéexp AR+ )] 2

N>

12

[t% +(t+ r)%]
T (g9) 1613 -

4 (2hg)* dhg
i 1 [ vi/B(t+T)
NE N
=\ 2(ang)
where the sum can be collected as an exponential. Plugging this and the approx-
imation of Watson’s lemma into (32),
Gt,H—T

72 (16)2915 (14 (¢ 4 7) oo ) (e te) Y o | YD)
(22 (t—1)t(t+7—1)(t+ T))h“ h;gﬁ_lhf,gwfl ['(9a) T (96) T (9w) 2 (4h% >

A
o e (1 1) AR o
exp |vp (2t +7) + ST h4/A+hi/A — e h—ﬁ—i—h—w ,

B

Together with (31), this gives the required V; ¢4, ~ XN/t’tJrT = Gi44r — H Hyr and
the corresponding autocorrelation function by

R _ ‘/;f,tJrT ~ ‘/;,,tJrT
ti+1 — — ’

\/‘/t,t‘/;f—i—r,t—‘r’r ‘7;? t‘Z+T t+7

which completes the proof. |

Proof of Corollary 1. From (18), using the backshift (lag) operator B and
letting X; = 6},

o
I—v

log X4,

logy, = log s* + ”

L
(1-9B)

apart from the inconsequential initial conditions (see the discussion following
(19) in the text). The constants (1 — ) ' ~logs* and v have no impact on the
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relation between the autocorrelation functions of {log X;} and {logy;}. Further-
more, given that |y| < 1, the term (1 — vB) has an exponentially-decaying (low-
order) effect on the transfer function linking the long-memory process {log X;}

to {logy;}. |

Proof of Corollary 2. The output per capita of the final product in (13)
gives us k; = (v:/6;)"", which we substitute into (26) to get

1 1-d
(%>v = (M) ' (St 1Yt 1)d
0, 01 S

Upon taking logarithms and rearranging,

0
logy: = ~dlogs,1+ (1 —(1—7v)d)logy—1+ (1 —d)log (—t> + dlog 0,

)
vdlog s;—1 + (1 —d)log (0;/0,_1) + dlogb,
1-(1-(1—-9)d)B '

As in the proof of Corollary 1, we have 1—(1 — v) d € (0,1) so that the denomina-
tor has an exponentially-decaying (low-order) effect on the transfer function. As
for the numerator, {log s; 1} is a bounded process and {log 6;} is a long memory
process which dominates its difference {log (6;/6;_1)}; so that the leading term
of the autocorrelations of {logy,;} and {log X;} = {rlog6,} still coincide. Notice
that the leading terms of the autocovariances differ from those in the proof of
Corollary 1 by a factor of d?. I
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